[go: up one dir, main page]

JPH02293576A - air separation equipment - Google Patents

air separation equipment

Info

Publication number
JPH02293576A
JPH02293576A JP11371789A JP11371789A JPH02293576A JP H02293576 A JPH02293576 A JP H02293576A JP 11371789 A JP11371789 A JP 11371789A JP 11371789 A JP11371789 A JP 11371789A JP H02293576 A JPH02293576 A JP H02293576A
Authority
JP
Japan
Prior art keywords
air
column
conduit
rectification
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11371789A
Other languages
Japanese (ja)
Inventor
Hirohiko Nakamura
裕彦 中村
Hisazumi Ishizu
石津 尚澄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Techno Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Techno Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Techno Engineering Co Ltd
Priority to JP11371789A priority Critical patent/JPH02293576A/en
Publication of JPH02293576A publication Critical patent/JPH02293576A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/52Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the high pressure column of a double pressure main column system

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は膨張タービンおよび深冷分離装置を有する空気
分離装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an air separation device having an expansion turbine and a cryogenic separation device.

〔従来の技術〕[Conventional technology]

従来の深冷分離方法を用いた空気分離itにおいて、膨
張タービンで膨張された空気又は窒素は精管塔に吹込れ
ており、膨張された空気又は窓素が加熱状態であっても
同様であった。以下、第2図により詳細を説明する。
In air separation IT using conventional cryogenic separation methods, air or nitrogen expanded by an expansion turbine is blown into a vasophage column, and the same is true even if the expanded air or window element is heated. Ta. Details will be explained below with reference to FIG.

図において、空気分離装置の前処理装置で水分および炭
酸ガスを除去された原料空気の大部分は導管1.  2
より空気熱交換器3に導入され、冷却後導管4を経て精
留塔下部塔6へ供給される。精留塔下部塔6の頂部に設
置される凝縮器諺で液体酸素によって凝縮された液体窓
素は精留分離にょって精留塔下部塔6の底部では液体空
気となって溜まる。この液体空気は導管7.8を経て熱
交換器9で過冷却された後,導管10を経て膨張弁11
で減圧され、導管認な経て精留塔上部塔l3へ送入され
る。精留塔上部塔lから導管14により抜出される廃窒
素は熱交換器9にて昇湿され、さらに導管15により空
気熱交換器3に供給されて、常温まで温度回復して導管
l6より送出される。
In the figure, most of the raw air from which moisture and carbon dioxide have been removed in the pre-treatment device of the air separation device is piped into conduit 1. 2
It is then introduced into the air heat exchanger 3, and after being cooled, it is supplied to the lower column 6 of the rectification column via the conduit 4. In the condenser installed at the top of the lower column 6 of the rectification column, the liquid window element condensed by liquid oxygen is collected as liquid air at the bottom of the lower column 6 of the rectification column by rectification separation. This liquid air passes through a conduit 7.8, is supercooled in a heat exchanger 9, and then passes through a conduit 10 to an expansion valve 11.
The pressure is reduced at , and the product is sent to the upper column 13 of the rectification column via a conduit. The waste nitrogen extracted from the upper column 1 of the rectification column through the conduit 14 is humidified in the heat exchanger 9, and further supplied to the air heat exchanger 3 through the conduit 15, where the temperature is recovered to room temperature and sent out through the conduit 16. be done.

また導管1から導管17へ分岐する原料空気の一部はタ
ービン圧縮ia1gで昇圧された後、導管19を経て後
方冷却器加で冷却され、導管4を経て空気熱交換器3へ
供給される。空気熱交換器3で所定の温度まで冷却され
た後、導管4を経てタービン圧縮a18で膨張し、導管
5を経て精留塔上部塔lへ送入される。
Further, a part of the feed air branched from the conduit 1 to the conduit 17 is pressurized by the turbine compression ia1g, passes through the conduit 19, is cooled by a back cooler, and is supplied to the air heat exchanger 3 via the conduit 4. After being cooled to a predetermined temperature in the air heat exchanger 3, it is expanded through the turbine compression a18 through the conduit 4, and is sent through the conduit 5 to the upper column 1 of the rectification column.

一方、精留塔下部塔6の頂部より導管囚で抜き出される
液体窒素は熱交換器9で過冷却された後、導管クを経て
膨張弁(9)で減圧され、導管3lを経て精gII塔上
部塔l3の頂部へ送入される。
On the other hand, the liquid nitrogen extracted from the top of the lower column 6 of the rectification column by a conduit is supercooled in a heat exchanger 9, passes through a conduit 6, is depressurized by an expansion valve (9), and passes through a conduit 3l to a fraction gII. It is fed into the top of the upper column 13.

さらにまた″精留塔上部塔口の底部に溜まった液体酸素
は凝縮器《において精留塔下部塔6の窒素ガスと熱交換
し、蒸発して酸素ガスとなり、一部導管《によって抜き
出される。導管羽によって抜き出された酸素ガスは空気
熱交換器3へ供給され、常温まで温度回復して導管翼よ
り送出される。なお、この種の装置として関連するもの
には例えば特開昭62−142984号が挙げられる。
Furthermore, the liquid oxygen accumulated at the bottom of the upper column mouth of the rectifying column exchanges heat with the nitrogen gas in the lower column 6 of the rectifying column in the condenser, evaporates into oxygen gas, and is partially extracted through the conduit. The oxygen gas extracted by the conduit vanes is supplied to the air heat exchanger 3, where the temperature is recovered to room temperature and sent out from the conduit vanes. -142984 is mentioned.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は酸素ガスの精留効率について配慮がされ
ておらず、タービン圧縮機を出た空気の温度が高い場合
でもそのまま精留塔へ送入され、精留塔上部塔の上部の
下降液を一部蒸発させ、精留塔上部塔の下部からの上昇
ガスと合流している。
The above conventional technology does not take into account the rectification efficiency of oxygen gas, and even if the temperature of the air exiting the turbine compressor is high, it is directly sent to the rectification column, and the descending liquid at the top of the upper column of the rectification column is Part of the gas is evaporated and the gas is combined with the rising gas from the bottom of the upper column of the rectification column.

このため酸素ガスの精留効率を決める精留塔上部塔の下
部の環流流量がその分少な畷なり、精留効率が低下する
という欠点があった。
For this reason, the recirculation flow rate at the lower part of the upper column of the rectification column, which determines the rectification efficiency of oxygen gas, is correspondingly small, resulting in a disadvantage that the rectification efficiency is lowered.

本発明の目的は上記酸素ガスの精留効率を改善する空気
分離装置を提供することにある。
An object of the present invention is to provide an air separation device that improves the rectification efficiency of oxygen gas.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、新たに熱交換器な設け、該熱
交換器によりタービン圧縮機を出た加熱空気と精留塔下
部塔の底部の液体空気とを熱交換させたものである。
In order to achieve the above object, a heat exchanger is newly installed, and the heat exchanger exchanges heat between the heated air exiting the turbine compressor and the liquid air at the bottom of the lower column of the rectification column.

〔作  用〕[For production]

新たに設けた熱交換器において、タービン圧縮機を出た
加熱空気と熱交換して蒸発した液体空気の一部は、精留
塔下部塔の下部に供給される原料空気と共に上昇し、精
留塔下部塔の頂部に設置されている凝縮器において液体
酸素と熱交換する。
In the newly installed heat exchanger, a part of the liquid air that evaporates by exchanging heat with the heated air exiting the turbine compressor rises together with the feed air supplied to the lower part of the lower column of the rectification column, and is used for rectification. Heat exchanges with liquid oxygen in the condenser installed at the top of the lower column column.

凝縮器で蒸発した酸素は上昇ガスとなり、精留塔上部塔
内を上昇する。
Oxygen evaporated in the condenser becomes a rising gas and rises in the upper column of the rectification column.

従って精留塔下部塔および精留塔上部塔下部の上昇ガス
が、精留塔下部塔底部で発生した蒸発した分だけ増加す
ることになる。
Therefore, the rising gas in the lower column of the rectification column and the lower part of the upper column of the rectification column increases by the amount of evaporation generated at the bottom of the lower column of the rectification column.

即ち精留塔内において環流流量が増加し、精留効率が改
善される。
That is, the reflux flow rate increases in the rectification column, and the rectification efficiency is improved.

〔実 施 例〕〔Example〕

以下、本発明の一実施例をWil図により説明する。 An embodiment of the present invention will be described below using Wil diagrams.

図において、空気分離装置の前処理装置で水分および炭
酸ガスを除去された原料空気の大部分は導管1.2より
空気熱交換器3に導入され、冷却後導管4を経て精留塔
下部埼6へ供給される。精留塔下部塔6の頂部に設置さ
れる凝縮器冨で液体酸素によって凝縮された液体窒素は
精留分離によって精留培下部塔6の底部では液体空気と
なって溜まる。この液体空気の大部分は導管7,8を経
て熱交換器9で過冷却された後、導管10を経て膨張弁
Uで減圧され、導管校を経て精留塔上部塔13へ送入さ
れる。また、液体空気の一部は導管7,々を経て熱交換
器冴においてタービン出口空気によって加熱蒸発され、
導管nを経て精留塔下部塔6へ戻る。
In the figure, most of the raw air from which moisture and carbon dioxide have been removed in the pretreatment device of the air separation device is introduced into the air heat exchanger 3 through conduit 1.2, and after being cooled, it passes through conduit 4 to the lower part of the rectification column. 6. Liquid nitrogen condensed by liquid oxygen in a condenser installed at the top of the lower column 6 of the rectification column becomes liquid air and accumulates at the bottom of the lower column 6 of the rectification medium by rectification separation. Most of this liquid air passes through conduits 7 and 8, is supercooled in a heat exchanger 9, passes through a conduit 10, is depressurized by an expansion valve U, and is sent to the upper column 13 of the rectification column via a conduit. . Also, a part of the liquid air is heated and evaporated by the turbine outlet air in the heat exchanger through the conduits 7, etc.
It returns to the lower column 6 of the rectification column via conduit n.

精留塔下部塔6の頂部より導管怨で抜き出される液体窒
素は熱交換器9で過冷゜却された後、導管四を経て膨張
弁(資)で減圧され、導管阻を経て精留塔下部塔口の頂
部へ送入される。
The liquid nitrogen extracted from the top of the lower column 6 of the rectifying column through a conduit is subcooled in a heat exchanger 9, passes through conduit 4, is depressurized by an expansion valve, and is then rectified through a conduit. It is sent to the top of the tower mouth at the bottom of the tower.

また、導管lから導管l7へ分岐する原料空気の一部は
タービン圧縮機厚8で昇圧された後、導管l9を経て後
方冷却器囚で冷却され、導管4を経て空気熱交換器3へ
供給される。空気熱交換器3で所定の温度まで冷却され
た後、導管nを経てタービン圧縮機18で膨張した後、
導管器を経て熱交換器スヘ供給される。熱交換器スにお
いて精留塔下部塔6の液体空気の一部と熱交換して冷却
された後、導管2を経て精留塔上部塔口へ送入される。
In addition, a part of the raw material air branched from the conduit l to the conduit l7 is pressurized by the turbine compressor thickness 8, is cooled in the rear cooler via the conduit l9, and is supplied to the air heat exchanger 3 via the conduit 4. be done. After being cooled to a predetermined temperature in the air heat exchanger 3, it is expanded in the turbine compressor 18 through the conduit n, and then
It is supplied to the heat exchanger via a conduit. After being cooled by heat exchange with a part of the liquid air in the lower column 6 of the rectification column in the heat exchanger, it is sent to the upper column mouth of the rectification column through the conduit 2.

精留塔上部塔13の底部に溜った液体酸素は凝縮器《に
おいて精留塔下部塔6の窒素ガスと熱交換し、蒸発して
酸素ガスとなり、一部導管おによって抜き出される。導
管冨によって抜き出された酸素ガスは空気熱交換器3へ
供給され、常温まで温度回復して導管あより送出される
The liquid oxygen accumulated at the bottom of the upper column 13 of the rectification column exchanges heat with the nitrogen gas in the lower column 6 of the rectification column in the condenser, evaporates into oxygen gas, and is partially extracted through a conduit. The oxygen gas extracted through the conduit is supplied to the air heat exchanger 3, the temperature is recovered to room temperature, and the oxygen gas is sent out through the conduit.

一方精留塔上部塔13から導管14により抜き出される
廃窒素は熱交換器9Iこて昇温され、さらに導管正によ
り空気熱交換器3に供給されて、常温まで温度回復して
導管l6より送出される。
On the other hand, the waste nitrogen extracted from the upper column 13 of the rectification column through the conduit 14 is heated through the heat exchanger 9I, and is further supplied to the air heat exchanger 3 through the conduit main, where the temperature is recovered to room temperature and then passed through the conduit 16. Sent out.

以上の構成において、新たに設けた熱交換器Uにより、
タービン圧縮機18を出た加熱空気と精留塔下部塔6の
底部の液体空気とを熱交換させることで、酸素ガスの精
留効率の改善を図るものである。
In the above configuration, the newly installed heat exchanger U allows
By exchanging heat between the heated air exiting the turbine compressor 18 and the liquid air at the bottom of the lower column 6 of the rectifying column, the efficiency of rectifying oxygen gas is improved.

本実施例によれば下記の効果がある。According to this embodiment, the following effects are achieved.

(1)  タービンの流量を原料空気流量のtOts,
タービン出口温度を−130℃、液体空気の温度を−1
73℃とし、タービン出口空気を−171℃まで冷却す
ると、13kcal/N7FL”の熱交換量となる。液
体空気の蒸発潜熱を5 7 kca 1 /N m”と
すると10XI3/57=2.3%精留塔の流量が増加
する。即ち原料空気流量が2.3%低減できる。
(1) The turbine flow rate is the feed air flow rate tOts,
Turbine outlet temperature is -130℃, liquid air temperature is -1
If the temperature is 73°C and the turbine outlet air is cooled to -171°C, the heat exchange amount will be 13 kcal/N7FL". If the latent heat of vaporization of liquid air is 5 7 kca 1 /N m", 10XI3/57 = 2.3%. The flow rate of the rectification column increases. That is, the raw material air flow rate can be reduced by 2.3%.

(2)  また上!etit項により原料空気圧縮機と
原料空気前処理装置の清費電力代が低減できる。また追
設する熱交換器の設備費が増加するが、原料空気圧縮機
と原料空気前処理装置の設備費が減少するので、全体と
しては設備費が低減できる。
(2) Up again! The etit term allows the cost of electricity for the raw air compressor and the raw air pre-treatment device to be reduced. Furthermore, although the equipment cost of the additionally installed heat exchanger increases, the equipment cost of the raw air compressor and the raw air pretreatment device decreases, so the equipment cost can be reduced as a whole.

(3)精留塔下部塔において空気吹込部と底部との間に
精留部を設けた場合、精留塔下部塔頂部から窒素を採取
する空気分離装置においては、窓素中のアルゴン濃度な
精留部を設けない場合に比べ大巾に低減できる。
(3) When a rectifying section is provided between the air blowing section and the bottom in the lower column of the rectifying column, in an air separation device that collects nitrogen from the top of the lower column of the rectifying column, the argon concentration in the window element This can be significantly reduced compared to the case without a rectification section.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、タービン圧縮機を出た加熱空気と精留
壜下部塔の底部の液体空気とを熱交換させ、熱交換後の
冷却された加熱空気な精留塔上部塔へ、また加熱蒸発さ
れた液体空気は精留塔下部塔へ、それぞれ戻すことによ
り、酸素ガスの精留効亭の改善を図ることができる。
According to the present invention, the heated air exiting the turbine compressor and the liquid air at the bottom of the lower column of the rectifying bottle are subjected to heat exchange, and the cooled heated air after the heat exchange is transferred to the upper column of the rectifying column for heating. By returning the evaporated liquid air to the lower column of the rectifying column, it is possible to improve the efficiency of rectifying oxygen gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の空気分離装置の系統図第2
図は従来の空気分離装置の系統図である。 6・・・・・・精留塔下部塔、7.26・・・・・・液
体空気導管、18・・・・・・タービン圧縮機、Z3,
 25. 27・・曲空気導管、オl圀
FIG. 1 is a system diagram of an air separation device according to an embodiment of the present invention.
The figure is a system diagram of a conventional air separation device. 6... Lower column of rectification column, 7.26... Liquid air conduit, 18... Turbine compressor, Z3,
25. 27...Curved air conduit, origami

Claims (1)

【特許請求の範囲】 1、深冷分離による空気分離装置において、タービンで
膨張された原料空気と精留塔下部塔底部の液体空気とを
熱交換させるように構成したことを特徴とする空気分離
装置。 2、請求項第1項記載の空気分離装置の精留塔下部塔に
おいて、空気吸込部と底部との間に精留部を設けたこと
を特徴とする空気分離装置。 3、深冷分離による空気分離装置において、タービンで
膨張された原料空気と精留分離された液体空気とを熱交
換させる熱交換器を精留塔下部塔に内蔵したことを特徴
とする空気分離装置。 4、請求項第1項、又は請求項第3項に記載の空気分離
装置の運転方法において、タービン出口の原料空気と精
留塔下部塔底部の液体空気とを熱交換させて原料空気を
低減させることを特徴とする空気分離装置の運転方法。 5、深冷分離による空気分離方法において、タービンで
膨張された原料空気と精留塔下部塔底部の液体空気とを
熱交換させ、酸素の採取量を増加させることを特徴とす
る空気分離方法。
[Scope of Claims] 1. An air separation device using cryogenic separation, characterized in that the air separation device is configured to exchange heat between raw air expanded by a turbine and liquid air at the bottom of a lower part of a rectification column. Device. 2. An air separation device according to claim 1, characterized in that in the lower column of the rectification column, a rectification section is provided between the air suction section and the bottom section. 3. An air separation device using cryogenic separation, characterized in that a heat exchanger for exchanging heat between raw air expanded by a turbine and liquid air separated by rectification is built into the lower column of the rectification column. Device. 4. In the method of operating an air separation device according to claim 1 or 3, the amount of feed air is reduced by heat exchange between the feed air at the turbine outlet and the liquid air at the bottom of the lower part of the rectification column. A method of operating an air separation device characterized by: 5. An air separation method using cryogenic separation, which is characterized by increasing the amount of oxygen collected by exchanging heat between raw air expanded in a turbine and liquid air at the bottom of the lower part of a rectification column.
JP11371789A 1989-05-08 1989-05-08 air separation equipment Pending JPH02293576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11371789A JPH02293576A (en) 1989-05-08 1989-05-08 air separation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11371789A JPH02293576A (en) 1989-05-08 1989-05-08 air separation equipment

Publications (1)

Publication Number Publication Date
JPH02293576A true JPH02293576A (en) 1990-12-04

Family

ID=14619359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11371789A Pending JPH02293576A (en) 1989-05-08 1989-05-08 air separation equipment

Country Status (1)

Country Link
JP (1) JPH02293576A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159026A (en) * 1993-09-23 1995-06-20 Air Prod And Chem Inc Method for low temperature distillation of air for producinggas and/or liquid product form oxygen and nitrogen simultaneously

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620980A (en) * 1979-07-20 1981-02-27 Air Liquide Low temperature air separation method of and apparatus for production of high pressure oxygen
JPS581350A (en) * 1981-06-26 1983-01-06 Pioneer Electronic Corp Fm stereophonic demodulator
JPS62162876A (en) * 1985-10-04 1987-07-18 ザ・ビ−オ−シ−・グル−プ・ピ−エルシ− Gas-liquid catalytic method and device
JPH054691A (en) * 1991-06-20 1993-01-14 Tokico Ltd Unloading system of tank trailer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620980A (en) * 1979-07-20 1981-02-27 Air Liquide Low temperature air separation method of and apparatus for production of high pressure oxygen
JPS581350A (en) * 1981-06-26 1983-01-06 Pioneer Electronic Corp Fm stereophonic demodulator
JPS62162876A (en) * 1985-10-04 1987-07-18 ザ・ビ−オ−シ−・グル−プ・ピ−エルシ− Gas-liquid catalytic method and device
JPH054691A (en) * 1991-06-20 1993-01-14 Tokico Ltd Unloading system of tank trailer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159026A (en) * 1993-09-23 1995-06-20 Air Prod And Chem Inc Method for low temperature distillation of air for producinggas and/or liquid product form oxygen and nitrogen simultaneously

Similar Documents

Publication Publication Date Title
CA2063928C (en) Process for low-temperature air fractionation
JP3117702B2 (en) Method and apparatus for producing oxygen gas of variable flow rate by rectification of air
JPH0412392B2 (en)
CN103123203A (en) Method of preparing pure nitrogen by using exhaust gas with nitrogen to carry out once-more cryogenic distillation
KR890004398B1 (en) Method and apparatus for separating of product gas from raw gas
JPH1163810A (en) Method and device for manufacturing low purity oxygen
JPH02293576A (en) air separation equipment
JP4230213B2 (en) Air liquefaction separation apparatus and method
JP3181546B2 (en) Method and apparatus for producing nitrogen and argon from air
JP3203181B2 (en) Oxygen production method associated with nitrogen production equipment
JP7291472B2 (en) Nitrogen gas production equipment
CN202648307U (en) Device for separating air through low temperature distillation
JP3082092B2 (en) Oxygen purification method and apparatus
JP2997939B2 (en) Recovery and utilization of evaporative gas in low-temperature storage tank
JPH0399190A (en) Method of manufacturing oxygen
JP3044564B2 (en) Gas separation method and apparatus
JPS6399483A (en) air separation equipment
JP3072563B2 (en) Method and apparatus for collecting high-purity liquefied nitrogen
JPS6237675A (en) Nitrogen generator
JPS61243273A (en) Air liquefying separating method
JP2000009382A (en) Air separation equipment
KR100193515B1 (en) Manufacturing apparatus and method for separating nitrogen from air by deep cooling method
JPS63197868A (en) Nitrogen generator using a turbine compressor
JPS6138391B2 (en)
JPH0195280A (en) Chilling separating method and device for carbon monoxide