[go: up one dir, main page]

JPH02288237A - Manufacture of thin film transistor - Google Patents

Manufacture of thin film transistor

Info

Publication number
JPH02288237A
JPH02288237A JP1111776A JP11177689A JPH02288237A JP H02288237 A JPH02288237 A JP H02288237A JP 1111776 A JP1111776 A JP 1111776A JP 11177689 A JP11177689 A JP 11177689A JP H02288237 A JPH02288237 A JP H02288237A
Authority
JP
Japan
Prior art keywords
film
resist film
resist
channel protective
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1111776A
Other languages
Japanese (ja)
Inventor
Norio Nagahiro
長廣 紀雄
Atsushi Inoue
淳 井上
Satoru Kawai
悟 川井
Teruhiko Ichimura
照彦 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1111776A priority Critical patent/JPH02288237A/en
Publication of JPH02288237A publication Critical patent/JPH02288237A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/031Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT]
    • H10D30/0312Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT] characterised by the gate electrodes
    • H10D30/0316Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT] characterised by the gate electrodes of lateral bottom-gate TFTs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/031Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT]
    • H10D30/0321Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT] comprising silicon, e.g. amorphous silicon or polysilicon

Landscapes

  • Thin Film Transistor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔概 要〕 短絡欠陥の少ない薄膜トランジスタに関し、チャネル保
護膜とソース電極、ドレイン電極間の隙間の発生を防止
することを目的とし、絶縁性基板(1)上に、所定のパ
ターンのゲート電極を形成し、次いで該ゲート電極を被
覆するゲート絶縁膜、動作半導体膜(3)、チャネル保
護膜をこの順に積層した後、該チャネル保護膜上に前記
ゲート電極と位置整合し且つ頂部が庇状に張り出したオ
ーバーハング形状のレジスト膜を形成する工程と、該レ
ジスト膜をマスクとして前記チャネル保護膜に異方性エ
ツチング法を施す工程と、前記レジスト膜の庇部分を除
去する工程と、ソース・ドレイン電極膜を形成する工程
とを施した後、前記レジスト膜を除去するとともに、該
レジスト膜上に付着した不要膜をリフトオフする構成と
する。
[Detailed Description of the Invention] [Summary] In order to prevent the generation of gaps between a channel protective film and source and drain electrodes with respect to thin film transistors with few short-circuit defects, After forming a gate electrode with a pattern of , a gate insulating film covering the gate electrode, an active semiconductor film (3), and a channel protective film are laminated in this order, and then aligned with the gate electrode on the channel protective film. a step of forming an overhang-shaped resist film with a top extending like an eave; a step of performing anisotropic etching on the channel protection film using the resist film as a mask; and removing the eaves portion of the resist film. After performing the process and the process of forming a source/drain electrode film, the resist film is removed and an unnecessary film attached on the resist film is lifted off.

〔産業上の利用分野] 本発明は、短絡欠陥の少ない薄膜トランジスタに関する
[Industrial Application Field] The present invention relates to a thin film transistor with few short circuit defects.

近年、画素駆動用のスイッチング素子として薄膜トラン
ジスタを用いた薄膜トランジスタマトリクスは、液晶表
示パネルとしてポケットTV、情報端末装置用の表示装
置として商品化されている。
In recent years, thin film transistor matrices using thin film transistors as switching elements for driving pixels have been commercialized as liquid crystal display panels, pocket TVs, and display devices for information terminal devices.

この薄膜トランジスタマトリクスを商品化するためには
、低コスト、高歩留りで製造する必要があり、また、情
報端末用として用いる場合には、−個の点欠陥があって
も、誤情報と読み取られる危険性があるため、多数の素
子を無欠陥で製作する必要がある。
In order to commercialize this thin film transistor matrix, it is necessary to manufacture it at low cost and with high yield, and when used for information terminals, there is a risk that even if there are - number of point defects, it will be interpreted as incorrect information. Therefore, it is necessary to manufacture a large number of devices without defects.

このように、多数の素子をマトリクス状に配置した薄膜
トランジスタマトリクスを、欠陥を生じることなく製作
するには、簡単な工程により製造可能であることを要す
る。
In order to manufacture a thin film transistor matrix in which a large number of elements are arranged in a matrix without causing defects, it is necessary to be able to manufacture it through a simple process.

〔従来の技術〕[Conventional technology]

従来の薄膜トランジスタの製造方法を第3図(a)〜(
f)により説明する。
The conventional method for manufacturing thin film transistors is shown in Figures 3(a) to (3).
f).

まずガラス基板l上にゲート電極Gを形成する〔同図(
a)参照]。
First, a gate electrode G is formed on a glass substrate L [same figure (
See a)].

次いで、プラズマ化学気相成長(P−CVD)法により
、ゲート絶縁膜2.動作半導体膜3.チャネル保護膜4
を連続的に成膜する〔同図(b)参照〕 次いでチャネル保護膜エツチング用とソース・ドレイン
電極リフトオフ用とを兼ねるレジスト膜5を形成する〔
同図(C)参照〕。
Next, a gate insulating film 2. is formed by plasma chemical vapor deposition (P-CVD). Operating semiconductor film 3. Channel protective film 4
[See figure (b)] Next, a resist film 5 is formed which serves both as a channel protective film etching and a source/drain electrode lift-off [
See figure (C)].

このレジスト膜5をマスクとして、チャネル部以外のチ
ャネル保護膜4を除去する〔同図(d)参照〕。
Using this resist film 5 as a mask, the channel protective film 4 other than the channel portion is removed [see FIG. 4(d)].

次いでコンタクト層6.ソース・ドレイン電極膜7を成
膜した後、レジスト膜5を除去して、その上に付着した
コンタクト層とソース・ドレイン電極膜をリフトオフす
る〔同図(e)参照〕。
Next, contact layer 6. After forming the source/drain electrode film 7, the resist film 5 is removed, and the contact layer and the source/drain electrode film deposited thereon are lifted off [see FIG. 4(e)].

以上のようにして作成した従来の薄膜トランジスタは、
同図(f)に示すように、チャネル保護膜4とソース電
極S。ドレイン電極りとの間に隙間ができる。これはチ
ャネル保護膜4のエツチングに使用するレジスト膜とリ
フトオフ時のレジスト膜が同一であるために生じる。
The conventional thin film transistor created as described above is
As shown in FIG. 4(f), a channel protective film 4 and a source electrode S. A gap is created between the drain electrode and the drain electrode. This occurs because the resist film used for etching the channel protection film 4 and the resist film used during lift-off are the same.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このようにチャネル保護膜4とソース電極S。 In this way, the channel protective film 4 and the source electrode S.

ドレイン電極りとの間に隙間が生じると、この隙間の部
分で機械的ストレスや物理的ストレスにより、ゲート絶
縁膜に亀裂が生じ、ゲート電極Gとソース電極S、ドレ
イン電極りが短絡するという問題が発生する。
If a gap is created between the drain electrode and the drain electrode, cracks will occur in the gate insulating film due to mechanical and physical stress in the gap, resulting in a short circuit between the gate electrode G, source electrode S, and drain electrode. occurs.

本発明は、チャネル保護膜とソース電掻、ドレイン電極
間の隙間の発生を防止することを目的とする。
An object of the present invention is to prevent the generation of gaps between a channel protective film, a source electrode, and a drain electrode.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、絶縁性基板上に形成したゲート電極上に、ゲ
ート絶縁膜、動作半導体層、チャネル保護膜を積層した
後、その上に上記ゲート電極に位置整合し且つオーバー
ハング状断面を有するレジスト膜を形成する。
The present invention involves stacking a gate insulating film, an active semiconductor layer, and a channel protective film on a gate electrode formed on an insulating substrate, and then depositing a resist layer on top of the gate insulating film, which is aligned with the gate electrode and has an overhang-shaped cross section. Forms a film.

このレジスト膜をマスクとして、チャネル保護膜表面に
垂直に直進する異方性ドライエツチング法を施し、次い
でレジスト膜の庇部分を除去し、ソース・ドレイン電極
形成のための成膜工程を施した後、上記レジスト膜を除
去する。
Using this resist film as a mask, anisotropic dry etching is applied perpendicularly to the surface of the channel protective film.Then, the eaves of the resist film is removed, and a film formation process for forming source and drain electrodes is performed. , removing the resist film.

〔作 用〕[For production]

本発明では、レジスト膜をオーバーハング状に形成する
。つまり、レジスト膜の頂部はチャネル保護膜に接する
部分より庇が張り出した形杖を有する。
In the present invention, the resist film is formed in an overhang shape. In other words, the top of the resist film has a cane shape with an eave extending beyond the portion in contact with the channel protection film.

チャネル保護膜のエツチングは、このレジスト膜をマス
クとして異方性エツチング法により行なうので、チャネ
ル保護膜はレジスト膜と接する部分だけでなく、レジス
ト膜の庇の直下部もマスクされる。従って、チャネル保
護膜は周縁部が表面を露出した状態で残留する。
Since the channel protective film is etched by an anisotropic etching method using this resist film as a mask, not only the portion of the channel protective film in contact with the resist film but also the area directly under the eaves of the resist film is masked. Therefore, the channel protective film remains with its peripheral portion exposed.

このエツチングの後、庇部分を除去したレジスト膜がチ
ャネル保護膜上に存在する状態で、ソ−ス・ドレイン電
極形成のための成膜工程を行なうことにより、チャネル
保護膜の露出した周縁部の上にもソース・ドレイン電極
膜が付着する。従って、チャネル保護膜の周縁部とソー
ス・ドレイン電極の端部が重なり合う。
After this etching, with the resist film from which the eaves portion has been removed remaining on the channel protective film, a film formation process for forming the source/drain electrodes is performed, thereby removing the exposed periphery of the channel protective film. A source/drain electrode film is also deposited thereon. Therefore, the peripheral edge of the channel protection film and the ends of the source/drain electrodes overlap.

この結果、本発明を用いて作製した薄膜トランジスタは
、ソース・ドレイン電極の端部とチャネル保護膜の端部
との間に、隙間ができないため、機械的ストレスや物理
的ストレスを受けても、ゲート絶縁膜に亀裂が生じにく
くなり、短絡欠陥が減少する。
As a result, in the thin film transistor manufactured using the present invention, there is no gap between the edges of the source/drain electrode and the edge of the channel protective film, so even if subjected to mechanical stress or physical stress, the gate Cracks are less likely to occur in the insulating film, and short circuit defects are reduced.

〔実 施 例〕〔Example〕

以下本発明の一実施例を、第1図(a)〜(g)により
説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1(a) to 1(g).

同図(a)、 (b)に示す工程は従来と変わりはない
The steps shown in Figures (a) and (b) are the same as before.

即ち、ガラス基板1のような絶縁性基板上に、厚さ約8
0nmのTi膜からなるゲート電極を形成し、次いで、
その上に厚さ約300nmのSiN膜2のようなゲート
絶縁膜、厚さ約1100nのa−Si膜3のような動作
半導体膜、チャネル保護膜として厚さ約1100nのS
iO□膜4を、プラズマ化学気相成長(P−CVD)法
により連続的に成膜する。
That is, on an insulating substrate such as the glass substrate 1, a thickness of approximately 8.
A gate electrode made of a 0 nm Ti film is formed, and then
On top of that, there is a gate insulating film such as a SiN film 2 with a thickness of about 300 nm, an operating semiconductor film such as an a-Si film 3 with a thickness of about 1100 nm, and an S film with a thickness of about 1100 nm as a channel protection film.
The iO□ film 4 is continuously formed by plasma chemical vapor deposition (P-CVD).

次いで同図(C)に示すように、Sing膜4上にオー
バーハング形状のレジスト膜5を、ゲート電極Gに位置
整合して形成する。
Next, as shown in FIG. 4C, an overhang-shaped resist film 5 is formed on the Sing film 4 in alignment with the gate electrode G.

上記ゲート電極Gに位置整合し、且つオーバーハング形
状を有するレジスト膜5は、チャネル保護膜4上に塗布
したポジ型レジストに、ゲート電極Gをマスクとして背
面露光を施し、クロロベンゼン或いはトルエン等の有a
溶媒中に所定時間浸漬した後、現像を行なうことにより
形成できる。
The resist film 5, which is aligned with the gate electrode G and has an overhang shape, is obtained by subjecting a positive resist coated on the channel protective film 4 to back exposure using the gate electrode G as a mask, and then exposing the positive resist film 5 to a compound such as chlorobenzene or toluene. a
It can be formed by immersing in a solvent for a predetermined time and then developing.

レジスト膜を上述したように有機溶媒に浸漬すると、有
機溶媒が表面からレジスト膜中に浸透し、浸透した部分
が現像液に侵されにくくなる。そのため、現像液に溶解
しない非露光部であっても、現像液に対する溶解度に差
を生じ、現像工程において、有機溶媒が浸透した表面部
分より、その下部の有機溶媒が浸透していない部分が多
く侵されて、頂部が庇状に張り出したオーバーハング形
状のレジスト膜が得られる。
When the resist film is immersed in the organic solvent as described above, the organic solvent permeates into the resist film from the surface, and the permeated portion becomes difficult to be attacked by the developer. Therefore, even in non-exposed areas that do not dissolve in the developer, there is a difference in solubility in the developer, and during the development process, there are more areas below where the organic solvent has not penetrated than the surface area where the organic solvent has penetrated. As a result, an overhang-shaped resist film with the top protruding like an eave is obtained.

なお、有機溶媒に浸漬する工程は、露光の前でも後でも
よい。
Note that the step of immersing in an organic solvent may be performed before or after exposure.

このようにして形成したオーバーハング形状のレジスト
膜5をマスクとして、直進性を有する異方性ドライエツ
チング法である、CF、/H,プラズマによるリアクテ
ィブ・イオン・エツチング法を施して、SiO□膜4を
エツチングする。
Using the overhang-shaped resist film 5 thus formed as a mask, a reactive ion etching method using CF, /H, and plasma, which is an anisotropic dry etching method with linearity, is applied to SiO□ Etch the film 4.

このエツチング工程の間、5ift膜4は、レジスト膜
5に隠された部分のみならず、その周りの庇の陰になっ
た部分もマスクされる。そのためSi、O,膜4は、同
図(d)に示すように、周縁部が露出した形状に形成さ
れる。
During this etching process, not only the portion of the 5ift film 4 hidden by the resist film 5 but also the portion shaded by the eaves around it are masked. Therefore, the Si, O, film 4 is formed in a shape with the peripheral edge exposed, as shown in FIG. 4(d).

次いで上記レジスト膜5に対し、酸素プラズマによるリ
アクティブ・イオン・エンチングを施して、同図(e)
に示すように、レジスト膜5の頂部の所定厚さを除去し
、庇を取り除く。
Next, the resist film 5 is subjected to reactive ion etching using oxygen plasma, as shown in FIG.
As shown in FIG. 3, a predetermined thickness of the top of the resist film 5 is removed to remove the eaves.

次いで、同図(f)に示すように、コンタクト層として
n”a−3i膜6を約30nmの厚さに、ソース・ドレ
イン電極膜としてTi膜7を約1100nの厚さに成膜
する。
Next, as shown in FIG. 2F, an n''a-3i film 6 is formed to a thickness of about 30 nm as a contact layer, and a Ti film 7 is formed to a thickness of about 1100 nm as a source/drain electrode film.

ここで成膜したnr”a−s+成膜およびTi膜は、S
in、膜4の露出した周縁部上にも被着する。従って、
ソース電極Sおよびドレイン電極りの端部は、SiO□
膜4の周縁部と重なり合い、両者間に隙間は発生しない
The nr”as+ film and Ti film formed here are S
In, it is also deposited on the exposed periphery of the membrane 4. Therefore,
The ends of the source electrode S and drain electrode are made of SiO□
It overlaps the peripheral edge of the membrane 4, and no gap is created between the two.

この後、レジスト膜5を除去し、その上に付着したn”
a−3i膜6とTi膜7の不要部をリフトオフして、同
図(g)に示す如く、本実施例によるTPTが完成する
After that, the resist film 5 is removed, and the n''
Unnecessary portions of the a-3i film 6 and the Ti film 7 are lifted off, and the TPT according to this embodiment is completed as shown in FIG. 4(g).

本実施例によれば、ソース電極Sおよびドレイン電極り
とチャネル保護膜4との間に、隙間が生じないので、機
械的、物理的ストレスによるゲート絶縁膜に亀裂が入る
ことが防止され、点欠陥の発生が減少し、信頬性が向上
する。
According to this embodiment, since no gap is formed between the source electrode S and drain electrode S and the channel protective film 4, cracks in the gate insulating film due to mechanical and physical stress are prevented. The occurrence of defects is reduced and reliability is improved.

次に第2図に本発明の他の実施例を示す。Next, FIG. 2 shows another embodiment of the present invention.

本実施例では、同図に見られるように、チャネル保護膜
4をSiO□膜41膜下1とし、SiN膜42を上層と
する2層構造とした。
In this embodiment, as seen in the figure, the channel protective film 4 has a two-layer structure in which the SiO□ film 41 is the lower layer 1 and the SiN film 42 is the upper layer.

即ち、a−3i膜3上にS i Oz膜41を約20n
mの厚さに形成し、その上に厚さ約1100nのSiN
膜42を積層し、オーバーハング状のレジスト膜5をマ
スクとしてリアクティブ・イオン・エツチング法により
、まず上層のSiN膜42をエツチングし、レジスト膜
5の庇を除去した後、緩衝弗酸溶液で下層のSing膜
41をエツチングする。
That is, about 20 nm of SiOz film 41 is placed on the a-3i film 3.
SiN with a thickness of about 1100 nm is formed on top of the SiN film with a thickness of about 1100 nm.
The films 42 are stacked, and the upper SiN film 42 is first etched using a reactive ion etching method using the overhanging resist film 5 as a mask. After removing the overhang of the resist film 5, it is etched with a buffered hydrofluoric acid solution. The underlying Sing film 41 is etched.

これ以後の工程は前述の一実施例と同様に進めてよい。The subsequent steps may proceed in the same manner as in the embodiment described above.

本実施例では、a−3i膜3の表面がプラズマに直接端
されることがなく、a−3i膜3を露出させるためのエ
ツチングは、ウェット・エツチング法であるので、a−
3i膜3とn”a−3i膜6との界面を良好に保つこと
ができるという効果がある。
In this example, the surface of the a-3i film 3 is not directly exposed to plasma, and the etching for exposing the a-3i film 3 is a wet etching method.
This has the effect that the interface between the 3i film 3 and the n''a-3i film 6 can be maintained in good condition.

本実施例においても、チャネル保護膜の周縁部とソース
電極S、ドレイン電極りの端部が重なり合い、両者間に
隙間が生しないことは、上記一実施例と同様である。
In this embodiment as well, the peripheral edge of the channel protection film and the ends of the source electrode S and drain electrode overlap, and no gap is created between them, as in the above embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、チャネル保護膜とソ
ース電極、ドレイン電極間の隙間を無くすことができ、
機械的、物理的ストレスを受けても、ゲート絶縁膜に亀
裂が生じにくくなるので、短絡欠陥の発生を防止できる
As explained above, according to the present invention, the gap between the channel protective film and the source electrode and drain electrode can be eliminated.
Since cracks are less likely to occur in the gate insulating film even when subjected to mechanical or physical stress, short circuit defects can be prevented from occurring.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜((至)は本発明一実施例の説明図、第
2図は本発明の他の実施例説明図、 第3図(a)〜(f)は従来のTPTの製造方法の問題
点説明図である。 図において、1は絶縁性基板(ガラス基板)、2はゲー
ト絶縁膜(SiN膜)、3は動作半導体膜(a−3i膜
)、4はチャネル保護膜(Sin。 膜)、5はレジスト膜、6はコンタクト層(n +a−
3t膜)、7はソース・ドレイン電極膜(Ti膜)、G
はゲート電極、Sはソース電極、Dは第1図(僕の2) 第1 図(ηの1) 第2図 り1 3図 (イの1) 侯jこのTF丁の(迂h−法の問題光、を先p目図第3
図(子の2)
Figures 1(a) to ((to) are explanatory diagrams of one embodiment of the present invention, Figure 2 is an explanatory diagram of another embodiment of the present invention, and Figures 3(a) to (f) are diagrams of conventional TPT. This is a diagram explaining problems in the manufacturing method. In the figure, 1 is an insulating substrate (glass substrate), 2 is a gate insulating film (SiN film), 3 is an active semiconductor film (a-3i film), and 4 is a channel protective film. (Sin film), 5 is a resist film, 6 is a contact layer (n+a-
3T film), 7 is a source/drain electrode film (Ti film), G
is the gate electrode, S is the source electrode, D is Fig. 1 (my 2) Fig. 1 (η's 1) Problem light, the first Pth figure 3rd
Diagram (child 2)

Claims (1)

【特許請求の範囲】 絶縁性基板(1)上に、所定のパターンのゲート電極(
G)を形成し、該ゲート電極を被覆するゲート絶縁膜(
2)、動作半導体膜(3)、チャネル保護膜(4)をこ
の順に積層した後、 該チャネル保護膜上に前記ゲート電極と位置整合し且つ
頂部が庇状に張り出したオーバーハング形状のレジスト
膜(5)を形成する工程と、該レジスト膜をマスクとし
て前記チャネル保護膜に異方性エッチング法を施す工程
と、 前記レジスト膜の庇部分を除去する工程と、ソース・ド
レイン電極膜(7)を形成する工程とを施した後、 前記レジスト膜を除去するとともに、該レジスト膜上に
付着した不要膜をリフトオフすることを特徴とする薄膜
トランジスタの製造方法。
[Claims] A predetermined pattern of gate electrodes (
G) and a gate insulating film (
2) After laminating the operating semiconductor film (3) and the channel protective film (4) in this order, an overhang-shaped resist film is formed on the channel protective film, the top of which is aligned with the gate electrode and whose top part protrudes like an eave. (5), a step of performing anisotropic etching on the channel protection film using the resist film as a mask, a step of removing the eaves portion of the resist film, and a source/drain electrode film (7). A method for manufacturing a thin film transistor, comprising: removing the resist film and lifting off an unnecessary film attached on the resist film.
JP1111776A 1989-04-27 1989-04-27 Manufacture of thin film transistor Pending JPH02288237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1111776A JPH02288237A (en) 1989-04-27 1989-04-27 Manufacture of thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1111776A JPH02288237A (en) 1989-04-27 1989-04-27 Manufacture of thin film transistor

Publications (1)

Publication Number Publication Date
JPH02288237A true JPH02288237A (en) 1990-11-28

Family

ID=14569879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1111776A Pending JPH02288237A (en) 1989-04-27 1989-04-27 Manufacture of thin film transistor

Country Status (1)

Country Link
JP (1) JPH02288237A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994020982A1 (en) * 1993-03-01 1994-09-15 General Electric Company Self-aligned thin-film transistor constructed using lift-off technique
US5541128A (en) * 1993-04-05 1996-07-30 General Electric Company Self-aligned thin-film transistor constructed using lift-off technique
EP0643420B1 (en) * 1993-09-03 2004-08-18 General Electric Company Lift-off fabrication method for self-aligned thin film transistors

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994020982A1 (en) * 1993-03-01 1994-09-15 General Electric Company Self-aligned thin-film transistor constructed using lift-off technique
US5527726A (en) * 1993-03-01 1996-06-18 General Electric Company Self-aligned thin-film transistor constructed using lift-off technique
US5541128A (en) * 1993-04-05 1996-07-30 General Electric Company Self-aligned thin-film transistor constructed using lift-off technique
EP0643420B1 (en) * 1993-09-03 2004-08-18 General Electric Company Lift-off fabrication method for self-aligned thin film transistors

Similar Documents

Publication Publication Date Title
CN103208491B (en) Array base palte and manufacture method, display unit
US4684435A (en) Method of manufacturing thin film transistor
WO2017161647A1 (en) Method for manufacturing display panel, display panel, and display device
CN105529274A (en) Manufacturing method of thin film transistor, array substrate and display device
KR970006733B1 (en) Method of manufacturing thin film transistor
KR19990033573A (en) Manufacturing method of substrate of liquid crystal display device
JPH1068970A (en) Manufacturing method of liquid crystal display device and structure of liquid crystal display device
US6589864B2 (en) Method for defining windows with different etching depths simultaneously
JP2001154221A (en) Manufacturing method for active matrix type liquid crystal display panel
JPH02288237A (en) Manufacture of thin film transistor
JPH06102528A (en) Method of manufacturing thin film transistor matrix
JP2001272698A (en) Liquid crystal display device and manufacturing method therefor
JP2737982B2 (en) Method for manufacturing thin film transistor
JPH0262051A (en) Manufacture of thin-film transistor
JP3071964B2 (en) Manufacturing method of liquid crystal display device
KR100663288B1 (en) Manufacturing method of thin film transistor liquid crystal display device
KR101268388B1 (en) Fabrication method of liquid crystal display device
JPH02295132A (en) Manufacture of thin-film transistor
US5523187A (en) Method for the fabrication of liquid crystal display device
JPH02130551A (en) Thin film pattern, its manufacturing method, matrix circuit board and image display device using the same
KR20070001548A (en) Manufacturing Method of Array Substrate for Liquid Crystal Display
JPH03160762A (en) Thin film transistor and manufacture thereof
JPS62262890A (en) Manufacture of active matrix element
JP2867518B2 (en) Method of manufacturing self-aligned thin film transistor matrix
JPS63284524A (en) Production of thin film transistor array