[go: up one dir, main page]

JPH02290002A - Fe-si based alloy dust core and its manufacture - Google Patents

Fe-si based alloy dust core and its manufacture

Info

Publication number
JPH02290002A
JPH02290002A JP33589989A JP33589989A JPH02290002A JP H02290002 A JPH02290002 A JP H02290002A JP 33589989 A JP33589989 A JP 33589989A JP 33589989 A JP33589989 A JP 33589989A JP H02290002 A JPH02290002 A JP H02290002A
Authority
JP
Japan
Prior art keywords
powder
alloy powder
magnetic core
oxygen
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33589989A
Other languages
Japanese (ja)
Other versions
JPH0682577B2 (en
Inventor
Takuhiko Nishida
西田 卓彦
Masao Yamamiya
山宮 昌夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26342241&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH02290002(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1335899A priority Critical patent/JPH0682577B2/en
Priority to EP19900100930 priority patent/EP0383035B1/en
Priority to DE1990622751 priority patent/DE69022751T2/en
Publication of JPH02290002A publication Critical patent/JPH02290002A/en
Publication of JPH0682577B2 publication Critical patent/JPH0682577B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はノイズフィルターやスイッチング電源のチョー
クコイルなどに用いられるFc−Si系合金圧粉磁心お
よびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an Fc-Si alloy dust core used for noise filters, choke coils of switching power supplies, etc., and a method for manufacturing the same.

(従来の技術) 従来、電磁ノイズの抑制、あるいはチョークコイルに使
用される圧粉磁心材料は純鉄粉、カーホニル鉄粉、Fe
−Ni系合金(以下パーマロイと称する) 、Fe −
 Si  −AΩ合金(以下センダス1・と称する)を
含む磁性金属粉末に、絶縁兼接青剤の水ガラス、エボキ
シ樹脂などを添加し、成形圧力1〜15Lon/cJで
プレス成形後、圧縮歪を除去するための熱処理をする工
程を経て製造されることが知られている(粉体粉末冶金
協会編,磁性材料,  (1970) , H刊工業新
聞社)。
(Prior art) Conventionally, powder magnetic core materials used for suppressing electromagnetic noise or for choke coils have been pure iron powder, carbonyl iron powder, Fe
- Ni-based alloy (hereinafter referred to as permalloy), Fe -
A magnetic metal powder containing Si-AΩ alloy (hereinafter referred to as Sendas 1) is added with water glass, epoxy resin, etc. as an insulating and tangent agent, and after press molding at a molding pressure of 1 to 15 Lon/cJ, compressive strain is applied. It is known that it is manufactured through a process of heat treatment to remove it (edited by Powder Metallurgy Association, Magnetic Materials, (1970), Kogyo Shimbunsha, H.).

純鉄の圧粉磁心は50kllz以下のスイッチング電源
のチョークコイル、リンキングチョークタイプ電源回路
のトランス用磁心、あるいは低周波電流が重畳する回路
のノイズ抑制に使用される。
Pure iron powder magnetic cores are used for choke coils in switching power supplies of 50kllz or less, transformer cores for linking choke type power supply circuits, or for suppressing noise in circuits where low frequency currents are superimposed.

パーマロイの圧粉磁心は、100〜500kHz範囲の
スイッチング電源の二次側平滑チョークコイルの磁心お
よびノイス抑制磁心に使用され、またセンダス1・圧粉
磁心もパーマロイ圧粉磁心と同等な周波数範囲で使用さ
れる。
Permalloy powder cores are used in the secondary smooth choke coil cores and noise suppression cores of switching power supplies in the 100-500kHz range, and Sendas 1 powder cores are also used in the same frequency range as permalloy powder cores. be done.

しかるに最近は電子機器の高周波ノイス規制の強化およ
び機器の小型、A’j 型化の要求にともない、従来に
もましてより高透磁率で周波数特性の優れた圧粉磁心の
要求か強くなっている。
However, recently, with the tightening of high-frequency noise regulations for electronic devices and the demand for smaller, A'J-type devices, the demand for powder magnetic cores with higher magnetic permeability and excellent frequency characteristics has become stronger than ever. .

圧粉磁心は粉末粒子をエボキシ樹脂や水ガラスなどで絶
縁して、粉末粒子同志の直接接触をなくして高周波領域
での渦電流損を減少させ、さらに成形により高密度化し
て、高い透磁率と良好な周波数特性を得るものである。
Powder magnetic cores are made by insulating powder particles with epoxy resin, water glass, etc. to eliminate direct contact between powder particles and reducing eddy current loss in the high frequency range. Furthermore, they are made denser by molding, and have high magnetic permeability. This provides good frequency characteristics.

高透磁率を得るには高圧成形により充填密度を」二げれ
ば良いか、従来のセンダスト系圧粉磁心ては粉末が極め
て硬く、塑性変形し難く高圧成形か困難であること、ま
た金型の寿命が著しく低下してしまうなどの問題を有し
ている。
In order to obtain high magnetic permeability, is it possible to increase the packing density by high-pressure molding?In the conventional Sendust-based powder magnetic core, the powder is extremely hard and difficult to plastically deform, making high-pressure molding difficult. There are problems such as a significant decrease in the lifespan of the

パーマロイ圧粉磁心は、純鉄圧粉磁心より透磁率が高く
、高周波特性が優れているか、品価格であること、およ
び絶縁層との密着性が充分でなく、粒子間の層間絶縁が
破壊し、周波数特性か著しく低下してしまう欠点かあっ
た。
Permalloy powder magnetic cores have higher magnetic permeability than pure iron powder magnetic cores, have better high-frequency characteristics, are cheaper, and do not have sufficient adhesion with the insulating layer, causing the interlayer insulation between particles to break down. However, the disadvantage was that the frequency characteristics deteriorated significantly.

(発明が解決しようとする課題) 本発明の目的は、高透磁率で優れた周波数特性を有し、
かつ安価なFe−Si系合金圧粉磁心とその製造方法を
提供することである。
(Problems to be Solved by the Invention) The object of the present invention is to have high magnetic permeability and excellent frequency characteristics,
Another object of the present invention is to provide an inexpensive Fe-Si alloy powder magnetic core and a method for manufacturing the same.

(課題を解決するための手段、作用) 本発明は以上の観点から周波数特性化の要因となる層間
絶縁性と粉末の圧縮性、粉末の組成などと磁気的性質と
の関係を研究したところ、水アトマイズ法で製造したF
e−Si系合金粉末は粉末表面に安定な酸化皮膜を形成
し、しかも圧縮性に優れ、高透磁率で周波数特性の優れ
た圧粉磁心が得られることを見い出し、これに基づいて
開発されたものである。
(Means and effects for solving the problem) From the above viewpoint, the present invention has been made by researching the relationship between interlayer insulation, powder compressibility, powder composition, etc., and magnetic properties, which are factors for frequency characteristics. F produced by water atomization method
The e-Si alloy powder was developed based on the discovery that it forms a stable oxide film on the powder surface, has excellent compressibility, and produces a dust core with high magnetic permeability and excellent frequency characteristics. It is something.

すなわち、本発明は、水アトマイズ法で製造した平均粒
径か10〜100μmの合金粉末で、組成かSiを重量
%で2〜12%、酸素を0.05〜0,95%含有し、
残部か実質的にFeよりなる合金粉末を用いることを特
徴とするFc−Si系合金圧粉磁心、および、合金粉末
の組成が、Siを重量%で2〜12%、酸素を旧05−
0.95%に、AJ,Cr,Tiを単独ないし複合して
3%以下含有し、残部か実質的にFeである前記のFc
−Si系合金圧粉磁心である。
That is, the present invention is an alloy powder with an average particle size of 10 to 100 μm manufactured by a water atomization method, containing 2 to 12% by weight of Si and 0.05 to 0.95% of oxygen,
The Fc-Si alloy powder magnetic core is characterized by using an alloy powder in which the balance substantially consists of Fe, and the alloy powder has a composition of 2 to 12% by weight of Si and 0.5-1% of oxygen by weight.
The above-mentioned Fc contains 0.95%, 3% or less of AJ, Cr, and Ti singly or in combination, and the remainder is substantially Fe.
-Si-based alloy powder magnetic core.

さらには、前記の合金粉末に絶縁兼接着剤を添加し、成
形後、硬化処理を施すことを特徴とずるFe−Si系合
金圧粉磁心の製造方法、および、同様に成形した後、硬
化処理を施すか、もしくは施すことなく、不活性雰囲気
中で、500°Cから950℃の温度範囲で熱処理する
ことを特徴とするFe−Si系合金圧粉磁心の製造方法
である。
Furthermore, a method for producing an Fe-Si alloy powder magnetic core, which is characterized in that an insulating and adhesive agent is added to the above-mentioned alloy powder, and after molding, a hardening treatment is performed; This is a method for producing a Fe-Si alloy powder magnetic core, which is characterized by carrying out heat treatment in an inert atmosphere at a temperature range of 500°C to 950°C, with or without applying.

以下、本発明の限定理由を説明する。The reasons for the limitations of the present invention will be explained below.

本発明の合金粉末の組成におけるSiは本合金の基本成
分てあり、S1が2%未満では電気抵抗が小さく高周波
域での渦電流損が大きくなり、所望の透磁率が得られな
い。またS】は12%を超えると金属間化合物か形成さ
れるため粉末か硬くなり圧縮性か損なわれる。その範囲
内でも、異方性定数、飽和磁歪が小さい3.0〜7.5
%が好ましい。
Si in the composition of the alloy powder of the present invention is a basic component of the present alloy, and if S1 is less than 2%, the electric resistance is small and eddy current loss in the high frequency range becomes large, making it impossible to obtain the desired magnetic permeability. Furthermore, if S exceeds 12%, intermetallic compounds are formed, which makes the powder hard and compressibility impaired. Even within that range, the anisotropy constant and saturation magnetostriction are small from 3.0 to 7.5.
% is preferred.

酸素は絶縁皮膜を粉体の表面に形成させるのに不可欠で
あり、0.(15%未満では安定な酸化皮膜が形成され
ず、また0.95%を超えると皮膜が厚くなりすぎて透
磁率が低下し、圧粉体の密度も低下してしまうため0、
05〜0.95%とした。
Oxygen is essential for forming an insulating film on the surface of powder, and 0. (If it is less than 15%, a stable oxide film will not be formed, and if it exceeds 0.95%, the film will become too thick, the magnetic permeability will decrease, and the density of the green compact will also decrease.
05 to 0.95%.

また前記基本成分に選択成分として加えるAΩCr,T
iは、Siとともに安定な絶縁皮膜を形成するため一層
の効果があるが、単独、複合添加のいずれの場合でも3
%を超えると皮膜が厚くなりすぎて、粉末の圧縮性が損
なわれるため3%以下とする。
Also, AΩCr,T added as a selective component to the basic component
Although i is more effective because it forms a stable insulating film together with Si, 3
If it exceeds 3%, the film will become too thick and the compressibility of the powder will be impaired, so it should be set at 3% or less.

粉末の粒径は透磁率と層間絶縁性に大きく影響をおよぼ
す。平均粒径が10郎未満では粉末自身の磁性が悪くな
り、また高い充填密度が得られないため目的とする透磁
率が得られない。一方、粒径が1001HIlを超える
と、粉末粒子間の摩擦が大きくなりすぎて、絶縁層か破
壊され、高周波特性が低下するため10〜100庫の範
囲とした。
Powder particle size greatly affects magnetic permeability and interlayer insulation. If the average particle size is less than 10 mm, the magnetic properties of the powder itself will deteriorate, and a high packing density will not be obtained, making it impossible to obtain the desired magnetic permeability. On the other hand, if the particle size exceeds 1001 HIl, the friction between the powder particles becomes too large, the insulating layer is destroyed, and the high frequency characteristics deteriorate, so the range was set to 10 to 100 HIl.

水アトマイズ法は、素原料を溶解し、その溶融金属を直
径2〜20關の溶融金属流としてノズルより流下させ、
それに50〜800kg/catの高圧水を噴霧ノズル
より噴射させて金属流を粒滴化し、粉体として固化させ
るものである。
In the water atomization method, raw materials are melted and the molten metal is made to flow down from a nozzle as a molten metal stream with a diameter of 2 to 20 mm.
High-pressure water of 50 to 800 kg/cat is injected from a spray nozzle to turn the metal stream into droplets and solidify them as powder.

この水アトマイズ法により得られる粉末は、組成の制御
が容易で希望する成分のものがつくれること、さらに水
によって急冷されるために、形状は不規則状であるため
圧縮性に優れ、かつ反磁場係数が小さいものができるこ
と、また水によって粉末は酸化されるが、噴霧時の雰囲
気の調整と水の溶存酸素量の調整によって、酸化皮膜の
厚さすなわち合金粉末の酸素量を制御することができる
ため、本発明の圧粉磁心に適した粉末を製造することが
できる。
The powder obtained by this water atomization method is easy to control the composition and can be made with the desired ingredients.Furthermore, since it is rapidly cooled by water, the powder has an irregular shape, so it has excellent compressibility and has excellent compressibility in the demagnetizing field. Although the powder is oxidized by water, the thickness of the oxide film, that is, the amount of oxygen in the alloy powder, can be controlled by adjusting the atmosphere during spraying and the amount of dissolved oxygen in the water. Therefore, powder suitable for the powder magnetic core of the present invention can be manufactured.

水アトマイズ法では噴霧タンク内の上部にアトマイジン
グノズルを設置し、タンクの上部から溶融金属を細流と
して落下させ、それにノズルから高圧の水を衝突させて
粉化させるため、噴霧タンク内の雰囲気を大気のままに
してアトマイズを行なうと、鉄粉の場合、粉末の酸素量
は3〜5%になる。
In the water atomization method, an atomizing nozzle is installed at the top of the spray tank, and the molten metal falls from the top of the tank as a trickle, and high-pressure water is collided with it from the nozzle to powder it, thereby reducing the atmosphere inside the spray tank. If atomization is performed in the atmosphere, the amount of oxygen in the powder will be 3 to 5% in the case of iron powder.

タンク内を窒素ガス、アルゴンガスなどの不活性ガスで
置換し、さらにタンク内に水をはって粉化された金属流
滴が急速に冷却するようにすると、鉄粉の酸素量を1%
前後に低減できる。
By replacing the inside of the tank with an inert gas such as nitrogen gas or argon gas, and then filling the tank with water to rapidly cool down the powdered metal droplets, the amount of oxygen in the iron powder can be reduced to 1%.
It can be reduced back and forth.

さらにアトマイジングに使用する水をあらかじめAr,
N2などのガスをパブリングさせるか、減圧処理により
水中の溶存酸素を減少させると、鉄粉の酸素量を0、1
%以下にすることができ、溶存酸索の量を変化させるこ
とにより、粉末の酸素量を0、05〜0.95%の範囲
で制御できる。
Furthermore, the water used for atomizing is arranged in Ar,
By bubbling gas such as N2 or reducing dissolved oxygen in water by decompression treatment, the amount of oxygen in iron powder can be reduced to 0 or 1.
% or less, and by changing the amount of dissolved acid cords, the amount of oxygen in the powder can be controlled within the range of 0.05 to 0.95%.

このようにして製造した水アトマイズFcSi系合金粉
末を、篩分けして平均粒径を10〜100μmにし、絶
縁をかねた接着剤として一般に用いられている水ガラス
、エポキシ樹脂、あるいは熱処理を施す場合には耐熱性
の樹脂、例えばシリコン系樹脂などを、重量%で1〜1
0%程度添加し混合した後、成形圧力1〜15ton/
cJ程度でプレス成形などにより所望の形状に成形した
後、硬化処理さらには必要に応じて熱処理を施し、最後
に表面に絶縁コーティングを施して圧粉磁心とする。
The water atomized FcSi alloy powder produced in this way is sieved to have an average particle size of 10 to 100 μm, and then treated with water glass, epoxy resin, which is commonly used as an adhesive that also serves as insulation, or when subjected to heat treatment. 1 to 1% by weight of heat-resistant resin, such as silicone resin, is added to
After adding about 0% and mixing, the molding pressure is 1 to 15 tons/
After molding into a desired shape by press molding or the like at approximately cJ, a hardening treatment and, if necessary, a heat treatment are performed, and finally an insulating coating is applied to the surface to form a powder magnetic core.

Fe−Sj系合金粉末に絶縁兼接着剤を添加し、成形後
、用いた絶縁兼接着剤の種類や圧粉磁心の用途に応じて
、約100℃〜300℃程度に加熱して、成形体を硬化
させる硬化処理を施すが、成形後に後述する熱処理を行
なう場合には硬化処理を省略することも可能である。
An insulation/adhesive is added to the Fe-Sj alloy powder, and after molding, it is heated to about 100°C to 300°C depending on the type of insulation/adhesive used and the purpose of the dust core to form a compact. Although a hardening treatment is performed to harden the material, the hardening treatment may be omitted if a heat treatment to be described later is performed after molding.

尚、絶縁兼接着剤として用いる樹脂などとの密着性を改
善するために、原料となるFc−Sj系合金粉末を公知
のTi系、Sj系などの有機金属カップリングなどで表
面処理を施しておくことか望ましい。
In addition, in order to improve the adhesion with the resin used as an insulator and adhesive, the raw material Fc-Sj alloy powder is surface-treated with known organic metal coupling such as Ti-based and Sj-based. It is desirable to keep it.

このように水アトマイズFc−Si系合金粉末を用いて
優れた電磁特性を有する圧粉磁心を製造することができ
るが、さらにプレス成形した磁心を、熱処理することに
より電磁特性を上げることかできる。
In this way, a powder magnetic core having excellent electromagnetic properties can be manufactured using the water atomized Fc-Si alloy powder, but the electromagnetic properties can also be improved by heat-treating the press-formed magnetic core.

熱処理は500℃から950℃の温度範囲で、窒素ある
いはアルゴンなどの不活性雰囲気中で行なうのが効果的
である。雰囲気として大気中では合金粉末が酸化するた
め不可であり、水素、分解アンモニアガスなどの還元雰
囲気中では酸化皮膜の特性が変化してしまう。そのため
窒素ないしアルゴン雰囲気が望ましい。
It is effective to carry out the heat treatment at a temperature in the range of 500° C. to 950° C. in an inert atmosphere such as nitrogen or argon. It is not possible to use the atmosphere in the air because the alloy powder will oxidize, and in a reducing atmosphere such as hydrogen or decomposed ammonia gas, the characteristics of the oxide film will change. Therefore, a nitrogen or argon atmosphere is desirable.

温度として500℃未満では成形による歪の解放か困難
であり、また950℃を超えると絶縁皮膜か破壊されて
、粉末同志が焼結して高周波特性が劣化する。そのため
500℃から950℃の温度で熱処理により磁心の歪取
りと組織の調整(規則格子の形成)により電磁特性を向
上することかできる。
If the temperature is less than 500°C, it will be difficult to release the strain caused by molding, and if it exceeds 950°C, the insulating film will be destroyed and the powders will sinter together, deteriorating the high frequency characteristics. Therefore, by heat treatment at a temperature of 500° C. to 950° C., it is possible to improve the electromagnetic properties by removing strain from the magnetic core and adjusting the structure (formation of a regular lattice).

熱処理の時間としては、低温の場合は長く、高温では短
かくなるが、1〜20時間程度であり、好ましくは1〜
5時間である。
The heat treatment time is longer at low temperatures and shorter at high temperatures, but is about 1 to 20 hours, preferably 1 to 20 hours.
It is 5 hours.

(実 施 例) 第1表に示すFe−Sj系合金粉末を水ア1・マイズ法
で製造し、所定の平均粒径に篩分けした。
(Example) Fe-Sj alloy powders shown in Table 1 were produced by a water atomization method and sieved to a predetermined average particle size.

合金粉末の酸素量は、アトマイズの雰囲気をArガスに
するとともに、冷却水、アトマイズ用の水をArガスで
パブリングして調整した。
The amount of oxygen in the alloy powder was adjusted by changing the atomization atmosphere to Ar gas and bubbling cooling water and water for atomization with Ar gas.

これらの粉末にエポキシ系樹脂を1.5重二%添加し、
外径20m+n,内径12mms高さ8陳のリング状に
成形圧8ton/cIll+でプレス成形後、15(1
℃で2時間の硬化処理を行ない、インピーダンスメ−夕
−により透磁率の周波数特性を測定した。
Add 1.5% epoxy resin to these powders,
After press molding into a ring shape with an outer diameter of 20 m+n, an inner diameter of 12 mm, and a height of 8 cm at a molding pressure of 8 tons/cIll+, 15 (1
A curing treatment was performed at ℃ for 2 hours, and the frequency characteristics of magnetic permeability were measured using an impedance meter.

また熱処理を行なうために、Fe−Sj系合金粉末に水
ガラスを1.0重量%添加し、前記の大きさのリングを
成形圧8ton/cJでプレス成形した。
Further, in order to perform heat treatment, 1.0% by weight of water glass was added to the Fe-Sj alloy powder, and a ring of the above size was press-formed at a molding pressure of 8 ton/cJ.

熱処理はアルゴン雰囲気中で行なった。The heat treatment was performed in an argon atmosphere.

特性評価を行なった結果を第1表に示す。The results of the characteristic evaluation are shown in Table 1.

ここでμel.OKはlokllzての透磁率を、また
,cz e IOM/ μe I.OKはIOMllz
での透磁率とl.okllzでの透磁率の比を示すもの
で高周波特性の目安とした。
Here μel. OK is lokllz magnetic permeability, and cz e IOM/μe I. OK is IOMllz
Permeability and l. It indicates the ratio of magnetic permeability at okllz and was used as a guide for high frequency characteristics.

第1表から明らかなように、本発明磁心1〜9は粉末の
酸素二がO、05〜0.95%の範囲にあり、平均粒径
が10〜100μmの範囲内にあり、10kHzの透磁
率は70以上の高い値を示す。特に注目する点は、高周
波特性でIOMI−1zでの透磁率は10 k H z
と同じか、逆に高くなることである。
As is clear from Table 1, in the magnetic cores 1 to 9 of the present invention, the oxygen content of the powder is in the range of 0.05 to 0.95%, the average particle size is in the range of 10 to 100 μm, and the transmission rate of 10 kHz is The magnetic coefficient shows a high value of 70 or more. Of particular note is the high frequency characteristics, with a magnetic permeability of 10 kHz at IOMI-1z.
It will be the same or, on the contrary, higher.

とくに熱処理を行なった本発明磁心8〜13は高い透磁
率が高周波域まで保持される。
In particular, the magnetic cores 8 to 13 of the present invention that have been subjected to heat treatment maintain high magnetic permeability up to a high frequency range.

比較磁心の4のセンダスト圧粉磁心、純鉄粉圧粉磁心5
、パーマロイ圧粉磁心6はlOkHzでの透磁率は本発
明磁心1〜5より高いが、10MHzでの透磁率は低く
高周波特性は劣化する。
Sendust powder magnetic core of comparison magnetic core 4, pure iron powder powder magnetic core 5
Although the permalloy powder magnetic core 6 has a higher magnetic permeability at 10kHz than the magnetic cores 1 to 5 of the present invention, the magnetic permeability at 10MHz is low and the high frequency characteristics deteriorate.

また比較磁心1は粉末の粒径が小さく、粉末自身の磁性
が悪く、比較磁心2は粒径が大きくて高周波域での絶縁
性が劣化する。
Further, the comparative magnetic core 1 has a small powder particle size and has poor magnetic properties, and the comparative magnetic core 2 has a large particle size and has poor insulation properties in a high frequency range.

またSl量が12%を超える比較磁心3は粉末が硬くて
充填密度が上がらすlOkHzでの透磁率も低い。
In addition, in the comparative magnetic core 3 in which the amount of Sl exceeds 12%, the powder is hard and the magnetic permeability at 10kHz, which increases the packing density, is also low.

また比較磁心7はガスアトマイズ法で製造したもので、
粉末の形状が球形のため反磁場係数が大きくなり透磁,
率が低い。さらに比較磁心8は酸化皮膜が厚いため透磁
率が低い。比較磁心9は焼鈍熱処理の温度が高いため、
粉末が焼結したため、低周波域での透磁率は高くなるが
、高周波特性が劣化する。比較磁心lOはカーボニル法
でつくられた粉末で、高周波特性はよいが、透磁率の絶
対値が低い。
Comparative magnetic core 7 was manufactured using the gas atomization method.
Because the powder has a spherical shape, the demagnetizing field coefficient increases, making it permeable.
rate is low. Furthermore, the comparative magnetic core 8 has a thick oxide film and thus has a low magnetic permeability. Comparative magnetic core 9 has a high annealing temperature, so
Since the powder is sintered, the magnetic permeability in the low frequency range increases, but the high frequency characteristics deteriorate. The comparative magnetic core IO is a powder made by the carbonyl method, and has good high frequency characteristics, but the absolute value of magnetic permeability is low.

第1図は上述と同様な工程で第1表の本発明磁心2と8
と比較磁心4と5およびIOの透磁率の周波数による変
化を示したもので、本発明磁心2が10MHz以上でも
高い透磁率を示しているのに対し、比較磁心はI MH
z近傍から劣化しはじめている。
Figure 1 shows magnetic cores 2 and 8 of the present invention shown in Table 1 in the same process as described above.
This figure shows the change in magnetic permeability of comparative magnetic cores 4 and 5 and IO with frequency. Inventive magnetic core 2 shows high magnetic permeability even at 10 MHz or higher, while comparative magnetic core has I MH
It begins to deteriorate near z.

本発明磁心は非常に良好な高周波特性を有していること
がわかる。
It can be seen that the magnetic core of the present invention has very good high frequency characteristics.

(発明の効果) 以上の如く、本発明は高透磁率で優れた周波数特性を有
し、ノイズフィルター、電源用チョークコイルとして電
子機器の高周波化、小型化に好適な特性を有し、工業上
の効果が大きい。
(Effects of the Invention) As described above, the present invention has high magnetic permeability and excellent frequency characteristics, and has characteristics suitable for increasing the frequency and miniaturizing electronic equipment as noise filters and choke coils for power supplies. The effect is large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明圧粉磁心と比較圧粉磁心に関しての透磁
率の周波数特性を示す図表である。
FIG. 1 is a chart showing the frequency characteristics of magnetic permeability regarding the powder magnetic core of the present invention and the comparative powder magnetic core.

Claims (5)

【特許請求の範囲】[Claims] 1.水アトマイズ法で製造した平均粒径が10〜100
μmで、組成がSiを2〜12%(重量)、酸素を0.
05〜0.95%含有し、残部が実質的にFeよりなる
合金粉末を用いることを特徴とするFe−Si系合金圧
粉磁心。
1. The average particle size produced by water atomization method is 10 to 100.
The composition is 2-12% (by weight) of Si and 0.0% of oxygen.
1. An Fe-Si based alloy powder magnetic core characterized by using an alloy powder containing 05 to 0.95% of Fe, the remainder being substantially Fe.
2.合金粉末の組成が、Siを2〜12%(重量)、酸
素を0.05〜0.95%に、さらにAl,Cr,Ti
を単独ないし複合して3%以下含有し、残部が実質的に
Feである請求項1記載のFe−Si系合金圧粉磁心。
2. The composition of the alloy powder is 2 to 12% (by weight) of Si, 0.05 to 0.95% of oxygen, and further contains Al, Cr, and Ti.
2. The Fe-Si alloy powder magnetic core according to claim 1, which contains 3% or less of either alone or in combination, with the remainder being substantially Fe.
3.水アトマイズ法で製造した平均粒径が10〜100
μmで、組成がSiを2〜12%(重量)、酸素を0.
05〜0.95%含有し、残部が実質的にFeよりなる
合金粉末に、絶縁兼接着剤を添加し、成形後、硬化処理
を施すことを特徴とするFe−Si系合金圧粉磁心の製
造方法。
3. The average particle size produced by water atomization method is 10 to 100.
The composition is 2-12% (by weight) of Si and 0.0% of oxygen.
An Fe-Si alloy powder magnetic core is characterized in that an insulating and adhesive agent is added to an alloy powder containing 05 to 0.95% and the remainder is substantially Fe, and after molding, a hardening treatment is performed. Production method.
4.水アトマイズ法で製造した平均粒径が10〜100
μmで、組成がSiを2〜12%(重量)、酸素を0.
05〜0.95%含有し、残部が実質的にFeよりなる
合金粉末に、絶縁兼接着剤を添加し、成形後、不活性雰
囲気中で、500℃から950℃の温度範囲で熱処理す
ることを特徴とするFe−Si系合金圧粉磁心の製造方
法。
4. The average particle size produced by water atomization method is 10 to 100.
The composition is 2-12% (by weight) of Si and 0.0% of oxygen.
Adding an insulating and adhesive agent to an alloy powder containing 05 to 0.95% and the remainder substantially consisting of Fe, and after molding, heat treatment in an inert atmosphere at a temperature range of 500 to 950 °C. A method for producing a Fe-Si alloy powder magnetic core, characterized by:
5.合金粉末の組成が、Siを2〜12%(重量)、酸
素を0.05〜0.95%に、さらにAl,Cr,Ti
を単独ないし複合して3%以下含有し、残部が実質的に
Feである請求項4または5記載のFe−Si系合金圧
粉磁心の製造方法。
5. The composition of the alloy powder is 2 to 12% (by weight) of Si, 0.05 to 0.95% of oxygen, and further contains Al, Cr, and Ti.
6. The method for producing an Fe-Si alloy powder magnetic core according to claim 4, wherein the Fe-Si alloy powder magnetic core contains 3% or less of either alone or in combination, with the remainder being substantially Fe.
JP1335899A 1989-01-18 1989-12-25 Fe-Si alloy dust core and method of manufacturing the same Expired - Lifetime JPH0682577B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1335899A JPH0682577B2 (en) 1989-01-18 1989-12-25 Fe-Si alloy dust core and method of manufacturing the same
EP19900100930 EP0383035B1 (en) 1989-01-18 1990-01-17 Iron-silicon alloy powder magnetic cores and method of manufacturing the same
DE1990622751 DE69022751T2 (en) 1989-01-18 1990-01-17 Magnetic cores made of iron-silicon alloy powder and manufacturing process.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-7853 1989-01-18
JP785389 1989-01-18
JP1335899A JPH0682577B2 (en) 1989-01-18 1989-12-25 Fe-Si alloy dust core and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH02290002A true JPH02290002A (en) 1990-11-29
JPH0682577B2 JPH0682577B2 (en) 1994-10-19

Family

ID=26342241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1335899A Expired - Lifetime JPH0682577B2 (en) 1989-01-18 1989-12-25 Fe-Si alloy dust core and method of manufacturing the same

Country Status (3)

Country Link
EP (1) EP0383035B1 (en)
JP (1) JPH0682577B2 (en)
DE (1) DE69022751T2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003060930A1 (en) * 2002-01-17 2003-07-24 Nec Tokin Corporation Powder magnetic core and high frequency reactor using the same
JP2003533016A (en) * 2000-05-03 2003-11-05 ロード コーポレーション Magnetorheological composition
US6646532B2 (en) 2002-02-26 2003-11-11 Nec Tokin Corporation Powder core and reactor using the same
WO2004043633A1 (en) * 2002-11-13 2004-05-27 Humanelecs Co., Ltd. Fe-Si ALLOY POWDER CORES AND FABRICATION PROCESS THEREOF
US6788185B2 (en) 2002-01-17 2004-09-07 Nec Tokin Corporation Powder core and high-frequency reactor using the same
JP2009088502A (en) * 2007-09-12 2009-04-23 Seiko Epson Corp Method for producing oxide-coated soft magnetic powder, oxide-coated soft magnetic powder, dust core, and magnetic element
JP2009206337A (en) * 2008-02-28 2009-09-10 Hitachi Metals Ltd Fe-BASED SOFT MAGNETIC POWDER, AND MANUFACTURING METHOD THEREOF, AND DUST CORE
JP2010080978A (en) * 2009-12-16 2010-04-08 Daido Steel Co Ltd Soft magnetic alloy powder and powder magnetic core
JP2013062515A (en) * 2012-10-15 2013-04-04 Tamura Seisakusho Co Ltd Powder compact magnetic core, and method of manufacturing the same
JP2014143301A (en) * 2013-01-24 2014-08-07 Tdk Corp Magnetic core and coil type electronic component
JP2016092403A (en) * 2014-11-04 2016-05-23 サムソン エレクトロ−メカニックス カンパニーリミテッド. Soft magnetic metal complex

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19610196A1 (en) * 1996-03-15 1997-09-18 Horst Dr Kleine Magnetically soft cores of iron-silicon mixture manufacture e.g. for LF applications
JP2000040614A (en) * 1998-05-18 2000-02-08 Daido Steel Co Ltd Core material for noise filter
KR100533097B1 (en) * 2000-04-27 2005-12-02 티디케이가부시기가이샤 Composite Magnetic Material and Magnetic Molding Material, Magnetic Powder Compression Molding Material, and Magnetic Paint using the Composite Magnetic Material, Composite Dielectric Material and Molding Material, Powder Compression Molding Material, Paint, Prepreg, and Substrate using the Composite Dielectric Material, and Electronic Part
EP1341191A1 (en) * 2002-02-27 2003-09-03 NEC TOKIN Corporation Powder core and reactor using the same
CN102933335B (en) * 2010-06-09 2015-01-14 新东工业株式会社 Iron group-based soft magnetic powder
CN103065786A (en) * 2011-10-22 2013-04-24 湖南康力新材料科技有限责任公司 Manufacturing method of high permeability low power consumption Fe-Si-AI magnetic powder cores

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147106A (en) * 1982-02-26 1983-09-01 Toshiba Corp Core material
SE8201678L (en) * 1982-03-17 1983-09-18 Asea Ab SET TO MAKE FORMS OF SOFT MAGNETIC MATERIAL
US4564401A (en) * 1983-09-29 1986-01-14 Crucible Materials Corporation Method for producing iron-silicon alloy articles
JPS6074603A (en) * 1983-09-30 1985-04-26 Nippon Ferrite Ltd Dust core
JPS6074602A (en) * 1983-09-30 1985-04-26 Nippon Ferrite Ltd Dust core

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003533016A (en) * 2000-05-03 2003-11-05 ロード コーポレーション Magnetorheological composition
EP1475808A4 (en) * 2002-01-17 2005-06-01 Nec Tokin Corp Powder magnetic core and high frequency reactor using the same
US6621399B2 (en) 2002-01-17 2003-09-16 Nec Tokin Corporation Powder core and high-frequency reactor using the same
WO2003060930A1 (en) * 2002-01-17 2003-07-24 Nec Tokin Corporation Powder magnetic core and high frequency reactor using the same
CN1295715C (en) * 2002-01-17 2007-01-17 Nec东金株式会社 Powder magnetic core and HF reactor therewith
US6788185B2 (en) 2002-01-17 2004-09-07 Nec Tokin Corporation Powder core and high-frequency reactor using the same
US6646532B2 (en) 2002-02-26 2003-11-11 Nec Tokin Corporation Powder core and reactor using the same
WO2004043633A1 (en) * 2002-11-13 2004-05-27 Humanelecs Co., Ltd. Fe-Si ALLOY POWDER CORES AND FABRICATION PROCESS THEREOF
JP2009088502A (en) * 2007-09-12 2009-04-23 Seiko Epson Corp Method for producing oxide-coated soft magnetic powder, oxide-coated soft magnetic powder, dust core, and magnetic element
JP2009206337A (en) * 2008-02-28 2009-09-10 Hitachi Metals Ltd Fe-BASED SOFT MAGNETIC POWDER, AND MANUFACTURING METHOD THEREOF, AND DUST CORE
JP2010080978A (en) * 2009-12-16 2010-04-08 Daido Steel Co Ltd Soft magnetic alloy powder and powder magnetic core
JP2013062515A (en) * 2012-10-15 2013-04-04 Tamura Seisakusho Co Ltd Powder compact magnetic core, and method of manufacturing the same
JP2014143301A (en) * 2013-01-24 2014-08-07 Tdk Corp Magnetic core and coil type electronic component
JP2016092403A (en) * 2014-11-04 2016-05-23 サムソン エレクトロ−メカニックス カンパニーリミテッド. Soft magnetic metal complex

Also Published As

Publication number Publication date
DE69022751D1 (en) 1995-11-09
JPH0682577B2 (en) 1994-10-19
DE69022751T2 (en) 1996-04-04
EP0383035B1 (en) 1995-10-04
EP0383035A2 (en) 1990-08-22
EP0383035A3 (en) 1991-07-03

Similar Documents

Publication Publication Date Title
JP5022999B2 (en) Powder magnetic core and manufacturing method thereof
JPH02290002A (en) Fe-si based alloy dust core and its manufacture
EP1077454B1 (en) Composite magnetic material
US4956011A (en) Iron-silicon alloy powder magnetic cores and method of manufacturing the same
JP2007299871A (en) Manufacturing method of compound magnetic substance and compound magnetic substance obtained by using the same
JP5470683B2 (en) Metal powder for dust core and method for producing dust core
JP2001011563A (en) Manufacture of composite magnetic material
JP2009010180A (en) Soft magnetic powder, soft magnetic formed object, and method of manufacturing them
JP2008135674A (en) Soft magnetic alloy powder, green compact and inductance element
JP2007019134A (en) Method of manufacturing composite magnetic material
JP5327765B2 (en) Powder core
JP5063861B2 (en) Composite dust core and manufacturing method thereof
JP2012204744A (en) Soft magnetic metal powder, method for producing the same, powder magnetic core and method for producing the same
JP2009147252A (en) Composite magnetic material and method for producing the same
JPS63117406A (en) Amorphous alloy dust core
JP2005116820A (en) Dust core
JP2009235517A (en) Metal powder for dust core and method for producing dust core
JP2006100292A (en) Powder magnetic core manufacturing method and powder magnetic core using the same
WO2022201964A1 (en) Soft magnetic powder, dust core containing same, and method for producing soft magnetic powder
JPS62250607A (en) Manufacture of fe-si-al alloy dust core
JPH06236808A (en) Composite magnetic material and its manufacture
JP2023162305A (en) Soft magnetic powder and dust core
JPH06204021A (en) Composite magnetic material and its manufacture
JP2004214418A (en) Dust core, its alloy powder and manufacturing method
JP4723609B2 (en) Dust core, dust core manufacturing method, choke coil and manufacturing method thereof