[go: up one dir, main page]

JPH0229101B2 - - Google Patents

Info

Publication number
JPH0229101B2
JPH0229101B2 JP55081158A JP8115880A JPH0229101B2 JP H0229101 B2 JPH0229101 B2 JP H0229101B2 JP 55081158 A JP55081158 A JP 55081158A JP 8115880 A JP8115880 A JP 8115880A JP H0229101 B2 JPH0229101 B2 JP H0229101B2
Authority
JP
Japan
Prior art keywords
weight
parts
molded article
molecular weight
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55081158A
Other languages
Japanese (ja)
Other versions
JPS575743A (en
Inventor
Takashi Kobayashi
Osamu Amano
Sakuya Iwai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP8115880A priority Critical patent/JPS575743A/en
Publication of JPS575743A publication Critical patent/JPS575743A/en
Publication of JPH0229101B2 publication Critical patent/JPH0229101B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は射出成形による石油樹脂から成る成形
物の製造方法に関する、さらに詳しくは、本発明
は環球法軟化点60〜200℃、平均分子量300〜
2000、加熱減量10重量%以下の石油樹脂、100重
量部および無機粉末充てん剤100〜900重量部、平
均分子量5000〜25万の高分子量熱可塑性樹脂0〜
50重量部よりなる混合物を射出成形することを特
徴とする成形物の製造方法に関する。 特に、上記組成物のうち、ベース樹脂である石
油樹脂の加熱減量を10重量%以下に制限した組成
物による優れた射出成形性を特徴とする製造方法
に関する。 一般に無機粉末状充てん剤を多量に混合した石
油樹脂組成物は、室温付近ではガラス状の硬くて
脆い性質を有している。この組成物に高分子量熱
可塑性樹脂を配合すれば、成形物の強度、耐衝撃
性を改良することができるが、50重量部以下の配
合量では成形物に柔軟性を付与するには至らず、
硬質のものである。 この様な硬質で比較的脆い成形物を射出成形す
る場合、金型からの製品取出し工程において、成
形物が金型表面にステイツクすると、離型不良と
なり易く、連続自動成形不良、離型時の製品ひび
割れ、生産性低下、各成形サイクル毎の金型への
離型剤塗布の必要等、種々の経済的に不利な問題
点を引き起こす。この冷却された金型表面へのス
テイツク、離型時割れの原因として、組成物が高
充てん系であるがために、金型内での冷却固化時
の成形物の収縮が小さいこと、材料が硬質、脆弱
であるために離型時の変形が許されないこと、さ
らに滑剤や離型助剤の添加もしくはその増量によ
り離型性の改良が困難であるなどが考えられる。 本発明者等は、これらの原因は、本質的にはベ
ース樹脂である石油樹脂に1次的原因があると考
えた。即ち、石油樹脂は本来射出成形用樹脂とし
て開発されたものではなく、ゴムや接着剤の分野
では粘着付与剤として効果的と評価されている。
本発明者等はすでに石油樹脂をベース樹脂とした
クレー射撃用標的に関する特許出願をし(特公昭
52−40800)、これらクレー射撃目標的の射出成形
方法による生産においても、時折、成形物が難型
時に割れる問題がある。この問題も含めて鋭意研
究を行つた結果、加熱減量の大きい石油樹脂がこ
のような問題を引起こすことが分かつたので、ベ
ース樹脂である石油樹脂の加熱減量を10重量%以
下にすることで、成形物の離型時の金型ステイツ
クを全くなくせることを見い出した。 即ち、環球法軟化点60〜200℃、平均分子量300
〜2000、加熱減量10重量%以下の石油樹脂100重
量部および無機質粉末状充てん剤100〜900重量
部、平均分子量5000〜20万の高分子熱可塑性樹脂
0〜50重量部から成る混合物を射出成形すること
により、優れた品質の石油樹脂組成物の成形品を
得ることができた。 本発明でいう石油樹脂とは、石油類の熱分解、
スチーム分解、接触分解により副生する常温で液
状の分解油留分、好ましくは120〜280℃の沸点を
有するC9芳香族系炭化水素留分を主成分とする
留分、さらに好ましくは140〜280℃の沸点を有す
る芳香族系炭化水素留分を、熱重合もしく通常の
フリーデルクラフツ型触媒により重合した、石油
樹脂またはこれらに無水マレイン酸などの不飽和
二塩基酸無水物を付加したものであり、JIS
K2531による環球法軟化点60〜200℃好ましくは
90〜180℃の軟化点を持つた樹脂である。軟化点
60℃より低い石油樹脂を本発明の目的に配合した
場合には、組成物の軟化温度が低くなるために、
成形時の冷却工程が長くなり生産性を低下させる
ばかりか、成形品の耐熱性に問題を生じ、屋外の
暑い場所に放置された場合や、積重ねで輸送、貯
蔵した際に変形してしまう。また、200℃以上の
軟化点にすると溶融粘度が高くなり、加工性が悪
くなり好ましくない。 本発明でいう加熱減量とは、直径75mm、深さ20
mmのガラスシヤーレ上に石油樹脂5gを採取し、
槽内寸法が幅45cm、奥行45cm、高さ50cmの空気恒
温槽内の中段に設置し、該槽内中心部分の温度を
200±1℃に保持して15/minの空気を送入、
排出させた場合の3hr後の石油樹脂の重量減パー
セントをいう。即ち、加熱前の重量をM1、加熱
後の重量をM2とすれば、加熱減量(重量%)は
次の式で表わされる。 加熱減量(重量%)=(M1−M2/M1)×100 石油樹脂の加熱減量を10重量%以下にするに
は、たとえば石油樹脂を金属製容器に仕込み、窒
素置換しながら230℃に昇温し、窒素を停止して
真空脱気を行う。 この加熱減量が10重量%以上であると、硬質で
比較的脆い成形物の射出成形で金型からの製品取
出し工程において、成形物が金型表面にステイツ
クするためと、離型不良となり易く、連続自動成
形不良、離型時の製品ひび割れ、生産性低下、各
成形サイクル毎の金型への離型剤塗布の必要等、
種々の経済的に不利な問題点を引き起こす。 また本発明でいう無機質粉末状充てん剤は、通
常、粒径0.01μ〜500μの無機質粉末で、例えば炭
酸カルシウム、タルク、クレー、アルミナホワイ
ト、雲母粉、硫酸アルムニウム、硫酸バリウム、
石こう類、亜硫酸カルシウム、リトポン、軽石
粉、ガラス粉、亜鉛華、炭酸マグネシウム、金属
粉、アスベスト粉、酸化チタン、またはこれらの
混合物等である。 さらに、本発明でいう高分子量熱可塑性樹脂と
は、平均分子量が約5000〜20万のポリエチレン、
ポリプロピレン、ポリブテン−1、結晶性1,2
ポリブタジエン、ポリスチレン、ポリ−α−メチ
ルスチレン、ポリ塩化ビニル、ポリメチルメタア
クリレート、ポリアミド、ポリエステル、熱可塑
性ポリウレタンなどの高分子量熱可塑性樹脂類、
さらにエチレン−プロピレンブロツク共重合体、
エチレン−酢酸ビニル共重合体、エチレン−エチ
ルアクリレート共重合体、スチレン−ブタジエン
ブロツク共重合体、スチレン、イソプレンブロツ
ク共重合体などの共重合タイプの熱可塑性樹脂類
などであり、特にこれらの内で、安価で物性向上
効果の大きい、粉末状のポリエチレン、ポリプロ
ピレン、ポリスチレンなどが好ましく使用され
る。 石油樹脂成分と無機質粉末状充てん剤成分、そ
して高分子量熱可塑性樹脂成分との量的関係は、
平均分子量300〜2000、環球法軟化点60〜200℃の
石油樹脂100重量部に対して、無機質粉末状充て
ん剤100〜900重量部、好ましくは200〜900重量
部、高分子量熱可塑性樹脂0〜50重量部、好まし
くは0〜40重量部である。無機質粉末状充てん剤
が100重量部より少ないと成形品の耐熱性が劣り、
夏期の貯蔵もしくは放置された場合に表面が粘着
化し、成形物間が融着したり、一体化したりする
不都合を生じる。また、価格的にも高価となり、
本目的にそわない。無機質粉末充てん剤が900重
量部よより多い場合は、材料全体としての価格が
安価となり、有利ではあるが、成形時の溶融粘度
が極度に上昇するため、流動性をなくし成形加工
が困難となり、著しい生産性低下をきたしてしま
う。 さらに本発明において石油樹脂100重量部に対
して配合する高分子量熱可塑性樹脂は0〜50重量
部であり、さきに記したような高分子量熱可塑性
樹脂類の中から選択したその樹脂自身の性質、成
形物の用途により、それぞれ最適添加量が異な
る。すなわち、成形物がクレービジヨンの場合強
度、耐衝撃強度の優れた高分子量熱可塑性樹脂の
添加にあたつては、その好ましい添加量は0〜20
重量部で良好であり、耐衝撃強度が小さい高分子
量熱可塑性樹脂の好ましい添加量は0〜40重量部
となる。50重量部以上添加した場合は、成形物の
強度過剰となる。 また本発明において石油樹脂、無機質粉末状充
てん剤、高分子量熱可塑性樹脂からなる本発明の
混合物には、必要に応じて少量、たとえば石油樹
脂100重量部に対して15重量部以下の加工助剤、
顔料酸化防止剤などを添加することができる。 本発明の加熱減量10重量%以下の石油樹脂をベ
ース樹脂とする混合物を、配合、調製するに際し
ては、ニーダー、バンバリーミキサー、ロールミ
ルなどの通常の汎用プラスチツク類の混練、混合
機をもちい加熱混練し、その混合物を粒状にして
射出成形機に供給すればよい。 さらに好ましくは、秤量した各々の原料を全て
ベンシエルミキサーや、スーパーミキサーのよう
な高速回転混合機に投入し、加熱することなく粉
砕、混合し、その粉末状ドライブレンド組成物を
射出成形機に直接供給することもできる。 これら混合物を成形するための射出成形機は、
一般の高分子材料の成形に使用されているラム
式、ポツト式射出成形機をそのまま応用しうる
が、さらに予備可塑化装置を付属した成形機、た
とえばブレンドフイーダー付射出成形機(日精樹
脂工業(株)製)などをもちいることにより、混合時
の加熱工程を省略した粉末状ドライブレンド混合
物を直接供給し、射出成形することができる。 本発明の組成物により射出成形しうる製品は、
たとえば容器、パイプ、植木鉢、クレー射撃用標
的、育苗箱、装飾品(像などの置物)、タイル、
壁板など土木、建築、レジヤー用品から家庭用品
まで広い用途の品物を安価に提供することができ
る。特に植木鉢、クレー射撃用標的として好適で
ある。 以下実施例により本発明をさらに具体的に詳説
する。 実施例1〜3および比較例1〜4 表に記載の如く、石油樹脂、重質炭酸カルシウ
ム、高分子量熱可塑性樹脂、加工助剤、顔料を各
各所定重量部秤量し、三井三池製作所製250ヘ
ンシエルミキサーにより常温、1600rpmで3分間
ドライブレンドし粉末状混合物を調製した。これ
らの原料をブレンドフイーダー付射出成形機(日
精樹脂工業株式会社製)のホツパーに供給し、加
熱筒温度170℃設定で、植木鉢の成形を行つた。 実施例1〜3はいずれも加熱減量10重量%以下
の石油脂を配合したものであるが、高分子量熱可
塑性樹脂の種類と量、加工助剤の添加の有無にか
かわらず良好な成形性を示し、全自動連続運転も
容易であつた。また、金型キヤビテイーのメツキ
面も終始鏡面状で、成形物が殆んどキヤビテイー
面にステイツクしていないことが裏付けられた。 比較例1は加熱減量11.9重量%の石油樹脂を配
合したものであるが、なんとか連続成形出来るも
のの、100個中数個割れて離型されるものがあり、
成形後の製品検査では半数以上がひび割れしてお
り、成形中の割れと合せて76%の製品が不良であ
つた。 比較例2〜3は、加熱減量12.8重量%の石油樹
脂を配合したものであるが、比較例2は自動運転
に切替る前の手動運転で、全て割れて離型され、
1シヨツト射出する毎に金型キヤビテイー面が激
しく汚れ、相当な力でステイツクしている事を裏
付けていた。 比較例3はステアリン酸配合量を比較例2の倍
量としたものであるが、金型離型効果は改良され
ず、比較例2と同等の結果であつた。 比較例4は加熱減量11.3重量%の石油樹脂を配
合したもので、ポリスチレンの量も20重量部に増
加して製品強度の向上を計つた。この結果、全自
動運転が可能となつたが成形品は15%がひび入り
であつた。 また、金型キヤビテイーのメツキ面も比較例2
〜3程ではないが、成形を繰り返す毎に徐々に汚
れてゆくのが観察された。
The present invention relates to a method for producing a molded article made of petroleum resin by injection molding.
2000, petroleum resin with heating loss of 10% by weight or less, 100 parts by weight and inorganic powder filler 100 to 900 parts by weight, high molecular weight thermoplastic resin with an average molecular weight of 5000 to 250,000 0 to
The present invention relates to a method for producing a molded article, which comprises injection molding a mixture containing 50 parts by weight. In particular, the present invention relates to a manufacturing method characterized by excellent injection moldability using a composition in which the loss on heating of the petroleum resin as a base resin is limited to 10% by weight or less among the above compositions. Generally, petroleum resin compositions containing a large amount of inorganic powder filler have glass-like hard and brittle properties at around room temperature. If a high molecular weight thermoplastic resin is blended into this composition, the strength and impact resistance of the molded product can be improved, but if the amount is less than 50 parts by weight, it will not be possible to impart flexibility to the molded product. ,
It is hard. When injection molding such a hard and relatively brittle molded product, if the molded product sticks to the mold surface during the process of removing the product from the mold, it is likely to cause mold release failure, continuous automatic molding failure, and mold release failure. This causes various economically disadvantageous problems such as product cracking, decreased productivity, and the need to apply a mold release agent to the mold after each molding cycle. The causes of this sticking to the cooled mold surface and cracking during mold release are that because the composition is a highly filled system, the shrinkage of the molded product during cooling and solidification in the mold is small, and that the material is It is thought that deformation during mold release is not allowed due to hardness and brittleness, and that it is difficult to improve mold releasability by adding or increasing the amount of a lubricant or mold release aid. The present inventors believed that these causes were primarily caused by petroleum resin, which is essentially the base resin. That is, petroleum resins were not originally developed as resins for injection molding, but have been evaluated as effective as tackifiers in the fields of rubber and adhesives.
The present inventors have already filed a patent application for a clay target using petroleum resin as a base resin.
52-40800), even in production using these injection molding methods, there is a problem that the molded product sometimes cracks when it is difficult to mold. As a result of intensive research that included this problem, we found that petroleum resins with large heat loss causes such problems, so by reducing the heat loss of the base resin, petroleum resin, to 10% by weight or less. It was discovered that it is possible to completely eliminate mold stickiness when releasing a molded product. That is, ring and ball softening point 60-200℃, average molecular weight 300
-2000, injection molding of a mixture consisting of 100 parts by weight of a petroleum resin with a heating loss of 10% by weight or less, 100 to 900 parts by weight of an inorganic powder filler, and 0 to 50 parts by weight of a polymeric thermoplastic resin with an average molecular weight of 5000 to 200,000. By doing so, it was possible to obtain a molded article of a petroleum resin composition of excellent quality. The petroleum resin in the present invention refers to thermal decomposition of petroleum,
A cracked oil fraction that is liquid at room temperature and is a by-product of steam cracking or catalytic cracking, preferably a fraction whose main component is a C9 aromatic hydrocarbon fraction with a boiling point of 120 to 280°C, more preferably a fraction of 140 to 280°C. Aromatic hydrocarbon fractions with a boiling point of 280°C are polymerized by thermal polymerization or a normal Friedel-Crafts type catalyst, or petroleum resins are added with unsaturated dibasic acid anhydrides such as maleic anhydride. JIS
Ring and ball softening point according to K2531 60~200℃ Preferably
It is a resin with a softening point of 90-180℃. softening point
When a petroleum resin with a temperature lower than 60°C is blended for the purpose of the present invention, the softening temperature of the composition becomes low, so
Not only does the cooling process during molding take longer, reducing productivity, but it also causes problems with the heat resistance of the molded product, causing it to deform when left in a hot place outdoors, or when transported or stored in stacks. Furthermore, if the softening point is set to 200° C. or higher, the melt viscosity becomes high and processability deteriorates, which is not preferable. The heating loss referred to in the present invention refers to a diameter of 75 mm and a depth of 20 mm.
5 g of petroleum resin was collected on a mm glass shear plate,
It is installed in the middle of an air constant temperature chamber with internal dimensions of 45 cm wide, 45 cm deep, and 50 cm high, and the temperature at the center of the tank is controlled.
Maintain temperature at 200±1℃ and supply air at 15/min.
It refers to the percent weight loss of petroleum resin after 3 hours when discharged. That is, if the weight before heating is M 1 and the weight after heating is M 2 , then the loss on heating (% by weight) is expressed by the following formula. Heating loss (weight %) = (M 1 - M 2 /M 1 ) x 100 To reduce the heating loss of petroleum resin to 10% by weight or less, for example, put the petroleum resin in a metal container and heat it to 230°C while purging with nitrogen. Raise the temperature to , stop the nitrogen supply, and perform vacuum degassing. If this loss on heating is 10% by weight or more, the molded product tends to stick to the mold surface during the process of taking out the product from the mold during injection molding of a hard and relatively brittle molded product, resulting in poor mold release. Continuous automatic molding failures, product cracks during mold release, reduced productivity, the need to apply mold release agent to the mold after each molding cycle, etc.
This causes various disadvantageous economic problems. In addition, the inorganic powder filler referred to in the present invention is usually an inorganic powder with a particle size of 0.01μ to 500μ, such as calcium carbonate, talc, clay, alumina white, mica powder, aluminum sulfate, barium sulfate,
These include gypsum, calcium sulfite, lithopone, pumice powder, glass powder, zinc white, magnesium carbonate, metal powder, asbestos powder, titanium oxide, or a mixture thereof. Furthermore, the high molecular weight thermoplastic resin as used in the present invention refers to polyethylene with an average molecular weight of about 5,000 to 200,000,
Polypropylene, polybutene-1, crystallinity 1,2
High molecular weight thermoplastic resins such as polybutadiene, polystyrene, poly-α-methylstyrene, polyvinyl chloride, polymethyl methacrylate, polyamide, polyester, thermoplastic polyurethane,
Furthermore, ethylene-propylene block copolymer,
Copolymer type thermoplastic resins such as ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, styrene-butadiene block copolymer, styrene, isoprene block copolymer, etc. Among these, Powdered polyethylene, polypropylene, polystyrene, etc., which are inexpensive and highly effective in improving physical properties, are preferably used. The quantitative relationship between the petroleum resin component, the inorganic powder filler component, and the high molecular weight thermoplastic resin component is as follows:
Per 100 parts by weight of a petroleum resin with an average molecular weight of 300 to 2000 and a ring and ball softening point of 60 to 200°C, 100 to 900 parts by weight of an inorganic powder filler, preferably 200 to 900 parts by weight, and 0 to 900 parts by weight of a high molecular weight thermoplastic resin. 50 parts by weight, preferably 0 to 40 parts by weight. If the amount of inorganic powder filler is less than 100 parts by weight, the heat resistance of the molded product will be poor;
When stored in the summer or left unattended, the surface becomes sticky, causing problems such as fusion and merging of molded products. Also, it is expensive,
It doesn't suit the purpose. If the amount of inorganic powder filler is more than 900 parts by weight, the price of the material as a whole will be low and it is advantageous, but the melt viscosity during molding will increase extremely, causing loss of fluidity and making molding difficult. This results in a significant drop in productivity. Furthermore, in the present invention, the amount of high molecular weight thermoplastic resin blended with 100 parts by weight of petroleum resin is 0 to 50 parts by weight, and the resin itself is selected from among the high molecular weight thermoplastic resins as described above. The optimum amount of addition differs depending on the purpose of the molded product. That is, when adding a high molecular weight thermoplastic resin with excellent strength and impact resistance when the molded product is a clay vision, the preferable amount to be added is 0 to 20
The preferable addition amount of the high molecular weight thermoplastic resin which is good in parts by weight and has low impact strength is 0 to 40 parts by weight. If 50 parts by weight or more is added, the strength of the molded product will be excessive. In addition, in the present invention, the mixture of the present invention consisting of a petroleum resin, an inorganic powder filler, and a high molecular weight thermoplastic resin may optionally contain a small amount of a processing aid, for example, 15 parts by weight or less per 100 parts by weight of petroleum resin. ,
Pigment antioxidants and the like can be added. When blending and preparing the mixture of the present invention, which is based on a petroleum resin with a heating loss of 10% by weight or less, it is heated and kneaded using a kneader, Banbury mixer, roll mill, or other general-purpose plastic kneader or mixer. , the mixture may be granulated and fed to an injection molding machine. More preferably, all of the weighed raw materials are put into a high-speed rotating mixer such as a Benciel mixer or a super mixer, pulverized and mixed without heating, and the powdered dry blend composition is transferred to an injection molding machine. It can also be supplied directly. The injection molding machine for molding these mixtures is
Ram-type and pot-type injection molding machines used for molding general polymeric materials can be applied as is, but molding machines equipped with a pre-plasticizing device, such as an injection molding machine with a blend feeder (Nissei Plastics Co., Ltd. By using a powder dry blend mixture that omits the heating step during mixing, it is possible to directly supply and injection mold the powdered dry blend mixture. Products that can be injection molded with the composition of the invention include:
For example, containers, pipes, flowerpots, clay target targets, seedling boxes, ornaments (statues and other figurines), tiles,
We can provide a wide range of products at low prices, from civil engineering, construction, and leisure supplies such as wallboards to household items. It is particularly suitable as a flower pot and clay target. The present invention will be explained in more detail below with reference to Examples. Examples 1 to 3 and Comparative Examples 1 to 4 As shown in the table, petroleum resins, heavy calcium carbonate, high molecular weight thermoplastic resins, processing aids, and pigments were each weighed in predetermined parts by weight, and 250 A powdery mixture was prepared by dry blending using a Henschel mixer at room temperature and 1600 rpm for 3 minutes. These raw materials were supplied to the hopper of an injection molding machine with a blend feeder (manufactured by Nissei Jushi Kogyo Co., Ltd.), and a flowerpot was molded with the heating cylinder temperature set at 170°C. Examples 1 to 3 all contain petroleum fats with a heating loss of 10% by weight or less, but good moldability was achieved regardless of the type and amount of high molecular weight thermoplastic resin and the presence or absence of processing aids. Fully automatic continuous operation was also easy. Furthermore, the plated surface of the mold cavity was mirror-like throughout, confirming that the molded product was hardly stuck to the cavity surface. Comparative Example 1 was formulated with a petroleum resin with a heating loss of 11.9% by weight, but although it was able to be continuously molded, several out of 100 pieces cracked and were released from the mold.
During product inspection after molding, more than half of the products were found to have cracks, and including cracks during molding, 76% of the products were defective. Comparative Examples 2 and 3 were formulated with petroleum resin with a heating loss of 12.8% by weight, but in Comparative Example 2, all cracked and were released from the mold during manual operation before switching to automatic operation.
The surface of the mold cavity became heavily soiled with each shot, confirming that the mold was stuck with considerable force. In Comparative Example 3, the amount of stearic acid blended was twice that of Comparative Example 2, but the mold release effect was not improved and the result was the same as Comparative Example 2. Comparative Example 4 contains a petroleum resin with a heating loss of 11.3% by weight, and the amount of polystyrene was also increased to 20 parts by weight to improve product strength. As a result, fully automatic operation became possible, but 15% of the molded products had cracks. In addition, the plating surface of the mold cavity was also compared to Comparative Example 2.
Although it was not as bad as 3, it was observed that it gradually became dirty each time molding was repeated.

【表】 成形数
実施例 4 比較例2〜3に配合したものと同一の加熱減量
が12.8重量%、軟化点97℃の石油樹脂10Kgを20
のスチンレス製釜に仕込み、窒素置換しながら
230℃に昇温し、窒素を停止して、真空脱気を行
い、加熱減量8重量%、環球法軟化点110℃の石
油樹脂を得た。この石油樹脂を再び比較例2と同
様の配合組成に調製して、再度植木鉢の成形を行
つたところ、実施例1〜3と同様に、全く離型割
れが無く金型メツキ面も鏡面状を維持しながら全
自動で成形することができ、製品検査でのひび割
れもなかつた。 実施例 5 加熱減量7.8重量%、環球法軟化点104℃の芳香
族系石油樹脂(日石ネオポリマー)30Kg、重質炭
酸カルシウム(ホワイトンP50)160Kg、粉末ポ
リスチレン(トーポレツクス#525粉末)4Kg、
酸化チタン4Kg、ステアリン酸2Kgを300ヘン
シエルミキサーに投入し、常温600rpmで5分間
粉砕混合を行つた後、ドライブレンド粉末状混合
物をブレンドフイダー付射出成形機(日精樹脂工
業株式会社製)のホツパーに供給しクレー射撃用
標的の成形を行つたところ、全て金型ステイツク
現象もなく、成形工程での不良品ゼロの塗装不要
の白色系射撃用標的を成形することができた。
[Table] Number of moldings
Example 4 10 kg of petroleum resin with a heating loss of 12.8% by weight and a softening point of 97°C, which is the same as that blended in Comparative Examples 2 and 3, was
Pour into a stainless steel pot and replace with nitrogen.
The temperature was raised to 230°C, nitrogen supply was stopped, and vacuum degassing was performed to obtain a petroleum resin with a heating loss of 8% by weight and a ring and ball softening point of 110°C. When this petroleum resin was again prepared to have the same composition as in Comparative Example 2 and molded into a flowerpot again, there was no mold release cracking at all, and the mold plating surface also had a mirror finish, as in Examples 1 to 3. It was possible to mold the product fully automatically while maintaining the same conditions, and there were no cracks during product inspection. Example 5 Aromatic petroleum resin (Nisseki Neopolymer) with a heating loss of 7.8% by weight and a ring and ball softening point of 104°C (Nisseki Neopolymer) 30Kg, heavy calcium carbonate (Whiten P50) 160Kg, powdered polystyrene (Toporex #525 powder) 4Kg,
After putting 4 kg of titanium oxide and 2 kg of stearic acid into a 300 Henschel mixer and pulverizing and mixing at room temperature 600 rpm for 5 minutes, the dry blend powder mixture was placed in an injection molding machine with a blend feeder (manufactured by Nissei Jushi Kogyo Co., Ltd.). When the material was supplied to a hopper and molded into clay shooting targets, there was no mold sticking phenomenon, and white shooting targets that did not require painting could be formed with zero defects in the molding process.

Claims (1)

【特許請求の範囲】 1 (1) 石油類の熱分解、スチーム分解、接触分
解により低級オレフインを製造する際に副生す
る炭化水素留分のうち、140〜280℃の留分を重
合して得られる芳香族炭化水素から成る環球法
60〜200℃、数平均分子量300〜2000、加熱減量
10重量%以下の石油樹脂100重量部、 (2) 無機質粉末状充てん剤100〜900重量部および (3) 数平均分子量5000〜20万の高分子量熱可塑性
樹脂0〜50重量部とから成る混合物を射出成形
することを特徴とする成形物の製造方法。 2 混合物が粉末ドライブレンド状で射出成形機
に供給されて成る特許請求の範囲第1項記載の成
形物の製造方法。 3 成形物が植木鉢である特許請求の範囲第1項
または第2項記載の成形物の製造方法。 4 成形物がクレー射撃標的である特許請求の範
囲第1項または第2項記載の成形物の製造方法。
[Claims] 1 (1) Among the hydrocarbon fractions by-produced when producing lower olefins by thermal cracking, steam cracking, or catalytic cracking of petroleum, a fraction at 140 to 280°C is polymerized. Ring and ball method consisting of aromatic hydrocarbons obtained
60~200℃, number average molecular weight 300~2000, heat loss
A mixture consisting of 100 parts by weight of a petroleum resin of 10% by weight or less, (2) 100 to 900 parts by weight of an inorganic powder filler, and (3) 0 to 50 parts by weight of a high molecular weight thermoplastic resin with a number average molecular weight of 5,000 to 200,000. A method for producing a molded article, characterized by injection molding. 2. The method for producing a molded article according to claim 1, wherein the mixture is supplied to an injection molding machine in the form of a powder dry blend. 3. The method for producing a molded article according to claim 1 or 2, wherein the molded article is a flower pot. 4. The method for producing a molded article according to claim 1 or 2, wherein the molded article is a clay target.
JP8115880A 1980-06-16 1980-06-16 Preparation of molded article consisting of petroleum resin by injection molding Granted JPS575743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8115880A JPS575743A (en) 1980-06-16 1980-06-16 Preparation of molded article consisting of petroleum resin by injection molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8115880A JPS575743A (en) 1980-06-16 1980-06-16 Preparation of molded article consisting of petroleum resin by injection molding

Publications (2)

Publication Number Publication Date
JPS575743A JPS575743A (en) 1982-01-12
JPH0229101B2 true JPH0229101B2 (en) 1990-06-27

Family

ID=13738630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8115880A Granted JPS575743A (en) 1980-06-16 1980-06-16 Preparation of molded article consisting of petroleum resin by injection molding

Country Status (1)

Country Link
JP (1) JPS575743A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58173146A (en) * 1982-04-05 1983-10-12 Yokohama Rubber Co Ltd:The Thermoplastic polymer composition
JP4227486B2 (en) * 2003-08-06 2009-02-18 本田技研工業株式会社 Work transfer device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334849A (en) * 1976-09-13 1978-03-31 Mitsui Petrochem Ind Ltd Production of moldings of high filler content
JPS5375256A (en) * 1976-12-17 1978-07-04 Mitsui Petrochem Ind Ltd Manufacture of molded articles with high filler loadings

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334849A (en) * 1976-09-13 1978-03-31 Mitsui Petrochem Ind Ltd Production of moldings of high filler content
JPS5375256A (en) * 1976-12-17 1978-07-04 Mitsui Petrochem Ind Ltd Manufacture of molded articles with high filler loadings

Also Published As

Publication number Publication date
JPS575743A (en) 1982-01-12

Similar Documents

Publication Publication Date Title
US4981631A (en) Process for making lightweight polyester articles
US4463121A (en) Thermoforming partially crystalline polyester articles
US4572852A (en) Thermoforming partially crystalline polyester articles
CN107835733B (en) Composition for injection molding
CN107108901B (en) Shaped polylactic acid articles and method for making same
JPS5891736A (en) Filler granulation method
CN103571039A (en) High-melt index polypropylene composition and preparation method thereof
US5023137A (en) Polyester composition which is particularly suitable for use in thermoforming dual-ovenable trays
JPS58154757A (en) Polyarylene sulfide resin composition
CN110144092B (en) A kind of environment-friendly rigid PVC modified material and preparation method thereof
JPH08225657A (en) Thin-walled article manufacturing method
CN113150419A (en) Crosslinkable polyethylene composition, preparation method thereof and rotational molding product
CN108912500A (en) A kind of lightweight silico-calcium hollow plate and preparation method thereof
JPH0229101B2 (en)
JPS6015409A (en) Adhesion method of polyurethane and polyolefin
JPS59172533A (en) Method for producing reinforced resin composition
TWI711668B (en) Use of a low specific gravity PET composite material
JP7317106B2 (en) Preparation of polyamide foam
JPH0345744B2 (en)
JPS5953546A (en) Vinyl chloride resin composition for synthetic wood
CN114196118B (en) Polypropylene composition and preparation method and application thereof
TWI805503B (en) Manufacturing method of heat-resistant tableware and molded article of heat-resistant tableware
JPS59150719A (en) Polypropylene powder molding method
KR0173128B1 (en) Polyester composition which is particularly stable for use in thermoforming dual-ovenable trays
JPS58174444A (en) Porcelain-like hard material obtained by injection molding