JPH0229038B2 - - Google Patents
Info
- Publication number
- JPH0229038B2 JPH0229038B2 JP57210666A JP21066682A JPH0229038B2 JP H0229038 B2 JPH0229038 B2 JP H0229038B2 JP 57210666 A JP57210666 A JP 57210666A JP 21066682 A JP21066682 A JP 21066682A JP H0229038 B2 JPH0229038 B2 JP H0229038B2
- Authority
- JP
- Japan
- Prior art keywords
- base paper
- paper
- thermal transfer
- transfer recording
- recording medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/26—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
- B41M5/40—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography
- B41M5/41—Base layers supports or substrates
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Impression-Transfer Materials And Handling Thereof (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
- Paper (AREA)
Description
本発明は感熱記録装置に使用される熱転写記録
媒体に係るものであり、さらに詳しくは高温多湿
下においても好適に使用されうる熱転写記録媒体
に関するものである。
本発明でいう熱転写記録媒体とは、基紙の片面
に加熱により流動化あるいは昇華する性質を備え
たインク層を設けたものである。該記録媒体の記
録には感熱プリンター、感熱フアクシミリ機等の
感熱記録装置が用いられる。記録は該記録媒体の
インク層側の面に普通紙を重ね合せ、基紙側の面
より感熱ヘツドにより加熱し、インク層を流動化
あるいは昇華させ普通紙に転移させることにより
行なう。このような熱転写記録物は、染料発色型
の感熱記録紙と較べて、1.普通紙を使用すること
ができる。2.インク層は加熱により流動化するワ
ツクス類等に顔料または染料を混合したもの、ま
たは昇華性染料等で構成されているため耐光性、
耐溶剤性等に優れた保存性を有し、かつ記録色相
の選択が行えるためカラー化にも対応できる特徴
を備えている。
このような熱転写記録媒体に用いられる基紙と
しては従来から平滑性に優れた薄葉紙が使用され
ており、特開昭55−3919号、特開昭57−146693号
などにより開示されている。
記録装置としては従来から使用されている感熱
プリンター、感熱フアクシミリ機等をそのまゝ用
いる外に、熱転写記録用として開発された専用装
置が最近多数発表されている。これら専用装置で
は第1図に示す示く、熱転写記録媒体を記録部へ
連続的に供給するためにロール状に巻いた熱転写
記録媒体1(以下供給ロールという)を装置内に
装着する方式を通常採用している。
これら専用装置では、熱転写記録媒体2が特に
高温、高湿度下に長時間放置されると、第1図の
A部、B部のような供給ロールから繰り出され大
気と接触している部分が伸びやすく波打ちじわが
発生しやすい。このように基紙の伸びによつて発
生した波打ちじわの部分がサーマルヘツド3によ
り加熱されると折れじわになりやすい。熱転写記
録媒体においてこのような折れじわが発生する
と、記録部で記録用普通紙へのインクの転写が良
好に行われず、インク像に抜けや欠けが生じるこ
とがある。このような現象が発生すると、記録画
の品位が低下するばかりでなく、必要な画情報が
再現されない場合もあるという欠点があつた。
本発明は上記した事情に鑑みてなされたもの
で、熱転写記録装置に使用される条件下で、しわ
を発生させることのない基紙を用いた熱転写記録
媒体を提供することを目的とする。
即ち本発明は、加熱により流動化あるいは昇華
する性質を備えたインク層を厚さ4〜25μm、密
度0.8〜1.45g/cm3、平滑度(王研式)500〜
50000秒である基紙の片面に設けてなる熱転写記
録媒体において、その基紙が構成木材パイプ繊維
のうち広葉樹パルプの割合を5%以上80%までと
し、JISP8122によるサイズ度が1〜7秒であり、
インク層を設けた後の基紙中の水分が8〜11重量
%であることを特徴とする熱転写記録媒体であ
る。
また、本発明は基紙中に3μm以下の粒子径を
もつ顔料を15重量%以下含むことを特徴とする前
記熱転写記録媒体である。
本発明における基紙を抄紙する際には木材パル
プの叩解を行うが、その比表面積は10〜60m2/g
の範囲、とりわけ20〜40m2/gの範囲が好まし
い。10m2/gに満たない範囲では叩解が充分でな
く抄紙の際地合斑、ピンホールなどが起きやす
く、また60m2/gを越える範囲は寸法安定性が悪
くなり高温、高湿時での使用時に波打ちじわが起
きやすくなり、またパルプが微細化されすぎ抄紙
速度が低くなり経済的でない。次に基紙のJISP
−8122によるサイズ度は1〜7秒であるが、とり
わけ3〜5秒の範囲となるように調整されること
が好ましい。サイズ度が1秒より低くなると高
温、高湿時での波打ちじわの発生が生じる。また
サイズ度が7秒を越えると基紙中のサイズ剤の含
有量が多くなりサーマルヘツドとのステイツキン
グが起きる傾向にある。更に抄紙時ワイヤー、毛
布等の抄紙機も汚れやすく経済的でない。
次に基紙の厚さは4〜25μm、とりわけ6〜
20μmの範囲にあることが好ましい。厚さがこれ
らの範囲よりも小なるときは、基紙の工業的な製
造がむづかしく、厚さ25μを越えるとサーマルヘ
ツド等から与えられる熱が拡散してインク層に伝
達され解像度が悪るくなるばかりでなく、熱転写
記録に必要な熱エネルギーが多量に必要となり、
装置の電源容量が大型化すると共に、サーマルヘ
ツドの寿命が短命化する。
基紙の密度は0.8〜1.45g/cm3、とりわけ0.9〜
1.4g/cm3の範囲にあることが好ましい。密度が
これらの範囲よりも小なるときは、基紙中に空気
孔が多く存在するようになりサーマルヘツドから
の熱伝導を妨げ、効率的な熱転写記録を行うこと
ができない。またこれらの範囲よりも大なるとき
には基紙の工業的な製造が困難である。
更に、基紙の平滑度は王研式平滑度(Japan
TAPPI紙パルプ試験方法No.5空気マイクロメー
タ型試験器による紙及び板紙の平滑度透気度試験
方法のB、王研式平滑度透気度試験器(加圧式)
による方法)が500〜50000秒の範囲、とりわけ
3000〜30000秒の範囲であることが好ましい。こ
れらの範囲よりも小なるときには、平滑性が悪く
なり基紙とサーマルヘツドとの密着性が悪化す
る。これによりインク像の転写濃度に斑が発生す
る。しかもインク層は一般に平滑性が高い程薄く
均一に塗布することができるので、平滑性が低い
ことはインク層の塗布にも好ましくない。一方、
平滑度をこれらの範囲より大きくしても熱転写記
録画像の向上効果は少なく、また工業的生産も困
難である。
また、基紙の地合は熱転写記録特性と大きな関
連があり、基紙を透過光で目視して斑が認められ
る場合は、斑のある部分とその周囲とで熱伝導性
が異なり、特にサーマルヘツドより与える熱エネ
ルギー量が少ない場合に得られた熱転写記録画像
に斑が生じる。また、基紙にピンホールのような
貫通部分であるときは、インク層が基紙を通過し
てサーマルヘツドに付着し記録作業性を著しく悪
くする。
次いで、インク層を設けた後の基紙中の水分は
6〜13重量%、とりわけ8〜11重量%となるよう
調整することが好ましい。高温、高湿時における
波打ちじわ発生を防止するため基紙のサイズ度を
適度に調整すれば効果が著しいことは既に述べた
通りであるが、基紙中の水分が低い場合、使用環
境湿度、特に高温、高湿時における平衡水分と基
紙中の水分との差が大きくなり、基紙が急激に水
分を吸収し波打ちじわの発生が起きる。このよう
な波打ちじわ発生を防止するため、基紙のサイズ
度を適度に調整することと併せて基紙中の水分を
調整するとその効果は著しく増大する。インク層
を設けた後の水分が6重量%に満たない範囲で
は、高温、高湿時に急激な水分の吸収が起きやす
く、波打ちじわの発生がある。13重量%を越える
範囲ではインク塗布時に塗布斑が生じやすく、ま
た基紙の腰が弱くなりインク塗布時、記録時の作
業性を悪くする。
構成木材パルプ繊維のうち広葉樹パルプの割合
を5%以上80%までとすることも、とりわけ高
温、高湿時における波打ちじわ防止の効果が大き
く、サイズ度や水分の調整の効果と併せることに
より著しく効果が増大することが認められる。広
葉樹パルプの波打ちじわ防止に対する効果は、同
パルプの繊維が針葉樹パルプに較べ太く、剛直で
あるため寸法安定性に対して良いと考えられる。
広葉樹パルプの割合が5%に満たない範囲では波
打ちじわ発生防止の効果が少なく、また80%を越
える範囲では本発明の厚さ4〜25μmの極薄葉紙
を製造する時、強度が充分でないためウエツト及
びドライパートでの紙切れが起きやすい。
基紙中に3μm以下の粒子径をもつ顔料を15重
量%以下含むことも、とりわけ高温、高湿時にお
ける波打ちじわ防止の効果が大きく、サイズ度や
水分の調整、広葉樹パルプの配合等の効果と併せ
ることにより著しく効果が増大することが認めら
れる。基紙中に顔料を含ませることは、パルプ繊
維の結合点で顔料が潤滑剤的な働きをし、寸法安
定性が良くなり波打ちじわ防止の効果が増大する
と考えられる。顔料の粒子径が3μmを越える範
囲では基紙にピンホールなどの貫通部分が起きや
すく、またサーマルヘツドの表面摩耗を促進する
ことも考えられる。基紙中に15重量%を越えて含
ませると、本発明の厚さ4〜25μmの極薄葉紙を
製造する時、インク塗布時に紙切れが起きやす
い。
以上述べた本発明でいう基紙を製造するに際し
ては、通常の抄紙装置が可能であり、とりわけコ
ンデンサー紙、ワンタイムカーボン紙は抄紙する
ような装置が好ましい。抄紙された紙はスーパー
キヤレンダー処理により所定の厚さ、密度、平滑
度の範囲に調整する。また熱転写記録媒体の水分
調整の方法としては(1)抄紙機出口の水分を高目、
たとえば25〜35%にしスーパーキヤレンダー処理
時にロールを加温し所定の水分にする法、また抄
紙機出口の水分を低く、たとえば4〜6%にしス
ーパーキヤレンダー処理時に水分を与えながら所
定の水分にする法、更にスーパーキヤレンダー処
理後水分を付与し所定の水分にする法のようなイ
ンク塗布前の基紙中の水分を予め調整しておきイ
ンク塗布後本発明による所望の水分の範囲にする
よう調整する方法、(2)インク塗布時、または塗布
後水分を付与し所望の水分の範囲にするよう調整
する方法が行なわれる。
次に本発明に使用する材料等について概略を述
べるが、これらの材料等は本発明を特に限定する
ものではない。サイズ剤としてはロジンサイズ
剤、石油樹脂サイズ剤、合成樹脂サイズ剤等の各
種内添サイズ剤、表面サイズ剤がある。サイズ剤
の適用方法としては常法により、内添法、サイズ
プレス等による外添法がある。この外、抄紙の際
に通常される紙力剤、耐水化剤、寸法安定化剤、
各種定着剤等を用いることも必要に応じて行われ
る。木材パルプとしてはクラフト法、サルフアイ
ト法等の化学パルプ、およびセミケミカルパルプ
等が使用される。基紙の内添用顔料としては、二
酸化チタン、タルク、クレー、カオリン、重質炭
酸カルシウム、軽質炭酸カルシウム、水酸化アル
ミニウム、二酸化亜鉛、沈降性硫酸バリウム等が
使用される。熱により流動化するインクは着色剤
と着色剤を基紙上に固定化するとともに、着色剤
を熱転写させるための担体としての役目を果すビ
ヒクルとに大別することができる。ビヒクルは通
常ワツクス類とオイル類とから成り立つている。
着色剤としてはオイル類に不溶の顔料と、オイル
に可溶な塩基性染料、油溶染料とがある。顔料と
してはカーボンブラツク、ウルトラマリンブル
ー、プルシアンブルー、クロム黄、カドミウム
黄、チタン黄、べんがら、鉛朱、カドミウムレツ
ド、レキレツドC、同D、ローダミンレーキB、
酸化クロム等があり、油溶染料としては、C.1.ソ
ルベントイエロー2、同19、同21、同61、C.1.ソ
ルベントオレンジ40、C.1.ソルベントレツド3、
同8、同25、同49、同82、同100、C.1.ソルベン
トバイオレツト8、同21、C.1.ソルベントブルー
25、同73、ダイアレジンブルーG、バリフアース
トブルー#2604、C.1.ソルベントグリーン3、
C.1.ソルベントブラツク3、同7等が載げられ
る。
ワツクス類としてはカルナバワツクス、オウリ
キユリーワツクス、モンタンワツクス等の天然ワ
ツクス類、パラフインワツクス、マイクロクリス
タリンワツクス、IG−ワツクス、ポリエチレン
ワツクス等の合成ワツクス類等がある。オイル類
としてはライトミネラルオイル、ヘビーミネラル
オイル、カスターオイル、オレイン酸、ピーナツ
油等がある。熱により昇華するインクは着色剤と
しての分散染料とビヒクルより構成されている。
分散染料としてはカヤセツトイエローA−G(日
本化薬、以下同じ)、同G、同186、カヤセツトス
カーレツト926、カヤセツトレツド026、同B、同
130、カヤセツトブルーA−2R、同906、同136、
同FR、カヤセツトブラツク922、同922(D)、同928
等がある。またビヒクルとしては、硝化綿、セル
ロースアセテートプロピオネート、アセチルセル
ロース等のセルロース誘導体がある。
このようにしてつくられる本発明の熱転写記録
媒体は高温高湿下においても波打ちじわの発生が
ないうえに表面が平滑であり、熱伝導性も良いた
め、熱転写記録を行なつた場合にはきわめて良好
な記録画像を得ることが出来る。
また基紙の地合が均一なため、基紙にピンホー
ルがあつたり、あるいはインク層を設けた場合に
インク層が反対面に斑点状に抜け出る等のトラブ
ルもない。
以下実施例により、本発明を更に詳細に説明す
る。
実施例 1
絶縁紙用NUKP(針葉樹未晒クラフトパルプ)
70%、LUKP(広葉樹未晒クラフトパルプ)30%
をレフアイナー(叩解装置)により比表面積40
m2/gとなるよう叩解し、内添サイズ剤(RFサ
イズ550ハマノ工業製)を添加し、常法により抄
紙、乾燥、スーパーキヤレンダー掛けし、用紙を
製造した。
得られた用紙は坪量17g/m2、厚さ13μm、密
度1.3g/cm3、平滑度13000秒、サイズ度3秒、水
分9%であつた。この用紙を基紙として片面に次
の組成からなる熱流動性のインクを塗布して厚さ
5μmのインク層を形成して熱転写記録媒体を得
た。
この媒体の基紙中の水分は8.5%であつた。
(配合成分) (重量部)
カーボンブラツク 20部
カルナバワツクス 20部
エステルワツクス 40部
オイル 20部
実施例 2
実施例1において、基紙の構成パルプ繊維
NUKP+LUKPに対し、最大粒子径2.5μm、平
均粒子径0.7μmの軽質炭酸カルシウムを10%にな
るよう配合し、他は実施例1と全く同様にして熱
転写記録媒体を得た。
実施例 3
実施例1において、NUKP80%、LUKP20%
のパルプに対し、軽質炭酸カルシウム10%配合し
て抄紙し、得られた基紙のサイズ度を5秒とした
以外は、実施例1と全く同様にして熱転写記録媒
体を得た。
実施例 4
実施例1において、NUKP98%、LUKP10%
のパルプに対し、軽質炭酸カルシウム10%配合し
て抄紙し、得られた基紙のサイズ度を5秒、水分
を11.5%、インク塗布後の水分を11%とした以外
は、実施例1と全く同様にして熱転写記録媒体を
得た。
比較例 1
実施例1において、NUKP100%として広葉樹
パルプを配合せず、また内添サイズ剤を添加せず
に抄紙し、得られた用紙のサイズ度0秒、水分
5.5%であつた以外は、実施例1と全く同様にし
て、インク塗布後の基紙の水分が5%の熱転写記
録媒体を得た。
比較例 2
実施例1において、内添サイズ剤を添加せずに
抄紙し、得られた基紙のサイズ度が0秒であつた
以外は実施例1と全く同様にして熱転写記録媒体
を得た。
比較例 3
実施例1において、抄紙して得られた基紙の水
分を5.5%、インク塗布後の水分を5%とした以
外は実施例1と全く同様にして熱転写記録媒体を
得た。
比較例 4
実施例1において、NUKP100%配合とし、広
葉樹パルプを用いない以外は実施例1と全く同様
にして熱転写記録媒体を得た。
比較例 5
実施例2において、内添サイズ剤を添加せず抄
紙し、得られた基紙のサイズ度を0秒とした以外
は実施例2と全く同様にして熱転写記録媒体を得
た。
比較例 6
実施例2において、抄紙して得られた基紙の水
分が5.5%、インク塗布後の水分が5%であつた
以外は実施例2と全く同様にして熱転写記録媒体
を得た。
比較例 7
実施例2において、NUKP100%配合とし、広
葉樹パルプを配合しない以外は、実施例2と全く
同様にして熱転写記録媒体を得た。
比較例 8
パルプの比表面積を7m2/gとなるよう叩解し
実施例1と同様にして用紙を製造した。出来た用
紙は坪量17g/m2、厚さ20μm、密度0.85、平滑
度600秒、サイズ度5秒、水分5%であつた。こ
の用紙を基紙として片面に実施例1と同様にイン
ク層を設けたが、インク層が反対面に斑点状に抜
け出た。
これら実施例1〜4および比較例1〜7で得ら
れた熱転写記録媒体について、20℃、65%RH、
30℃、80%RH、30℃、90%RH、30℃、95%
RH、35℃、90%RHの環境下に10分間放置し、
その波打ちじわの発生状況を観察した結果を第1
表に示す。
The present invention relates to a thermal transfer recording medium used in a thermal recording device, and more particularly to a thermal transfer recording medium that can be suitably used even under high temperature and high humidity conditions. The thermal transfer recording medium referred to in the present invention is one in which an ink layer having the property of being fluidized or sublimated by heating is provided on one side of a base paper. A thermal recording device such as a thermal printer or a thermal facsimile machine is used for recording on the recording medium. Recording is carried out by superimposing plain paper on the ink layer side of the recording medium and heating it from the base paper side with a thermal head to fluidize or sublimate the ink layer and transfer it to the plain paper. Compared to dye-colored thermal recording paper, such a thermal transfer recording material can use 1. plain paper. 2.The ink layer is composed of a mixture of wax, etc., which becomes fluidized by heating, mixed with pigments or dyes, or sublimation dyes, etc., so it has good light resistance.
It has excellent storage stability, such as solvent resistance, and the ability to select the recording hue, making it compatible with color printing. Thin paper with excellent smoothness has conventionally been used as the base paper for such thermal transfer recording media, and is disclosed in JP-A-55-3919 and JP-A-57-146693. In addition to conventionally used thermal printers, thermal facsimile machines, and the like as recording devices, a number of dedicated devices developed for thermal transfer recording have recently been announced. These dedicated devices usually use a system in which a rolled thermal transfer recording medium 1 (hereinafter referred to as a supply roll) is installed in the device in order to continuously supply the thermal transfer recording medium to the recording section, as shown in Figure 1. We are hiring. In these specialized devices, if the thermal transfer recording medium 2 is left in a particularly high temperature and high humidity environment for a long period of time, the portions that are fed out from the supply roll and in contact with the atmosphere, such as portions A and B in FIG. 1, will stretch. It is easy to cause wavy wrinkles. When the wavy and wrinkled portions generated by the elongation of the base paper are heated by the thermal head 3, they tend to become folded. When such creases occur in a thermal transfer recording medium, the ink may not be transferred well to the plain recording paper in the recording section, resulting in omissions or chips in the ink image. When such a phenomenon occurs, there are disadvantages in that not only the quality of the recorded image deteriorates, but also necessary image information may not be reproduced. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a thermal transfer recording medium using a base paper that does not wrinkle under the conditions used in a thermal transfer recording device. That is, in the present invention, an ink layer having a property of being fluidized or sublimated by heating has a thickness of 4 to 25 μm, a density of 0.8 to 1.45 g/cm 3 , and a smoothness (Oken type) of 500 to 500.
50,000 seconds on one side of a base paper, the base paper has a ratio of hardwood pulp of 5% to 80% of the constituent wood pipe fibers, and the size degree according to JISP8122 is 1 to 7 seconds. can be,
The thermal transfer recording medium is characterized in that the water content in the base paper after providing the ink layer is 8 to 11% by weight. The present invention also provides the thermal transfer recording medium, characterized in that the base paper contains 15% by weight or less of a pigment having a particle size of 3 μm or less. When making the base paper in the present invention, wood pulp is beaten, and its specific surface area is 10 to 60 m 2 /g.
A range of from 20 to 40 m 2 /g is particularly preferred. If it is less than 10m 2 /g, beating will not be sufficient and uneven formation and pinholes will easily occur during paper making, and if it exceeds 60m 2 /g, dimensional stability will deteriorate and it will not work well in high temperature and high humidity conditions. Waving and wrinkles tend to occur during use, and the pulp becomes too fine, resulting in a low papermaking speed, making it uneconomical. Next, the base JISP
The size degree according to -8122 is 1 to 7 seconds, but is preferably adjusted to a range of 3 to 5 seconds. When the size degree is lower than 1 second, waving and wrinkles occur at high temperatures and high humidity. Furthermore, if the sizing degree exceeds 7 seconds, the content of the sizing agent in the base paper increases and staking with the thermal head tends to occur. Furthermore, the wires, blankets, etc. of the paper machine tend to get dirty during paper making, making it uneconomical. Next, the thickness of the base paper is 4 to 25 μm, especially 6 to 25 μm.
It is preferably in the range of 20 μm. If the thickness is smaller than these ranges, it will be difficult to industrially manufacture the base paper, and if the thickness exceeds 25 μm, the heat applied from the thermal head will be diffused and transferred to the ink layer, resulting in poor resolution. Not only does it become more expensive, but a large amount of thermal energy is required for thermal transfer recording.
As the power supply capacity of the device increases, the lifespan of the thermal head becomes shorter. The density of the base paper is 0.8~1.45g/cm 3 , especially 0.9~
It is preferably in the range of 1.4 g/cm 3 . If the density is smaller than these ranges, there will be many air holes in the base paper, which will impede heat conduction from the thermal head, making it impossible to perform efficient thermal transfer recording. Moreover, when the amount is larger than these ranges, it is difficult to industrially manufacture the base paper. Furthermore, the smoothness of the base paper is determined by the Oken type smoothness (Japan
TAPPI paper pulp test method No. 5 Smoothness and air permeability test method of paper and paperboard using air micrometer type tester B, Oken type smoothness and air permeability tester (pressure type)
method) ranges from 500 to 50000 seconds, among others
It is preferably in the range of 3000 to 30000 seconds. If it is smaller than these ranges, the smoothness will deteriorate and the adhesion between the base paper and the thermal head will deteriorate. This causes unevenness in the transferred density of the ink image. Furthermore, in general, the higher the smoothness of the ink layer, the thinner and more uniformly the ink layer can be applied. Therefore, low smoothness is not preferable for the application of the ink layer. on the other hand,
Even if the smoothness is increased beyond these ranges, the effect of improving thermal transfer recorded images is small, and industrial production is also difficult. In addition, the formation of the base paper has a large relationship with the thermal transfer recording characteristics, and if mottling is observed when visually inspecting the base paper with transmitted light, the thermal conductivity is different between the mottled area and the surrounding area, and thermal conductivity is different. When the amount of heat energy applied from the head is small, spots occur in the thermal transfer recorded image obtained. Furthermore, if the base paper has a penetrating portion such as a pinhole, the ink layer passes through the base paper and adheres to the thermal head, significantly impairing recording workability. Next, the water content in the base paper after providing the ink layer is preferably adjusted to 6 to 13% by weight, particularly 8 to 11% by weight. As already mentioned, adjusting the size of the base paper appropriately to prevent the occurrence of waviness and wrinkles at high temperatures and high humidity has a remarkable effect, but if the moisture content of the base paper is low, In particular, at high temperatures and high humidity, the difference between the equilibrium moisture content and the moisture content in the base paper becomes large, and the base paper rapidly absorbs moisture, resulting in the occurrence of wavy wrinkles. In order to prevent the occurrence of such undulating wrinkles, the effect can be significantly increased by appropriately adjusting the size of the base paper and also adjusting the moisture content in the base paper. If the moisture content after forming the ink layer is less than 6% by weight, rapid absorption of moisture is likely to occur at high temperatures and high humidity, resulting in the occurrence of wavy wrinkles. If it exceeds 13% by weight, coating spots are likely to occur during ink application, and the base paper becomes stiff, resulting in poor workability during ink application and recording. Increasing the proportion of hardwood pulp from 5% to 80% of the constituent wood pulp fibers has a great effect in preventing waviness and wrinkling, especially at high temperatures and high humidity. It is recognized that the effect is significantly increased. The effect of hardwood pulp on preventing waviness and wrinkles is considered to be good for dimensional stability because the fibers of hardwood pulp are thicker and more rigid than those of softwood pulp.
If the proportion of hardwood pulp is less than 5%, the effect of preventing the occurrence of waviness and wrinkles will be small, and if it exceeds 80%, the strength will not be sufficient when producing the ultra-thin paper of the present invention with a thickness of 4 to 25 μm. Paper breaks easily occur in the wet and dry parts. Containing 15% by weight or less of pigments with a particle size of 3 μm or less in the base paper is particularly effective in preventing waviness and wrinkling at high temperatures and high humidity. It is recognized that the effect is significantly increased by combining it with the effect. It is thought that by including pigments in the base paper, the pigments act as a lubricant at the bonding points of pulp fibers, improving dimensional stability and increasing the effect of preventing waviness and wrinkles. If the particle size of the pigment exceeds 3 μm, penetrating portions such as pinholes are likely to occur in the base paper, and it is also thought that surface abrasion of the thermal head will be accelerated. If it is included in the base paper in an amount exceeding 15% by weight, paper breakage is likely to occur during ink application when producing the ultra-thin paper of the present invention with a thickness of 4 to 25 μm. In producing the above-mentioned base paper according to the present invention, ordinary paper making equipment is possible, and in particular, equipment for making paper is preferable for condenser paper and one-time carbon paper. The manufactured paper is adjusted to a predetermined range of thickness, density, and smoothness by supercalendering. In addition, methods for adjusting the moisture content of thermal transfer recording media include (1) increasing the moisture content at the outlet of the paper machine;
For example, one method is to set the moisture content at 25 to 35% during supercalendering and heat the rolls to achieve the desired moisture content, or to lower the moisture content at the outlet of the paper machine, such as 4 to 6%, and maintain the desired moisture content while adding moisture during supercalendering. In this method, the moisture in the base paper is adjusted in advance before ink application, such as the method of adding moisture after supercalender treatment to achieve the desired moisture content, and then adjusting the moisture content to the desired moisture range according to the present invention after applying the ink. (2) Adding moisture during ink application or after application to adjust the moisture content to a desired range. Next, materials used in the present invention will be briefly described, but these materials do not particularly limit the present invention. Sizing agents include various internal sizing agents such as rosin sizing agents, petroleum resin sizing agents, synthetic resin sizing agents, and surface sizing agents. The sizing agent can be applied by a conventional method, an internal addition method, or an external addition method using a size press or the like. In addition, paper strength agents, water resistance agents, dimensional stabilizers, which are commonly used in paper making,
Various fixing agents and the like may be used as necessary. As the wood pulp, chemical pulp such as kraft method, sulfite method, semi-chemical pulp, etc. are used. As pigments for internal addition to the base paper, titanium dioxide, talc, clay, kaolin, heavy calcium carbonate, light calcium carbonate, aluminum hydroxide, zinc dioxide, precipitated barium sulfate, etc. are used. Ink that is fluidized by heat can be broadly classified into a colorant and a vehicle that fixes the colorant on the base paper and serves as a carrier for thermally transferring the colorant. Vehicles usually consist of waxes and oils.
Colorants include pigments that are insoluble in oils, basic dyes that are soluble in oil, and oil-soluble dyes. Pigments include carbon black, ultramarine blue, Prussian blue, chrome yellow, cadmium yellow, titanium yellow, red iron, lead vermilion, cadmium red, Rekired C, same D, rhodamine lake B,
There are chromium oxides, etc., and oil-soluble dyes include C.1. Solvent Yellow 2, Solvent Yellow 2, Solvent Yellow 19, Solvent Yellow 21, Solvent Yellow 61, C.1. Solvent Orange 40, C.1. Solvent Red 3,
8, 25, 49, 82, 100, C.1. Solvent Violet 8, 21, C.1. Solvent Blue
25, 73, Diaresin Blue G, Balifurst Blue #2604, C.1.Solvent Green 3,
C.1.Solvent Black 3rd and 7th class will be listed. Examples of waxes include natural waxes such as carnauba wax, auricilla wax, and Montan wax, and synthetic waxes such as paraffin wax, microcrystalline wax, IG-wax, and polyethylene wax. Oils include light mineral oil, heavy mineral oil, castor oil, oleic acid, and peanut oil. Ink that sublimes by heat is composed of a disperse dye as a coloring agent and a vehicle.
As disperse dyes, Kayaset Yellow A-G (Nippon Kayaku, hereinafter the same), Kayaset Yellow A-G, Kayaset Yellow 186, Kayaset Scarlet 926, Kayaset Red 026, Kayaset B, Kayaset Yellow
130, Kayaset Blue A-2R, 906, 136,
Same FR, Kaya Set Black 922, Same 922(D), Same 928
etc. Vehicles include cellulose derivatives such as nitrified cotton, cellulose acetate propionate, and acetyl cellulose. The thermal transfer recording medium of the present invention produced in this way does not cause undulations and wrinkles even under high temperature and high humidity conditions, has a smooth surface, and has good thermal conductivity, so it is suitable for thermal transfer recording. Very good recorded images can be obtained. Furthermore, since the base paper has a uniform texture, there are no problems such as pinholes in the base paper or spots of the ink layer coming out on the opposite side when an ink layer is provided. The present invention will be explained in more detail with reference to Examples below. Example 1 NUKP (softwood unbleached kraft pulp) for insulation paper
70%, LUKP (hardwood unbleached kraft pulp) 30%
The specific surface area is 40 using a refiner (beating device).
m 2 /g, an internal sizing agent (RF size 550 manufactured by Hamano Industries) was added, paper was made by a conventional method, dried, and subjected to super calendering to produce paper. The obtained paper had a basis weight of 17 g/m 2 , a thickness of 13 μm, a density of 1.3 g/cm 3 , a smoothness of 13000 seconds, a size degree of 3 seconds, and a moisture content of 9%. Using this paper as a base paper, one side is coated with thermofluid ink consisting of the following composition to create a thickness.
A thermal transfer recording medium was obtained by forming an ink layer of 5 μm. The moisture content in the base paper of this medium was 8.5%. (Ingredients) (Parts by weight) Carbon black 20 parts Carnauba wax 20 parts Ester wax 40 parts Oil 20 parts Example 2 In Example 1, the constituent pulp fibers of the base paper
A thermal transfer recording medium was obtained in the same manner as in Example 1, except that light calcium carbonate having a maximum particle size of 2.5 μm and an average particle size of 0.7 μm was added to NUKP+LUKP to give a concentration of 10%. Example 3 In Example 1, NUKP80%, LUKP20%
A thermal transfer recording medium was obtained in exactly the same manner as in Example 1, except that 10% light calcium carbonate was added to the pulp to make paper, and the sizing degree of the obtained base paper was set to 5 seconds. Example 4 In Example 1, NUKP98%, LUKP10%
Example 1 was carried out, except that the paper was made by adding 10% light calcium carbonate to the pulp of Example 1, and the sizing degree of the obtained base paper was 5 seconds, the moisture content was 11.5%, and the moisture content after ink application was 11%. A thermal transfer recording medium was obtained in exactly the same manner. Comparative Example 1 In Example 1, paper was made using 100% NUKP without blending hardwood pulp and without adding any internal sizing agent, and the resulting paper had a size degree of 0 seconds and a moisture content.
A thermal transfer recording medium with a base paper having a moisture content of 5% after ink application was obtained in exactly the same manner as in Example 1, except that the water content was 5.5%. Comparative Example 2 A thermal transfer recording medium was obtained in exactly the same manner as in Example 1, except that paper was made without adding the internal sizing agent and the sizing degree of the obtained base paper was 0 seconds. . Comparative Example 3 A thermal transfer recording medium was obtained in exactly the same manner as in Example 1, except that the water content of the base paper obtained by papermaking was 5.5%, and the water content after ink application was 5%. Comparative Example 4 A thermal transfer recording medium was obtained in exactly the same manner as in Example 1 except that NUKP was 100% blended and hardwood pulp was not used. Comparative Example 5 A thermal transfer recording medium was obtained in exactly the same manner as in Example 2, except that paper was made without adding an internal sizing agent and the sizing degree of the obtained base paper was set to 0 seconds. Comparative Example 6 A thermal transfer recording medium was obtained in exactly the same manner as in Example 2, except that the base paper obtained by papermaking had a moisture content of 5.5%, and the moisture content after ink application was 5%. Comparative Example 7 A thermal transfer recording medium was obtained in exactly the same manner as in Example 2, except that 100% NUKP was blended and no hardwood pulp was blended. Comparative Example 8 Paper was produced in the same manner as in Example 1 by beating the pulp to a specific surface area of 7 m 2 /g. The resulting paper had a basis weight of 17 g/m 2 , a thickness of 20 μm, a density of 0.85, a smoothness of 600 seconds, a size degree of 5 seconds, and a moisture content of 5%. Using this paper as a base paper, an ink layer was provided on one side in the same manner as in Example 1, but the ink layer came out in spots on the opposite side. Regarding the thermal transfer recording media obtained in Examples 1 to 4 and Comparative Examples 1 to 7, 20°C, 65%RH,
30℃, 80%RH, 30℃, 90%RH, 30℃, 95%
Leave it in an environment of RH, 35℃, 90%RH for 10 minutes,
The first result is the observation of the occurrence of wavy wrinkles.
Shown in the table.
【表】
次いでこれら得られた熱転写記録媒体を先に説
明した熱転写記録装置に装着し、30℃、90%RH
の環境下に10分間放置したところ、第1図に示す
A部、B部で比較例は程度の差はあつても波打ち
じわの発生が見られたが、実施例は波打ちじわの
発生はない。次いで、転写記録を行つたがサーマ
ルヘツド部3での折れじわの発生は実施例ではな
く、良好な記録画を得ることができた。[Table] Next, these obtained thermal transfer recording media were installed in the thermal transfer recording device described above, and heated at 30℃ and 90%RH.
When left for 10 minutes in an environment of There isn't. Next, transfer recording was performed, but the occurrence of creases in the thermal head portion 3 was not the same as in the example, and a good recorded image could be obtained.
第1図は熱転写記録装置の概略構成図、第2図
はこの熱転写記録装置の記録部近傍を拡大して示
した原理図である。
1……供給ロール、2……熱転写記録媒体、3
……サーマルヘツド、4……プラテンロール、5
……記録用普通紙、6……記録用普通紙繰り出し
ロール、2A……基紙、2B……インク層。
FIG. 1 is a schematic configuration diagram of a thermal transfer recording device, and FIG. 2 is an enlarged principle diagram showing the vicinity of the recording section of this thermal transfer recording device. 1... Supply roll, 2... Thermal transfer recording medium, 3
...Thermal head, 4...Platen roll, 5
... Plain paper for recording, 6 ... Plain paper for recording roll, 2A ... Base paper, 2B ... Ink layer.
Claims (1)
えたインク層を厚さ4〜25μm、密度0.8〜1.45
g/cm3、平滑度(王研式)500〜50000秒である基
紙の片面に設けてなる熱転写記録媒体において、
その基紙が構成木材パルプ繊維のうち広葉樹パル
プの割合を5%以上80%までとし、JISP8122に
よるサイズ度が1〜7秒であり、インク層を設け
た後の基紙中の水分が8〜11重量%であることを
特徴とする熱転写記録媒体。 2 基紙中に3μm以下の粒子径をもつ顔料を15
重量%以下含むことを特徴とする特許請求の範囲
第1項記載の熱転写記録媒体。[Claims] 1. An ink layer with a property of fluidizing or sublimating when heated, with a thickness of 4 to 25 μm and a density of 0.8 to 1.45.
g/cm 3 and a smoothness (Oken style) of 500 to 50,000 seconds in a thermal transfer recording medium provided on one side of a base paper.
The base paper has a proportion of hardwood pulp of 5% to 80% of the constituent wood pulp fibers, a sizing degree according to JISP8122 of 1 to 7 seconds, and a moisture content of the base paper after forming the ink layer of 8 to 80%. A thermal transfer recording medium characterized by having a content of 11% by weight. 2 15 pigments with a particle size of 3 μm or less are added to the base paper.
The thermal transfer recording medium according to claim 1, characterized in that it contains not more than % by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57210666A JPS59101394A (en) | 1982-12-02 | 1982-12-02 | Thermal transfer recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57210666A JPS59101394A (en) | 1982-12-02 | 1982-12-02 | Thermal transfer recording medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59101394A JPS59101394A (en) | 1984-06-11 |
JPH0229038B2 true JPH0229038B2 (en) | 1990-06-27 |
Family
ID=16593093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57210666A Granted JPS59101394A (en) | 1982-12-02 | 1982-12-02 | Thermal transfer recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59101394A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61173989A (en) * | 1985-01-30 | 1986-08-05 | Oike Kogyo Kk | Transfer film and its manufacture |
JP2525399B2 (en) * | 1987-03-26 | 1996-08-21 | 東レ株式会社 | Transferr for thermal recording |
JP2014201837A (en) * | 2013-04-01 | 2014-10-27 | 王子ホールディングス株式会社 | Base paper for corrugated cardboard |
CN106812010B (en) * | 2016-12-30 | 2019-03-29 | 山东华泰纸业股份有限公司 | A kind of thermal sublimation digit transfer printing paper body paper and its production technology |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS553919A (en) * | 1978-06-22 | 1980-01-12 | Nippon Telegr & Teleph Corp <Ntt> | Thermal recording medium |
JPS57173195A (en) * | 1981-04-17 | 1982-10-25 | Mitsubishi Paper Mills Ltd | Heat-sensitive transfer paper |
JPS57146693A (en) * | 1981-09-08 | 1982-09-10 | Nippon Telegr & Teleph Corp <Ntt> | Thermal recording medium |
-
1982
- 1982-12-02 JP JP57210666A patent/JPS59101394A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59101394A (en) | 1984-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4490732A (en) | Heat-sensitive recording sheets | |
US20020164464A1 (en) | Glossy inkjet coated paper | |
US4474844A (en) | Heat transfer recording medium | |
US5032225A (en) | Temperature controlled method of coating a paper web | |
JP4726631B2 (en) | Coated paper for newspaper ink and method for producing the same | |
JPH0229038B2 (en) | ||
US7699960B2 (en) | Processes and apparatus for producing cast coated papers | |
US5037696A (en) | Substrate for heat-sensitive recording material | |
JP2930776B2 (en) | Method for producing gravure paper and gravure paper obtained by the method | |
GB2217866A (en) | Thermal transfer image-receiving sheet | |
KR20240036602A (en) | Thermosensitive recording material, method for decolorizing thermosensitive recording material, fibrous material mixture, method for producing recycled paper, and recycled paper | |
JPH1158993A (en) | Image receiving sheet for thermal transfer and method for producing the same | |
JP6939361B2 (en) | Manufacturing method of sublimation type printing underpaper and white paperboard | |
JPH0339837B2 (en) | ||
JPS61158497A (en) | Thermal transfer recording paper | |
JP3092318B2 (en) | Sublimation type thermal transfer image receiving sheet | |
JP7603829B2 (en) | FIELD OF THEINVENTION The present invention relates to a recording material for thermosublimation printing. | |
US5024986A (en) | Heat sensitive recording paper | |
JP6930351B2 (en) | Sublimation type printing transfer paper | |
JPH1158992A (en) | Image receiving sheet for thermal transfer and method for producing the same | |
JPS63159598A (en) | Coated paper | |
JP3089823B2 (en) | Dye thermal transfer image receiving sheet | |
JP2008126415A (en) | Ink-receiving sheet for heat transfer by melting | |
JP3000812B2 (en) | Image receiving paper for thermal transfer recording and manufacturing method thereof | |
JP3077328B2 (en) | Thermal transfer type thermal transfer recording image receiving material |