[go: up one dir, main page]

JPH0228514B2 - TAIKYUSEIOYOBIFUSETSUSEINOSUGURETATENSHONREGUPURATSUTOFUOOMUKYAKUKAN - Google Patents

TAIKYUSEIOYOBIFUSETSUSEINOSUGURETATENSHONREGUPURATSUTOFUOOMUKYAKUKAN

Info

Publication number
JPH0228514B2
JPH0228514B2 JP18656484A JP18656484A JPH0228514B2 JP H0228514 B2 JPH0228514 B2 JP H0228514B2 JP 18656484 A JP18656484 A JP 18656484A JP 18656484 A JP18656484 A JP 18656484A JP H0228514 B2 JPH0228514 B2 JP H0228514B2
Authority
JP
Japan
Prior art keywords
coating
corrosion
leg
anode
threaded joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18656484A
Other languages
Japanese (ja)
Other versions
JPS6164594A (en
Inventor
Yasuyuki Taniguchi
Kotaro Yoshida
Kohei Takeshi
Teruo Doge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP18656484A priority Critical patent/JPH0228514B2/en
Priority to US06/772,743 priority patent/US4614461A/en
Priority to EP85306356A priority patent/EP0177197B1/en
Priority to DE8585306356T priority patent/DE3565696D1/en
Publication of JPS6164594A publication Critical patent/JPS6164594A/en
Publication of JPH0228514B2 publication Critical patent/JPH0228514B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はテンシヨンレグプラツトフオーム
(Tension Leg Platform、TLPと略称される、
緊張繋留式海洋石油・ガス生産設備)の繋留部材
である脚管(Tendonと称される)に関するもの
である。 (従来技術及び問題点) 近年、石油・ガス資源の追求は深海底に及んで
おり、400〜1000mの水深への対応が当面の課題
である。この要請に対して従来のやぐら構造方式
は技術的・経済的に限界があると見られており、
やぐらに代る多種の設備が提唱されているが、中
でもTLPは有力な候補と目され、実用化の緒に
ついたところである。 しかしTLPの海中部の繋留部材である脚管に
ついては類似の従来用途実績もなく且つ保善も極
めて困難であることから、これに使用する鋼材の
機械的な耐久性もさることながら、20〜30年を目
安とした長期に亘る防食を如何に行なうかが大き
な課題である。 一般に海洋構造物の防食法としては、例えば
「配管と装置」の1981年3月発刊34頁の右側6〜
9行目および同頁の表4に示されているように、
海中部には電気防食を、干満帯以上の部分にはジ
ンクリツチペイントを下装とした薄膜塗装を適用
する方式が主として行なわれているが、前記
TLPの脚管については海中部で使用されるため、
従来技術をそのまま適用するとすれば全面に電気
防食を行なうことになる。400m以上の長尺につ
ないで使用される脚管に対して均一な防食電位を
確保するには、集中電源を用いる外部電源方式よ
りは電源が分散した形に相当する流電陽極方式の
方が適している。 しかし、たとえば30年の防食に必要なアルミニ
ウム流電陽極の量を北海南部の海域を想定して計
算すると、500mmφ×12m長の脚管1本に対して
正味量340Kgの陽極を取付けねばならなくなる。
次に、塗装方式に全面的に依存することが可能か
と云えば、従来海洋構造物の上部に使用されるよ
うな薄膜系では、傷入りの懸念から海中での長期
に亘る耐久性は期待し難いとしても、厚膜型の耐
傷性の大なる被膜であれば、各種の実績から見て
30年の耐久も十分に可能性がある。しかし、脚管
の敷設は波浪の合間を見て一気に行なう必要があ
るとされており、敷設現地で被覆作業を、行なう
時間はないとせねばならない。脚管の大部分には
工場に於て予め被覆を施しておくことができる
が、ネジ接続後に未被覆部分に如何に防食を行な
うかが問題となる。ネジ継手部迄予め被覆を施し
ておいたとしても、連結作業時に掛ける締付治具
(トング)によつて損傷を受ける恐れが高い。又
被覆を真直管体部に留めるにせよネジ継手迄延長
するにせよ、一般に耐久性が低いとされている被
覆端部の処置法も大きな問題である。 また、「Ocean Age」1983年12月発刊の59頁右
側61行目〜60頁左側20行目に示されているよう
に、脚管の防食を全てアルミニウム溶射で行なう
ことも試みられているが、この方法の適否が判明
するには未だ年月を要する。 以上述べた通り、従来技術をそのまま適用して
も脚管に好適な長期防食仕様を得るには至らな
い。 以上をまとめると脚管の防食対策の備えるべき
条件としては (イ) 防食被覆材は脚管の部位に応じた耐傷性、耐
久性を有していること、 (ロ) 防食被覆の端部から劣化が起らないこと、 (ハ) 電気防食用陽極は極力小型であること、 (ニ) 長期間耐久する陽極接続を行なうこと、 (ホ) 敷設作業前の防錆対策がなされていること、 (ヘ) 敷設現地での被覆施工作業が省略できるこ
と、 の(イ)〜(ヘ)6項目が挙げられる。 (問題点を解決すべき手段) 上記の要請に対して本発明者らは種々検討した
結果、脚管の真直管体部外面には耐傷性に優れた
絶縁性防食被覆を、またこれと接してネジ部外面
にはアルミニウム溶射被覆を夫々設けると共に電
気防食を併用することにより、前記の問題点をす
べて解決しうるという知見を得て本発明をなした
ものである。 (発明の構成・作用) 即ち、本発明の要旨とするところは、真直管体
の両端にネジ継手を有し、ネジ継手の周辺に複数
個の締付用凹凸を有する鋼製体において、前記真
直管体外面には耐傷性に優れた絶縁性の防食被覆
を設け、また前記ネジ継手部外面にはアルミニウ
ム溶射被覆を、その被覆端が前記防食被覆の端部
に接するように設け、さらに管体周辺には電気防
食用流電陽極が取付けられていることを特徴とす
る耐久性及び敷設性の優れたテンシヨンレグプラ
ツトフオーム脚管にある。 以下、本発明を詳細に説明する。 第1図及び第2図は本発明の脚管の一実施態様
を示す概念図であつて、第1図は斜視図、第2図
Aは第1図の正面断面図である。なお第2図Bは
第2図Aのa−a断面を示す断面図であり、第2
図Cは第2図Aのb−b断面を示す断面図であ
る。また第2図Dは第2図Aのc部の部分拡大図
である。 図において1の部分が脚管の真直管体部であ
り、2の部分がネジ継手部である。また、3はネ
ジ継手部2を図示しない隣接脚管に締付けるため
の凹凸(スプライン)であり、4はこの凹凸の凸
部の一部を延長させる形で設けた棒状の突起であ
る。凹凸3及び突起4は第1図及び第2図Cに示
される如く、該継手部2の円周方向に複数個ほぼ
等間隔で設けられている。5は電気防食用の流電
陽極であつて、組立て後はリング状(いわゆるブ
レスレツト型)をなし、管体部1の周辺に巻き付
けた形で取り付けられている。なお第2図Aにお
いては、陽極5の芯金7が突起4の端部に溶接部
6を介して溶接された態様となつており、このよ
うに接続すれば第2図に示した脚管1ないし2に
働く応力は陽極5ないしその支持部4,6,7に
作用しないので、脚管に対して溶接部6が破懐ノ
ツチとなる恐れがない。但し、これはあくまで陽
極5の取り付け方の一例を示したものであり、要
は陽極5と脚管との取り付け部が脚管の破懐ノツ
チとならないものであれば、いかなる取り付け方
式でもかまわない。 又、第2図において真直管体部1の外面は、耐
傷性に優れた絶縁性の被覆8が施されており、そ
の両端部は夫々ネジ継手部2の外面に設けられた
アルミニウム溶射被覆層9と突合わされた形で接
している。但し、これも被覆8と9の接触の一例
を示したものであり、両被覆が一部積層されてい
てもよい。 なお、第1図、第2図の脚管の構造としては、
そのネジ継手部2の一端が雄ネジ、他端が雌ネジ
の態様のものを示したが、両端とも雄ネジのもの
と両端とも雌ネジのものを一本おきに使用する場
合があり、この場合は当然両端とも同種のネジに
なる。 次に本発明脚管の被覆層について述べる。ま
ず、脚管の真直管体部に設ける耐傷性に優れた絶
縁性の防食被覆8としては、電気絶縁体であつて
且つ十分な防食性を有し、又敷設前後の衝撃や揺
動に耐えうる強度或いは可撓性を備えたものが必
要である。 汎用的な電気絶縁材料のうち、30年防食に適し
たものとして、例えば0.2mm以上の厚さを有する
エポキシ系被覆、1mm以上の厚さを有するポリエ
チレン系被覆などが挙げられる。これらの被覆は
脚管の揺動に十分追従しうるものであるが、衝撃
などに対する耐傷性が不足するためポリエチレン
被覆では厚みを2mm以上にすることが望ましく、
エポキシ系被覆では次に掲げる保護被覆を積層し
た形で用いることが望ましい。保護被覆としては
2mm以上のポリウレタン系被覆、ガラス強化ポリ
エステル系被覆、ポリマーセメントモルタル系被
覆、レジンモルタル系被覆などが挙げられる。こ
れらの中で、エポキシ系薄膜とポリウレタン系厚
膜を積層した被覆或いは2mm以上のポリエチレン
系厚膜が各性能に亘つて優れた性能を有してお
り、最適である。 エポキシ系薄膜は溶剤型塗料、二液塗料、粉体
塗料をスプレイ塗装、流し塗り、静電塗料など各
種の方法を用いて施すことができる。ポリウレタ
ン系厚膜は二液塗料のスプレイ塗料、流し塗り、
注型などにより適用する。又、ポリエチレン系厚
膜は粉体樹脂の流動浸漬、散布、或いは粉体樹脂
の溶融押出、熱収縮性シート又はスリーブの加熱
収縮によつて適用できる。上記被覆の総厚さは性
能と経済性を併せ考えて2〜5mmの範囲が適して
いる。 なお、被覆と鋼材の接着性等を向上させる目的
で被覆前の鋼材に化成処理或いはプライマーなど
は適宜施してもよい。 またネジ継手外面に設けるアルミニウム溶射被
覆層9は樹脂被覆しない部分を、脚管が敷設され
る迄の期間防錆し、且つ使用期間中の樹脂被覆の
端部を保護する目的で施すものである。厚さはほ
ぼ100〜300μ程度の範囲が適しており、火炎法或
いはアーク法にて施すことができる。このように
ネジ継手部2にアルミニウム溶射被覆をすれば、
樹脂被覆よりも強靭であり、脚管の敷設作業に際
し、凹凸3に締付治具(トング)をかけて回転さ
せ締付連結を行つても被覆を損うことがない。な
お、溶射被覆に対して封孔処理を施しても良いが
特に必要ではない。 次に、流電陽極5は前記アルミニウム溶射被覆
の溶出を極小に留めることにより溶射被覆の遮断
効果を維持させ且つ該被覆の万一の損傷時には露
出鋼材面を電気防食し、又、真直管体部に施した
樹脂被覆の万一の損傷時に露出鋼材面を電気防食
するためのものである。なお、陽極材料としては
常法に従つてアルミニウム合金を用いることが有
効である。 本発明の脚管は以上の如き構成になつているの
で、脚管の外面積の内、真直管体部の防食被覆の
面積率を90%、ネジ継手部のアルミニウム溶射被
覆の面積率を10%とし、さらに防食被覆の損傷率
を5%と仮定した場合、導電性の表面は溶射被覆
面及び防食被覆の損傷部のみとなるので、前述の
アルミニウム陽極の30年間の必要量340Kgに対し、
本発明の構成における必要陽極量は340×(0.1+
0.9×0.05)=49.3(Kg)となり、陽極を著しく小型
化することが可能となる。 以下実施例により本発明の効果をさらに具体的
に示す。 (実施例) 外径216.3mm、肉厚8.2mm、長さ3mの鋼管の両
端に鋼板製の円蓋を溶接して、鋼管内部には腐食
を生じないようにした試験体を5体製作し、外面
全面に鋼製グリツトによる十分なブラスト加工を
行なつた後、第1表の5種類の防食処置を施した
試験体を製作した。 これら5種類の試験体を屋外に6ケ月放置した
後、試験体を観察し、次いで海岸の提防壁に試験
体全体が完全に海水中に浸るように設置し、2ケ
年経過させた後、引上げて各部の変化を観察し
た。その結果は第1表に示す通りである。 比較例の試験体、C,D,Eは6ケ月の屋外暴
露あるいは2ケ年の海中暴露により発錆し、孔食
が認められた。これらの孔食は、テンシヨンレグ
プラツトフオーム脚管で発生した場合は疲労破壊
を促進させる恐れがある。これに対して本発明例
である試験体A,Bは屋外および海中暴露に於て
発錆することがなく、アルミニウム合金陽極の消
耗量も試験体Dに比較して非常に少ないことが確
認できた。 なお、上記5種の試験体は防食対象面積に関し
て実際のテンシヨンレグプラツトフオーム脚管の
ほぼ1/10に相当するものであり、上述の結果より
本発明によるテンシヨンレグプラツトフオーム脚
管が長期防食に適したものであることが判る。
(Industrial Application Field) The present invention is a tension leg platform (abbreviated as TLP).
This relates to a leg pipe (called a Tendon) that is a mooring member of a tension-tethered offshore oil and gas production facility. (Prior Art and Problems) In recent years, the pursuit of oil and gas resources has extended to the deep seabed, and the current challenge is to cope with water depths of 400 to 1000 meters. Conventional tower structure systems are considered to have technical and economic limitations in meeting this demand.
Various types of equipment have been proposed to replace towers, but TLP is seen as a promising candidate and is just beginning to be put into practical use. However, the leg pipes, which are the mooring members of TLP's underwater parts, have no similar past experience and are extremely difficult to maintain. A major issue is how to provide long-term corrosion protection, which is estimated to last for years. In general, corrosion prevention methods for marine structures include, for example, "Piping and Equipment", page 34, page 34, published in March 1981, page 6 on the right.
As shown in line 9 and Table 4 on the same page,
The main method used is to apply cathodic protection to the underwater area and a thin film coating with zinc-rich paint as an undercoat to the areas above the tidal zone.
As for the leg tube of TLP, it is used in the underwater area,
If the conventional technology were to be applied as is, cathodic protection would be applied to the entire surface. To ensure a uniform anti-corrosion potential for leg pipes that are connected over a length of 400 m or more, it is better to use a galvanic anode method, which corresponds to a distributed power source, than an external power source method that uses a centralized power source. Are suitable. However, if we calculate the amount of aluminum galvanic anodes required for corrosion protection for 30 years assuming the southern North Sea area, we will need to install 340 kg of anodes for each leg pipe with a diameter of 500 mm and a length of 12 m. .
Next, as to whether it is possible to rely completely on the coating method, the thin film systems conventionally used on the tops of offshore structures cannot be expected to last long under the sea due to concerns about scratches. Even if it is difficult, if it is a thick film type coating with high scratch resistance, it is possible based on various achievements.
It is quite possible that it will last for 30 years. However, it is said that the installation of the leg pipes needs to be done all at once, taking into account breaks in the waves, and there is no time to carry out covering work at the installation site. Most of the leg pipe can be coated in advance at the factory, but the problem is how to protect the uncoated portions from corrosion after screw connection. Even if the threaded joints are coated in advance, there is a high risk that they will be damaged by the tightening jig (tongs) used during connection work. In addition, whether the coating is fixed to the straight pipe body or extended to a threaded joint, the treatment of the ends of the coating, which are generally considered to have low durability, is also a major problem. In addition, as shown in "Ocean Age" published in December 1983, page 59, line 61 on the right to page 60, line 20 on the left, attempts have been made to prevent corrosion of the leg pipes entirely by spraying aluminum. However, it will take many years to determine the suitability of this method. As stated above, even if the conventional technology is applied as is, it will not be possible to obtain long-term corrosion protection specifications suitable for leg pipes. To summarize the above, the conditions that must be met for anti-corrosion measures for leg pipes are (a) the anti-corrosion coating material must have scratch resistance and durability appropriate to the location of the leg pipe, and (b) corrosion protection from the ends of the anti-corrosion coating (c) The anode for cathodic protection must be as small as possible; (d) The anode connection must be durable for a long time; (e) Rust prevention measures must be taken before installation work. (F) Items (B) to (F) above (6) include the ability to omit covering construction work at the installation site. (Means to Solve the Problems) In response to the above request, the present inventors conducted various studies and found that the outer surface of the straight pipe body of the leg pipe is coated with an insulating anti-corrosion coating with excellent scratch resistance, and in contact with the same. The present invention was made based on the knowledge that all of the above-mentioned problems can be solved by providing an aluminum spray coating on the outer surface of each threaded portion and also using cathodic protection. (Structure and operation of the invention) That is, the gist of the present invention is to provide a steel body having a threaded joint at both ends of a straight pipe body and having a plurality of tightening irregularities around the threaded joint. An insulating anti-corrosion coating with excellent scratch resistance is provided on the outer surface of the straight pipe body, and an aluminum spray coating is provided on the outer surface of the threaded joint so that the end of the coating is in contact with the end of the anti-corrosion coating. The tension leg platform leg tube has excellent durability and ease of installation, and features a galvanic anode for electrolytic protection attached to the periphery of the body. The present invention will be explained in detail below. 1 and 2 are conceptual diagrams showing one embodiment of the leg tube of the present invention, in which FIG. 1 is a perspective view and FIG. 2A is a front sectional view of FIG. 1. Note that FIG. 2B is a sectional view showing the a-a cross section of FIG.
FIG. C is a sectional view taken along the line bb in FIG. 2A. Further, FIG. 2D is a partially enlarged view of section c in FIG. 2A. In the figure, part 1 is the straight pipe body of the leg pipe, and part 2 is the threaded joint part. Further, 3 is a spline for tightening the threaded joint portion 2 to an adjacent leg pipe (not shown), and 4 is a rod-shaped projection provided to extend a part of the convex portion of the concave and convex portion. As shown in FIGS. 1 and 2C, a plurality of unevennesses 3 and protrusions 4 are provided at approximately equal intervals in the circumferential direction of the joint portion 2. Reference numeral 5 denotes a galvanic anode for cathodic protection, which forms a ring shape (so-called bracelet shape) after assembly, and is attached to the tubular body 1 in a manner that it is wound around it. In addition, in FIG. 2A, the core metal 7 of the anode 5 is welded to the end of the protrusion 4 via the welding part 6, and when connected in this way, the leg pipe shown in FIG. Since the stress acting on the anode 5 or its support portions 4, 6, and 7 does not act on the anode 5 or its support portions 4, 6, and 7, there is no risk that the weld portion 6 will become a breakage notch with respect to the leg tube. However, this is just an example of how to attach the anode 5, and the point is that any attachment method may be used as long as the attachment part between the anode 5 and the leg tube does not become a break in the leg tube. . In addition, in FIG. 2, the outer surface of the straight tube body portion 1 is coated with an insulating coating 8 having excellent scratch resistance, and both ends thereof are coated with an aluminum spray coating layer provided on the outer surface of the threaded joint portion 2. It is in contact with 9 in a butted manner. However, this also shows an example of contact between the coatings 8 and 9, and both coatings may be partially laminated. The structure of the leg tube in Figures 1 and 2 is as follows:
Although one end of the threaded joint 2 has a male thread and the other end has a female thread, there are cases where a threaded joint 2 is used with male threads on both ends and female threads on both ends. In this case, both ends will naturally have the same type of screw. Next, the coating layer of the leg tube of the present invention will be described. First, the insulating anti-corrosion coating 8 with excellent scratch resistance provided on the straight pipe body of the leg pipe is an electrical insulator, has sufficient anti-corrosion properties, and is resistant to impact and shaking before and after installation. A material with sufficient strength or flexibility is required. Among general-purpose electrical insulating materials, those suitable for 30-year corrosion protection include, for example, epoxy coatings with a thickness of 0.2 mm or more and polyethylene coatings with a thickness of 1 mm or more. These coatings can sufficiently follow the swinging of the leg tube, but because they lack scratch resistance against impacts, etc., it is desirable that the thickness of the polyethylene coating be 2 mm or more.
For epoxy coatings, it is desirable to use the following protective coatings in a laminated form. Examples of the protective coating include a polyurethane coating of 2 mm or more, a glass-reinforced polyester coating, a polymer cement mortar coating, a resin mortar coating, and the like. Among these, a coating consisting of a laminated epoxy thin film and a polyurethane thick film or a polyethylene thick film of 2 mm or more has excellent performance in all aspects and is most suitable. Epoxy thin films can be applied using various methods such as solvent-based paints, two-component paints, powder paints, spray coatings, flow coatings, and electrostatic coatings. Thick polyurethane films can be applied using two-component spray paints, flow coatings,
Applied by casting etc. The polyethylene thick film can also be applied by fluid dipping, spraying, or melt extrusion of a powdered resin, or by heat shrinking a heat-shrinkable sheet or sleeve. The total thickness of the coating is preferably in the range of 2 to 5 mm, considering both performance and economy. In addition, for the purpose of improving the adhesion between the coating and the steel material, a chemical conversion treatment or a primer may be appropriately applied to the steel material before coating. In addition, the aluminum spray coating layer 9 provided on the outer surface of the threaded joint is applied to prevent the parts not covered with resin from rusting until the leg pipe is installed, and to protect the ends of the resin coating during use. . A suitable thickness is approximately 100 to 300 μm, and it can be applied by a flame method or an arc method. If the threaded joint part 2 is coated with aluminum spray coating in this way,
It is stronger than a resin coating, and the coating will not be damaged even when a tightening jig (tongs) is applied to the irregularities 3 and rotated to tighten and connect when installing the leg pipe. Incidentally, the thermal spray coating may be subjected to a sealing treatment, but this is not particularly necessary. Next, the galvanic anode 5 maintains the shielding effect of the thermally sprayed coating by minimizing the elution of the aluminum thermally sprayed coating, and provides electrolytic protection for the exposed steel surface in the event of damage to the coating, and also protects the exposed steel surface from corrosion in the case of damage to the coating. This is to protect the exposed steel surface from cathodic corrosion in the event that the resin coating applied to the part is damaged. Note that it is effective to use an aluminum alloy as the anode material according to a conventional method. Since the leg pipe of the present invention has the above structure, the area ratio of the anticorrosion coating on the straight pipe body is 90%, and the area ratio of the aluminum spray coating on the threaded joint is 10% of the outer area of the leg pipe. %, and further assuming that the damage rate of the anti-corrosion coating is 5%, the only conductive surfaces are the sprayed coating surface and the damaged parts of the anti-corrosion coating, so for the 340 kg of aluminum anode required for 30 years,
The required amount of anode in the configuration of the present invention is 340×(0.1+
0.9×0.05) = 49.3 (Kg), making it possible to significantly downsize the anode. The effects of the present invention will be illustrated in more detail with reference to Examples below. (Example) Five test specimens were manufactured by welding a steel plate dome to both ends of a steel pipe with an outer diameter of 216.3 mm, a wall thickness of 8.2 mm, and a length of 3 m to prevent corrosion from occurring inside the steel pipe. After thoroughly blasting the entire outer surface with steel grit, test specimens were manufactured using the five types of anti-corrosion treatments shown in Table 1. After leaving these five types of test specimens outdoors for six months, the test specimens were observed, and then installed on a coastal barrier wall so that the entire test specimen was completely immersed in seawater, and after two years had elapsed. I pulled it up and observed changes in each part. The results are shown in Table 1. Comparative test specimens C, D, and E developed rust and pitting corrosion after being exposed to the outdoors for 6 months or to the sea for 2 years. If such pitting corrosion occurs in the leg tube of the tension leg platform, it may accelerate fatigue failure. On the other hand, it was confirmed that test specimens A and B, which are examples of the present invention, do not rust when exposed outdoors or underwater, and the amount of aluminum alloy anode wear is extremely small compared to test specimen D. Ta. In addition, the above five types of test specimens correspond to approximately 1/10 of the actual tension leg platform leg tube in terms of corrosion protection target area, and from the above results, the tension leg platform leg tube according to the present invention. It can be seen that this is suitable for long-term corrosion protection.

【表】【table】

【表】 (発明の効果) 以上の実施例からも明らかな如く、本発明によ
れば、TLP脚管の各部の防食が敷設の前後に亘
つて確保されるばかりでなく、電気防食用流電陽
極を小型化しうることから、脚管の強度設計、経
済性両面に於て有利となり、産業上の効果は極め
て顕著なものである。
[Table] (Effects of the Invention) As is clear from the above examples, according to the present invention, not only is the corrosion protection of each part of the TLP leg pipe maintained before and after installation, but also the galvanic current for cathodic protection is ensured. Since the anode can be made smaller, it is advantageous in both the strength design of the leg tube and the economy, and the industrial effects are extremely significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の脚管の一態様を示
す概念図である。 1……真直管体部、2……ネジ継手部、3……
締付用凹凸、4……棒状突起、5……流電陽極、
6……溶接部、7……芯金、8……絶縁性防食被
覆、9……アルミニウム溶射被覆層。
FIGS. 1 and 2 are conceptual diagrams showing one embodiment of the leg tube of the present invention. 1... Straight tube body part, 2... Threaded joint part, 3...
Tightening unevenness, 4...rod-shaped protrusion, 5...galvanic anode,
6... Welded part, 7... Core metal, 8... Insulating anti-corrosion coating, 9... Aluminum spray coating layer.

Claims (1)

【特許請求の範囲】[Claims] 1 真直管体の両端にネジ継手を有し、ネジ継手
の周辺に複数個の締付用凹凸を有する鋼製体にお
いて、前記真直管体外面には耐傷性に優れた絶縁
性の防食被覆を設け、また前記ネジ継手外面には
アルミニウム溶射被覆を、その被覆端が前記防食
被覆の端部に接するように設け、さらに管体周辺
には電気防食用流電陽極が取付けられていること
を特徴とする耐久性及び敷設性の優れたテンシヨ
ンレグプラツトフオーム脚管。
1. In a steel body having threaded joints at both ends of the straight pipe body and having a plurality of tightening irregularities around the threaded joint, an insulating anti-corrosion coating with excellent scratch resistance is applied to the outer surface of the straight pipe body. Further, an aluminum thermal spray coating is provided on the outer surface of the threaded joint so that an end of the coating is in contact with an end of the anti-corrosion coating, and a galvanic anode for electrolytic protection is attached around the pipe body. Tension leg platform leg tube with excellent durability and ease of installation.
JP18656484A 1984-09-07 1984-09-07 TAIKYUSEIOYOBIFUSETSUSEINOSUGURETATENSHONREGUPURATSUTOFUOOMUKYAKUKAN Expired - Lifetime JPH0228514B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP18656484A JPH0228514B2 (en) 1984-09-07 1984-09-07 TAIKYUSEIOYOBIFUSETSUSEINOSUGURETATENSHONREGUPURATSUTOFUOOMUKYAKUKAN
US06/772,743 US4614461A (en) 1984-09-07 1985-09-05 Tendon of TLP and electrical corrosion protecting method of the same
EP85306356A EP0177197B1 (en) 1984-09-07 1985-09-06 Tendon of a tension leg platform and electrical corrosion protecting method of the same
DE8585306356T DE3565696D1 (en) 1984-09-07 1985-09-06 Tendon of a tension leg platform and electrical corrosion protecting method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18656484A JPH0228514B2 (en) 1984-09-07 1984-09-07 TAIKYUSEIOYOBIFUSETSUSEINOSUGURETATENSHONREGUPURATSUTOFUOOMUKYAKUKAN

Publications (2)

Publication Number Publication Date
JPS6164594A JPS6164594A (en) 1986-04-02
JPH0228514B2 true JPH0228514B2 (en) 1990-06-25

Family

ID=16190731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18656484A Expired - Lifetime JPH0228514B2 (en) 1984-09-07 1984-09-07 TAIKYUSEIOYOBIFUSETSUSEINOSUGURETATENSHONREGUPURATSUTOFUOOMUKYAKUKAN

Country Status (1)

Country Link
JP (1) JPH0228514B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4880058B2 (en) * 2010-08-20 2012-02-22 修 村松 Outer pipe structure of joint in double piping pipe

Also Published As

Publication number Publication date
JPS6164594A (en) 1986-04-02

Similar Documents

Publication Publication Date Title
CN1141414C (en) A kind of anti-corrosion method of marine steel
EP0177197B1 (en) Tendon of a tension leg platform and electrical corrosion protecting method of the same
CA1288721C (en) Electrolytic and flame sprayed aluminum coatings on steel
CN111828777B (en) Processing method of pipeline anticorrosive coating
JPH0228514B2 (en) TAIKYUSEIOYOBIFUSETSUSEINOSUGURETATENSHONREGUPURATSUTOFUOOMUKYAKUKAN
JP4614511B2 (en) Manufacturing method of high corrosion resistance metal-coated steel pipe
CN215215101U (en) Seawater pipe cabin penetrating structure with plastic-coated inner wall
EP0132332B1 (en) Cathodic protection system for pipes
US20200338862A1 (en) System and method for preventing or arresting corrosion on infrastructures with an impervious barrier
CN213900314U (en) Pipeline repair welding oversleeve
JP7135971B2 (en) Heavy-duty corrosion-resistant steel pipe sheet pile and its manufacturing method
JPS6325074B2 (en)
JP3354818B2 (en) External Corrosion Protection Method for Ductile Cast Iron Pipe
CN216078667U (en) Seamless steel pipe with good corrosion resistance effect
JP3128801U (en) Steel sheet pile anti-corrosion protection cover
JPH0156216B2 (en)
RU196347U1 (en) STEEL OIL FIELD PIPE
JP4068756B2 (en) Heavy duty anti-corrosion coated steel sheet pile for offshore structures
JP7083453B2 (en) Steel material repair method
Colica Zinc Spray Galvanizing
KR102126740B1 (en) Method for Manufacturing Composite Coated Steel Pipe and Complex Coated Steel Pipe Made by Such Method
JPH034819Y2 (en)
JP2000303188A (en) Heavy corrosion protection coated steel for offshore structures
JPS60373Y2 (en) Corrosion protection coating
JPH0328385A (en) Screwing member for electrochemical corrosion protection