JPH022830A - Electric dialysis device - Google Patents
Electric dialysis deviceInfo
- Publication number
- JPH022830A JPH022830A JP14751688A JP14751688A JPH022830A JP H022830 A JPH022830 A JP H022830A JP 14751688 A JP14751688 A JP 14751688A JP 14751688 A JP14751688 A JP 14751688A JP H022830 A JPH022830 A JP H022830A
- Authority
- JP
- Japan
- Prior art keywords
- hydrochloric acid
- electrodialysis
- cathode chamber
- electrodialysis tank
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000502 dialysis Methods 0.000 title abstract description 21
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 105
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 61
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 claims abstract description 21
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 12
- 239000012528 membrane Substances 0.000 claims abstract description 8
- 239000003011 anion exchange membrane Substances 0.000 claims abstract description 7
- 238000005341 cation exchange Methods 0.000 claims abstract description 7
- 239000007789 gas Substances 0.000 claims abstract description 5
- 239000002994 raw material Substances 0.000 claims abstract description 3
- 238000000909 electrodialysis Methods 0.000 claims description 55
- 238000004519 manufacturing process Methods 0.000 claims description 17
- 239000002253 acid Substances 0.000 abstract description 17
- 238000006243 chemical reaction Methods 0.000 description 19
- 238000010586 diagram Methods 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 5
- 150000001450 anions Chemical class 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 238000005115 demineralization Methods 0.000 description 4
- 230000002328 demineralizing effect Effects 0.000 description 4
- 238000010612 desalination reaction Methods 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- -1 underground shrubs Substances 0.000 description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229910019440 Mg(OH) Inorganic materials 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000010840 domestic wastewater Substances 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野]
本発明はユーティリティとして元来必要な陰極室への酸
を装置外から供給することを不要にするのに好適な電気
透析装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrodialysis apparatus suitable for eliminating the need to supply acid from outside the apparatus to the cathode chamber, which is originally required as a utility.
従来の電気透析装置は、第5図に示されるように、電気
透析槽1、酸タンク7、直流電源6等から構成されてい
る。電気透析装置1は、陽イオンを選択的に透過する陽
イオン交換膜と陰イオンを選択的に透過する陰イオン交
換膜を交互に多数積層した透析室ブロック2、両端に陽
極室3、陰極室4を有した構造となっている。As shown in FIG. 5, a conventional electrodialysis apparatus is comprised of an electrodialysis tank 1, an acid tank 7, a DC power source 6, and the like. The electrodialysis apparatus 1 includes a dialysis chamber block 2 in which a large number of cation exchange membranes that selectively permeate cations and anion exchange membranes that selectively permeate anions are laminated alternately, an anode chamber 3 and a cathode chamber at both ends. It has a structure with 4.
この電気透析槽1には、電解質溶液(例えば、海水、地
下かん木、産業用排水、生活排水)である原水14が供
給される。そして、陽極室3と陰極室4の間に直流電流
を流すと、原水中の陽イオンは陰極室4の方向に向かっ
て移動し、逆に、陰イオンは陽極室3の方向に向かって
移動する。このイオンの移動と、交互に組み重ねられた
陽イオン交換膜と陰イオン交換膜によって、脱塩室と濃
縮室が交互に多数形成され、脱塩室を通過した原水が脱
塩水12となり、濃縮室を通過した原水が濃縮水13と
なる。脱塩水12は生活用水、濃縮水13は製塩用の原
料水等に使用される。The electrodialysis tank 1 is supplied with raw water 14 which is an electrolyte solution (for example, seawater, underground shrubs, industrial wastewater, domestic wastewater). When a direct current is passed between the anode chamber 3 and the cathode chamber 4, the cations in the raw water move toward the cathode chamber 4, and conversely, the anions move toward the anode chamber 3. do. Due to the movement of this ion and the cation exchange membranes and anion exchange membranes that are stacked alternately, a large number of demineralization chambers and concentration chambers are formed alternately, and the raw water that has passed through the demineralization chamber becomes demineralized water 12 and is concentrated. The raw water that has passed through the chamber becomes concentrated water 13. Desalinated water 12 is used as domestic water, and concentrated water 13 is used as raw water for salt production.
この電気透析槽1の陽極室3、陰極室4では次の反応が
生じており、それぞれ、塩素ガス、水素ガスを発生して
いる。The following reactions occur in the anode chamber 3 and cathode chamber 4 of the electrodialysis cell 1, generating chlorine gas and hydrogen gas, respectively.
(陽極室) 2Cj2− →C7!z +2 e−・”
−(1)(陰極室) 2 H” + 2 e −−Hz
・”−(2)陰極室4では、第(2)式の反応に
よってpHの上昇が生じ、このPHの上昇を防ぐために
は酸(例えば、硫酸、塩酸)の供給が必要である。酸の
供給を行わないと、pHの上昇によって、陰極室4近傍
の陽イオン交換膜、陰イオン交換膜が変質するばかりで
な(、アルカリ土類金属塩、およびアルカリ土類水酸化
物〔例えば、CaC0,、Mg(OH)2〕の析出を発
生させる。この析出は、陰極室4内の原水流路を塞ぐば
かりでなく、陽イオン交換膜、陰イオン交換膜の破損を
生じる。(Anode chamber) 2Cj2- →C7! z +2 e-・”
-(1) (Cathode chamber) 2 H" + 2 e --Hz
・”-(2) In the cathode chamber 4, the reaction of equation (2) causes an increase in pH, and in order to prevent this pH increase, it is necessary to supply an acid (for example, sulfuric acid, hydrochloric acid). If the supply is not carried out, the cation exchange membrane and anion exchange membrane near the cathode chamber 4 will not only be deteriorated due to the increase in pH (alkaline earth metal salts, and alkaline earth hydroxides [e.g., CaCO .
このため、従来装置では、定期的に市販の工業用硫酸を
購入して酸タンク7内に蓄え、酸供給ポンプ8によって
所定量の硫酸を陰極室4へ注入している。For this reason, in the conventional apparatus, commercially available industrial sulfuric acid is regularly purchased and stored in the acid tank 7, and a predetermined amount of sulfuric acid is injected into the cathode chamber 4 using the acid supply pump 8.
上記従来技術は、酸の入手が困難な地域に設置される電
気透析装置についての配慮がなされておらず、このため
、これら地域では、電気透析装置を設置できないか、設
置されても輸送コストの高い酸を使用することとなり、
経済的な電気透析装置となっていない問題があった。The above conventional technology does not take into account electrodialysis equipment installed in areas where it is difficult to obtain acid. Therefore, in these areas, it is either impossible to install electrodialysis equipment, or even if it is installed, transportation costs are too high. High acid will be used,
There were problems that made it an economical electrodialysis device.
本発明の目的は、上記した従来技術の課題を解決し、低
コストの酸を入手できない地域に適した電気透析装置を
提供することにある。An object of the present invention is to solve the problems of the prior art described above and to provide an electrodialysis device suitable for areas where low-cost acid is not available.
上記した目的は、電気透析槽で生成される濃縮水を電気
透析槽に近接して設置された電解装置に供給し、ここで
発生する塩素ガスと水素ガスを原料ガスとして塩酸生反
応器により塩酸を生成し、この塩酸を前記電気透析槽の
陰極室に導入する構成とすることによって達成される。The above purpose is to supply the concentrated water produced in the electrodialysis tank to an electrolysis device installed close to the electrodialysis tank, and use the chlorine gas and hydrogen gas generated here as raw gas to produce hydrochloric acid in a hydrochloric acid bioreactor. This is achieved by generating hydrochloric acid and introducing this hydrochloric acid into the cathode chamber of the electrodialyzer.
電気透析槽から排出される濃縮水は、陽イオンおよび陰
イオンの濃度が高い液である。原水に海水、地下かん木
等を用いた場合、その濃縮水の陽イオンおよび陰イオン
は、それぞれNa”イオン、Cff1−イオンである。The concentrated water discharged from the electrodialysis tank is a liquid with a high concentration of cations and anions. When seawater, underground shrubs, etc. are used as raw water, the cations and anions of the concentrated water are Na'' ions and Cff1- ions, respectively.
これらのイオンを高濃度に含む濃縮水を電解装置で電気
分解すると、電気抵抗が減少でき、ランニングコストが
低下できる。電気透析槽に付設した塩酸生成反応器で生
成した塩酸が電気透析槽の陰極室に導入され、陰極室付
近のPHの上昇が防止される。When concentrated water containing a high concentration of these ions is electrolyzed using an electrolysis device, electrical resistance can be reduced and running costs can be reduced. Hydrochloric acid produced in a hydrochloric acid generation reactor attached to the electrodialysis tank is introduced into the cathode chamber of the electrodialysis tank, thereby preventing an increase in pH near the cathode chamber.
以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.
第1図は本発明の電気透析装置の第1実施例を示す概略
的構成図である。FIG. 1 is a schematic diagram showing a first embodiment of the electrodialysis apparatus of the present invention.
この電気透析装置は電気透析槽1、電解装置21、塩酸
生成反応器27、電気透析槽l用の直流電源6および電
解装置21用の直流電源30から主に構成されている。This electrodialysis apparatus is mainly composed of an electrodialysis tank 1, an electrolysis device 21, a hydrochloric acid production reactor 27, a DC power supply 6 for the electrodialysis tank 1, and a DC power supply 30 for the electrolysis device 21.
電気透析槽lは、陽イオン交換膜と、陰イオン交換膜が
交互に多数積層され、脱塩室と濃縮室が多数形成された
透析室ブロック2と、陽極室3および陰極室4とからな
っている。そして、透析ブロック2からの脱塩水13を
電解装置21の陽極室22に供給するラインが設けられ
ている。また、電解装置21の陽極室22で発生する塩
素ガス24を塩酸生成反応器27に供給するラインと、
電解装置21の陰極室23で発生した水素ガス25を塩
酸生成反応器27に供給するラインが設置されている。The electrodialysis tank 1 consists of a dialysis chamber block 2 in which a large number of cation exchange membranes and anion exchange membranes are alternately stacked and a large number of demineralization chambers and concentration chambers, an anode chamber 3 and a cathode chamber 4. ing. A line is provided for supplying demineralized water 13 from the dialysis block 2 to the anode chamber 22 of the electrolyzer 21. In addition, a line that supplies chlorine gas 24 generated in the anode chamber 22 of the electrolyzer 21 to the hydrochloric acid generation reactor 27;
A line is installed to supply hydrogen gas 25 generated in the cathode chamber 23 of the electrolyzer 21 to the hydrochloric acid producing reactor 27.
さらに、塩酸生成反応器27で生成された塩酸を電気透
析槽1の陰極室4に供給するラインが設けられている。Furthermore, a line is provided for supplying hydrochloric acid produced in the hydrochloric acid production reactor 27 to the cathode chamber 4 of the electrodialysis tank 1.
なお、原水28を塩酸生成反応器27に導入するライン
が設けられている。Note that a line for introducing raw water 28 into the hydrochloric acid producing reactor 27 is provided.
次に上記のように構成される電気透析装置の作用につい
て説明する。Next, the operation of the electrodialysis apparatus configured as described above will be explained.
原水14は、電気透析槽1人口において、陽極用、陰極
用、脱塩用、濃縮用に分けられ、それぞれ、陽極室3、
塩酸生成反応器27、透析室ブロック2内の脱塩室およ
び′a縮室に供給される。陽極室3に供給された原水は
、第(1)式に示す陽極反応に関与した後、装置外へ排
出される。塩酸生成反応器27に供給された原水は、塩
酸(塩化水素)を吸収した後、陰極室4に供給され、第
(2)式に示す陰極反応に関与した後、装置外へ排出さ
れる。透析室ブロック2内の脱塩室内に供給された原水
は、透析によって脱塩処理された後、脱塩水12となっ
て装置外へ供給される。The raw water 14 is divided into anode, cathode, desalination, and concentration in one electrodialysis tank, and is divided into anode chamber 3,
It is supplied to the hydrochloric acid production reactor 27, the desalination chamber in the dialysis chamber block 2, and the 'a condensation chamber. The raw water supplied to the anode chamber 3 participates in the anode reaction shown in equation (1), and then is discharged from the apparatus. The raw water supplied to the hydrochloric acid production reactor 27 absorbs hydrochloric acid (hydrogen chloride), is then supplied to the cathode chamber 4, participates in the cathode reaction shown in equation (2), and is then discharged from the apparatus. The raw water supplied into the demineralization chamber in the dialysis room block 2 is desalinated by dialysis, and then turned into demineralized water 12 and supplied outside the apparatus.
透析室ブロック2内の濃縮室内に供給された原水は、透
析によって濃縮された後、濃縮水13となって電解装置
21へ供給される。電解装置21へ供給された濃縮水1
3は陽極室22、陰極室23のそれぞれの電解液として
用いられた後、装置外へ排出される。このとき、濃縮水
13は陽極室22、陰極室23の順に流す必要がある。The raw water supplied into the concentration chamber in the dialysis room block 2 is concentrated by dialysis and then turned into concentrated water 13 and supplied to the electrolyzer 21 . Concentrated water 1 supplied to electrolyzer 21
3 is used as an electrolytic solution in each of the anode chamber 22 and the cathode chamber 23, and then is discharged to the outside of the apparatus. At this time, the concentrated water 13 needs to flow through the anode chamber 22 and the cathode chamber 23 in this order.
逆の順に流すと、陰極室23で生成したNaOHが陽極
室22に供給されて、塩素ガスC12と反応し、N a
OCl zを生成する。そして、塩素ガスが発生しな
くなる。When flowing in the reverse order, NaOH generated in the cathode chamber 23 is supplied to the anode chamber 22, reacts with the chlorine gas C12, and NaOH is generated in the cathode chamber 23.
Generate OCl z. And chlorine gas will no longer be generated.
陽極室22内の電解反応は、前記第(1)式の反応と等
しく、塩素ガス24を発生する。陰極室23内の電解反
応は、前記第(2)式の反応に等しく、水素ガス25を
発生する。電解装置21で発生した塩素ガス24および
水素ガス25は、塩酸生成反応器27に供給され、紫外
線40を照射させて反応させ、塩酸を生成する。生成し
た塩酸は、塩酸生成反応器27に供給された原水28に
吸収される。The electrolytic reaction within the anode chamber 22 is the same as the reaction of equation (1) above, and generates chlorine gas 24. The electrolytic reaction within the cathode chamber 23 is equivalent to the reaction of equation (2) above, and generates hydrogen gas 25. Chlorine gas 24 and hydrogen gas 25 generated in the electrolysis device 21 are supplied to a hydrochloric acid generation reactor 27, and are irradiated with ultraviolet rays 40 to cause a reaction, thereby generating hydrochloric acid. The generated hydrochloric acid is absorbed into the raw water 28 supplied to the hydrochloric acid generation reactor 27.
塩酸生成反応器27における塩酸の生成は、合成塩酸製
造法によって行うものであり、そのときの反応は次式(
3)で表される。The production of hydrochloric acid in the hydrochloric acid production reactor 27 is performed by a synthetic hydrochloric acid production method, and the reaction at that time is expressed by the following formula (
3).
Ht +C1,=2 HC1+44 k c a Il
−・・・・・C3)上記の第1実施例によれば、電解装
置21において、塩酸生成の原料となる塩素ガスおよび
水素ガスを生成し、塩酸生成反応器27において合成反
応によって塩酸を生成する。そして、この塩酸を電気透
析槽1の陰極室4内の反応に使用するため、陰極室4の
puの上昇を防止できるため、従来装置のような外部か
ら酸を購入し、注入する必要がなくなる。したがって、
低コストで酸を入手することが困難な地域に対して、経
済的な電気透析装置を提供できる効果が得られる。Ht +C1,=2 HC1+44 k c a Il
-...C3) According to the above first embodiment, chlorine gas and hydrogen gas, which are raw materials for hydrochloric acid production, are produced in the electrolyzer 21, and hydrochloric acid is produced by a synthesis reaction in the hydrochloric acid production reactor 27. do. Since this hydrochloric acid is used for the reaction in the cathode chamber 4 of the electrodialyzer 1, an increase in pu in the cathode chamber 4 can be prevented, eliminating the need to purchase and inject acid from outside as in conventional devices. . therefore,
This has the effect of providing an economical electrodialysis device to areas where it is difficult to obtain acid at low cost.
なお、電解装置21の陰極室23においても第(2)式
に示す反応からpHの上昇が見られる。しかし、この陰
極室23へ供給される濃縮水13の流量は多量であるた
めpHの上昇は小さく、したがって、アルカリ土類金属
の塩および水酸化物の析出は極めて少ない。一方、透析
室ブロック2は数百組の脱塩室と濃縮室から構成される
ことが多く、このため、濃縮水13の流量は、陰極易1
10数百倍である。Note that an increase in pH is also observed in the cathode chamber 23 of the electrolyzer 21 due to the reaction shown in equation (2). However, since the flow rate of the concentrated water 13 supplied to the cathode chamber 23 is large, the increase in pH is small, and therefore the precipitation of alkaline earth metal salts and hydroxides is extremely small. On the other hand, the dialysis room block 2 is often composed of several hundred sets of desalination chambers and concentration chambers.
It is several hundred times more.
第2図は本発明の第2実施例を示す概略的構成図である
。本実施例の電気透析装置においては、電気透析槽1の
陽極室3および陰極室4から発生した塩素ガス、水素ガ
スを陽極液IOおよび陰極液11から分離し、電解装置
21の陽極室22および陰極室23から発生した塩素ガ
ス、水素ガスと共に塩酸生成反応器27に供給するよう
になっている。FIG. 2 is a schematic configuration diagram showing a second embodiment of the present invention. In the electrodialysis apparatus of this embodiment, chlorine gas and hydrogen gas generated from the anode chamber 3 and cathode chamber 4 of the electrodialysis tank 1 are separated from the anolyte IO and catholyte 11, and It is supplied to the hydrochloric acid producing reactor 27 together with chlorine gas and hydrogen gas generated from the cathode chamber 23.
本実施例では、塩酸生成反応器27に供給される塩素ガ
ス、水素ガスは電解装置21の他に電気透析槽1からも
供給されるので電解装置21で生成すべき塩素ガス、水
素ガスの発生量を低減でき、電解装置21の容量および
消費電力を低減できる効果がある。In this embodiment, the chlorine gas and hydrogen gas supplied to the hydrochloric acid generation reactor 27 are supplied from the electrodialysis tank 1 in addition to the electrolysis device 21, so that the chlorine gas and hydrogen gas to be generated in the electrolysis device 21 are generated. This has the effect of reducing the capacity and power consumption of the electrolyzer 21.
第3図は本発明の第3実施例を示す概略的構成図であり
、図において第1図および第2図における電解装置21
およびそれに付設される配管等は省略されている。FIG. 3 is a schematic configuration diagram showing a third embodiment of the present invention, in which the electrolytic device 21 in FIGS. 1 and 2 is
And the piping etc. attached to it are omitted.
第3図において、原水14を電気透析槽1に供給する配
管はその途中で塩酸生成反応器27内に設置されるとと
もに塩酸生成反応器27内の配管を経た原水28の一部
が塩酸生成反応器27に導入されるようになっている。In FIG. 3, the piping that supplies raw water 14 to the electrodialysis tank 1 is installed in a hydrochloric acid producing reactor 27 on the way, and part of the raw water 28 that has passed through the piping inside the hydrochloric acid producing reactor 27 undergoes a hydrochloric acid producing reaction. It is designed to be introduced into a container 27.
本実施例において、塩酸生成反応器27で塩酸生成反応
時に発生した反応熱は原水14に吸熱される。この結果
、第(3)式の反応による塩酸生成反応器27内の温度
は、冷却しない場合は1000°Cを越えるが、原水1
4で冷却すると室温近傍の温度に保つことが可能となる
。また、原水14は加熱されて昇温し、電気伝導度が増
加する。この原水14を電気透析槽1に供給すると電気
透析槽1の陽極と陰極間の電気抵抗は減少し、したがっ
て、透析に消費されるエネルギーを低減できる効果が得
られる。おな、液体の電気伝導度は、一般に温度が1°
C上昇すると2%増加する。In this embodiment, the reaction heat generated during the hydrochloric acid production reaction in the hydrochloric acid production reactor 27 is absorbed by the raw water 14. As a result, the temperature inside the hydrochloric acid production reactor 27 due to the reaction of equation (3) exceeds 1000°C if it is not cooled;
Cooling at step 4 makes it possible to maintain the temperature near room temperature. In addition, the raw water 14 is heated and its temperature increases, and its electrical conductivity increases. When this raw water 14 is supplied to the electrodialysis tank 1, the electrical resistance between the anode and the cathode of the electrodialysis tank 1 is reduced, and therefore, the effect of reducing the energy consumed in dialysis can be obtained. Note that the electrical conductivity of a liquid is generally determined at a temperature of 1°
Increases by 2% when C rises.
次にに第1図および第3図に示す本発明を適用したとき
の仕様および電気透析装置の運転状況を示す。Next, specifications and operating conditions of the electrodialysis apparatus when the present invention shown in FIGS. 1 and 3 are applied are shown.
(原水、製造水)
(1) 原水の塩濃度 (ppm、as Na
Cj! )1200(2)生成脱塩水の塩濃度 (pp
m、as NaCj! ) 400(3)生成濃縮水の
塩濃度 (ppm、as NaCl2 )4400(4
)生成脱塩水流量 (m”/h) 4(5)生
・成濃縮水流量 (m”/h) 1(6)原水
流量 (m3/h)5.1(7)原水温度
(”C) 20.0(8)塩酸消費
量 (maj! /h) 0.4(電気透
析装置)
(1)透析室寸法(IIIm) 200X 1800
(2) イオン交換膜の間隔(mm) 0.75(
3)脱塩室・濃縮室対数(対)500(4)透析槽用直
流電源消費電力(kW) 0.84(5)電解装置用
直流電源消費電力 (kW) 0.03(6)電気透
析槽入口原水温度(”C) 20.2なお、電解装置
21に原水を直接供給する場合の電解装置用直流電源の
消費電力は、塩濃度にほぼ比例し、本発明の実施例の約
3.5倍となる。(Raw water, manufactured water) (1) Salt concentration of raw water (ppm, as Na
Cj! ) 1200 (2) Salt concentration of produced desalinated water (pp
m, as NaCj! ) 400(3) Salt concentration of produced concentrated water (ppm, as NaCl2) 4400(4
) Flow rate of produced desalinated water (m”/h) 4 (5) Flow rate of produced/concentrated water (m”/h) 1 (6) Flow rate of raw water (m3/h) 5.1 (7) Raw water temperature
(''C) 20.0 (8) Hydrochloric acid consumption (maj! /h) 0.4 (electrodialysis machine) (1) Dialysis chamber dimensions (IIIm) 200X 1800
(2) Ion exchange membrane spacing (mm) 0.75 (
3) Desalination room/concentration room logarithm (pair) 500 (4) DC power consumption for dialysis tank (kW) 0.84 (5) DC power consumption for electrolyzer (kW) 0.03 (6) Electrodialysis Tank inlet raw water temperature ("C)" 20.2 Note that when raw water is directly supplied to the electrolyzer 21, the power consumption of the DC power supply for the electrolyzer is approximately proportional to the salt concentration, and is about 3. It becomes 5 times.
第4図は本発明の第4実施例を示す概略的構成図である
。FIG. 4 is a schematic configuration diagram showing a fourth embodiment of the present invention.
第4図において、電解装置21の各電極間の極性を切り
替えるための極性交換器16が設置されている。第4図
における他の構成部は第1図と同じであり、同一符号で
示している。In FIG. 4, a polarity exchanger 16 is installed to switch the polarity between each electrode of the electrolyzer 21. Other components in FIG. 4 are the same as in FIG. 1, and are designated by the same reference numerals.
電気透析槽lの陽極室3および陰極室4から41電極反
応によって、それぞれ塩素ガス35、水素ガス37を主
成分とするガスを生成し、大気放出される。(塩素ガス
、水素ガスは塩酸生成反応器27へ導入してもよい)
この電気透析槽lへ印加する直流電流は直流型#6を用
いて行われる。The anode chamber 3 and cathode chamber 4 of the electrodialysis tank 1 generate gases mainly composed of chlorine gas 35 and hydrogen gas 37, respectively, through electrode reactions and are released into the atmosphere. (Chlorine gas and hydrogen gas may be introduced into the hydrochloric acid generation reactor 27)
The direct current applied to this electrodialysis tank l is carried out using a direct current type #6.
電解装置21への直流電流の印加は、直流電源30から
の電流を極性変換器16を経て用いて行われる。陽極室
22からは塩素ガス24、陰極室23からは水素ガス2
5が発生する0発生した塩素ガス24と水素ガス25は
、塩酸生成反応器27に導かれ、紫外光を照射されて反
応し、塩酸ガスとなる。生成した塩酸ガスは、電気透析
槽1の陰極室4へ供給される原水に吸収される。Application of direct current to the electrolyzer 21 is performed using a current from a direct current power supply 30 via a polarity converter 16. Chlorine gas 24 is supplied from the anode chamber 22, and hydrogen gas 2 is supplied from the cathode chamber 23.
The generated chlorine gas 24 and hydrogen gas 25 are led to a hydrochloric acid producing reactor 27, are irradiated with ultraviolet light and react, and become hydrochloric acid gas. The generated hydrochloric acid gas is absorbed into the raw water supplied to the cathode chamber 4 of the electrodialysis tank 1.
極性変換器16は、電解装置21の陽極室22と陰極室
23内電掻間の電気抵抗が、しきい値を越えるときに極
性を切り替えるようになっている。The polarity converter 16 switches the polarity when the electrical resistance between the electrodes in the anode chamber 22 and cathode chamber 23 of the electrolysis device 21 exceeds a threshold value.
例えば、この電極間に一定電圧を印加し、このとき電流
値がしきい値以下となったとき極性を切り替える方法、
この電極間に一定電流を印加し、このときの電極間電圧
がしきい値以上となったとき極性を切り替える方法、又
は、印加電圧と電流を測定して、この電圧と電流から電
気抵抗を計算し、この電気抵抗がしきい値以上となった
とき極性を切り替える方法がある。また、予め析出物を
溶解除去するのに必要な時間が設定され、この設定時間
毎に定期的に極性を切り替える方法もある。For example, a method of applying a constant voltage between these electrodes and switching the polarity when the current value becomes below a threshold value,
A method of applying a constant current between the electrodes and switching the polarity when the voltage between the electrodes exceeds a threshold value, or measuring the applied voltage and current and calculating the electrical resistance from this voltage and current. However, there is a method of switching the polarity when this electrical resistance exceeds a threshold value. There is also a method in which the time required to dissolve and remove the precipitates is set in advance, and the polarity is periodically switched at each set time.
電解装置21の陰極室23の近傍では、上記した第(1
)式の陰極反応によって、PHが上昇し、このとき液中
のMgト、Ca ”は次の反応により析出し、一部が電
極表面に蓄積される。In the vicinity of the cathode chamber 23 of the electrolyzer 21, the above-mentioned (1st
) The pH rises due to the cathode reaction, and at this time, Mg and Ca'' in the solution are precipitated by the following reaction, and a portion is accumulated on the electrode surface.
M g ” + 20 H−→Mg(OH)z・・・・
・・(4)Ca”+CO,” →CaCO5−・−・・
・(s)電極表面に蓄積されたMg (OH) z 、
Ca COlは、電極の極性が切り替えられると、それ
ぞれ次の反応によって再び溶解し、したがって電極表面
における蓄積が除去される。Mg” + 20 H-→Mg(OH)z・・・・
・・(4)Ca”+CO,” →CaCO5−・−・・
・(s) Mg (OH) z accumulated on the electrode surface,
Ca COI is dissolved again by the respective next reaction when the polarity of the electrode is switched, thus removing the accumulation on the electrode surface.
Mg(OH)z +C1z→
Mg (OCI!、)z +Ht O・・・・・・(6
)Ca COs + 2 Cl z + 2 Hz
O→Ca (ocp)、+2 HC1!、+Hz CO
z ・・−・・−(7)このように第4実施例によれば
、電解装置21の陰極室23内の電極表面に析出した炭
酸カルシウム、水酸化マグネシウム等のアルカリ土類金
属の塩又は水酸化物を定期的に除去できるため、塩酸製
造量の経時的な減少を抑制できる効果が得られる。Mg(OH)z +C1z→ Mg (OCI!,)z +Ht O・・・・・・(6
) Ca COs + 2 Cl z + 2 Hz
O → Ca (ocp), +2 HC1! , +Hz CO
z ・・・・・・(7) Thus, according to the fourth embodiment, alkaline earth metal salts such as calcium carbonate and magnesium hydroxide deposited on the electrode surface in the cathode chamber 23 of the electrolyzer 21 or Since hydroxide can be removed periodically, the effect of suppressing the decrease in the amount of hydrochloric acid produced over time can be obtained.
第4実施例に示す電気透析装置において、電気透析槽は
、通電面積を0.22rrr、陽イオン交換膜と陰イオ
ン交換膜の対数を200、膜間隔を0゜75mmとした
。原水、脱塩水、濃縮水中の電解質の濃度は、それぞれ
、Na CI2重量換算で1゜200ppm 300
ppm、2.OOOppmである。In the electrodialysis apparatus shown in the fourth example, the electrodialysis tank had a current carrying area of 0.22 rrr, a logarithm of the cation exchange membrane and anion exchange membrane of 200, and a membrane spacing of 0°75 mm. The concentration of electrolyte in raw water, desalinated water, and concentrated water is 1°200ppm in terms of Na CI2 weight 300
ppm, 2. It is OOOppm.
電解装置は、電極面積が0,01nfである。平均通電
電流は、電気透析槽が3A、電解装置が6Aであり、毎
時4rrrの脱塩水を製造した。The electrolysis device has an electrode area of 0.01 nf. The average current applied was 3 A for the electrodialysis tank and 6 A for the electrolyzer, and 4 rrr of demineralized water was produced per hour.
このとき、電解装置の極性変換を2時間毎に行い、電解
装置の通電電流の変動は平均値の5%以下であった。At this time, the polarity of the electrolyzer was changed every 2 hours, and the fluctuation in the current flowing through the electrolyzer was 5% or less of the average value.
以上のように本発明によれば、装置外からの酸の供給を
要することなく、装置内で生成されるガスを用いて電気
透析槽の陰極室に供給される酸を生成できるため、酸の
入手が困難な地域に適した電気透析装置を供給すること
ができる。As described above, according to the present invention, the acid to be supplied to the cathode chamber of the electrodialysis tank can be generated using the gas generated within the device without requiring the supply of acid from outside the device. We can supply electrodialysis equipment suitable for areas where it is difficult to obtain.
第1図は本発明の第1実施例を示す概略的構成図、第2
図は本発明の第2実施例を示す概略的構成図、第3図は
本発明の第3実施例を示す要部概略的構成図、第4図は
本発明の第4実施例を示す概略的構成図、第5図は従来
の電気透析装置の概略的構成図である。
1・・・・・・電気透析槽、2・・・・・・透析室ブロ
ック、3・・・・・・陽極室、4・・・・・・陰極室、
10・・・・・・陽極液11・・・・・・陰極液、12
・・・・・・脱塩水、13・・・・・・濃縮水、21・
・・・・・電解装置、22・・・・・・陽極室、23・
・・・・・陰極室、24.35・・・・・・塩素ガス、
25.37・・・・・・水素ガス、27・・・・・・塩
酸生成反応器。
第1図FIG. 1 is a schematic configuration diagram showing a first embodiment of the present invention, and FIG.
The figure is a schematic block diagram showing a second embodiment of the present invention, Figure 3 is a schematic block diagram of main parts showing a third embodiment of the present invention, and Figure 4 is a schematic diagram showing a fourth embodiment of the present invention. FIG. 5 is a schematic diagram of a conventional electrodialysis apparatus. 1... Electrodialysis tank, 2... Dialysis room block, 3... Anode chamber, 4... Cathode chamber,
10...Anolyte 11...Catholyte, 12
...Demineralized water, 13... Concentrated water, 21.
... Electrolyzer, 22 ... Anode chamber, 23.
...Cathode chamber, 24.35...Chlorine gas,
25.37... Hydrogen gas, 27... Hydrochloric acid production reactor. Figure 1
Claims (3)
置し、その両端部に陽極室と陰極室とを有する電気透析
槽を備え、この電気透析槽に直流電気を印加して脱塩水
と濃縮水とをつくる電気透析装置において、前記電気透
析槽に隣接して電解装置および塩酸生成反応器を設置し
、前記電気透析槽からの濃縮水を電解装置で電気分解し
、発生した塩素ガスおよび水素ガスを原料ガスとして前
記塩酸生成反応器で塩酸を生成し、この塩酸を前記電気
透析槽の陰極室に導入する手段を設けたことを特徴とす
る電気透析装置。(1) A large number of cation exchange membranes and anion exchange membranes are installed alternately, and an electrodialysis tank having an anode chamber and a cathode chamber is provided at both ends, and direct current is applied to this electrodialysis tank to demineralize water. In an electrodialysis device that produces water and concentrated water, an electrolysis device and a hydrochloric acid generation reactor are installed adjacent to the electrodialysis tank, and the concentrated water from the electrodialysis tank is electrolyzed by the electrolysis device to generate chlorine gas. and a means for producing hydrochloric acid in the hydrochloric acid production reactor using hydrogen gas as a raw material gas, and introducing the hydrochloric acid into the cathode chamber of the electrodialysis tank.
塩素ガスを分離し、前記電気透析槽の陰極室から発生す
る陰極液から水素ガスを分離し、これらの塩素ガスおよ
び水素ガスを前記塩酸生成反応器に導入する手段を設け
たことを特徴とする請求項(1)記載の電気透析装置。(2) Separate chlorine gas from the anolyte generated from the anode chamber of the electrodialysis tank, separate hydrogen gas from the catholyte generated from the cathode chamber of the electrodialysis tank, and transfer these chlorine gas and hydrogen gas to the The electrodialysis apparatus according to claim 1, further comprising means for introducing the hydrochloric acid into the reactor for producing hydrochloric acid.
中で前記塩酸生成反応器内に設置し、塩酸生成時におけ
る発生熱により原水を加熱するようにしたことを特徴と
する請求項(1)記載の電気透析装置(4)前記電気透
析槽の濃縮水を前記電解装置内の陽極室に供給するため
の配管を備えていることを特徴とする請求項(1)記載
の電気透析装置。(3) A pipe for supplying raw water to the electrodialysis tank is installed in the hydrochloric acid production reactor midway through the pipe, and the raw water is heated by the heat generated during hydrochloric acid production. (4) The electrodialysis apparatus according to claim 1, further comprising piping for supplying concentrated water from the electrodialysis tank to an anode chamber in the electrolyzer. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14751688A JP2704629B2 (en) | 1988-06-15 | 1988-06-15 | Electrodialysis machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14751688A JP2704629B2 (en) | 1988-06-15 | 1988-06-15 | Electrodialysis machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH022830A true JPH022830A (en) | 1990-01-08 |
JP2704629B2 JP2704629B2 (en) | 1998-01-26 |
Family
ID=15432105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14751688A Expired - Fee Related JP2704629B2 (en) | 1988-06-15 | 1988-06-15 | Electrodialysis machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2704629B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5192709U (en) * | 1975-01-23 | 1976-07-24 | ||
JP2000313617A (en) * | 1999-02-24 | 2000-11-14 | 邦明 ▲高▼松 | Ionized salt and its production |
JP2011056345A (en) * | 2009-09-07 | 2011-03-24 | Toshiba Corp | Desalination system |
JP2012046422A (en) * | 2011-11-02 | 2012-03-08 | Mitsubishi Heavy Ind Ltd | Salt maker and salt making method |
JP2012179512A (en) * | 2011-02-28 | 2012-09-20 | Omega:Kk | Electrolyzing method |
JP2012196601A (en) * | 2011-03-18 | 2012-10-18 | Omega:Kk | Wastewater treatment method |
JP2012217943A (en) * | 2011-04-11 | 2012-11-12 | Takasago Thermal Eng Co Ltd | Method for desalting and system for desalting |
JP2015509048A (en) * | 2012-02-02 | 2015-03-26 | タンジェント カンパニー エルエルシー | Deionization of electrochemically reclaimed water |
JP2016168542A (en) * | 2015-03-12 | 2016-09-23 | 株式会社東芝 | Device and method for generating electrolytic water |
CN115504551A (en) * | 2022-01-27 | 2022-12-23 | 江苏日泰环保工程有限公司 | Electrodialysis system that material is stable |
-
1988
- 1988-06-15 JP JP14751688A patent/JP2704629B2/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5192709U (en) * | 1975-01-23 | 1976-07-24 | ||
JPS5637199Y2 (en) * | 1975-01-23 | 1981-09-01 | ||
JP2000313617A (en) * | 1999-02-24 | 2000-11-14 | 邦明 ▲高▼松 | Ionized salt and its production |
JP2011056345A (en) * | 2009-09-07 | 2011-03-24 | Toshiba Corp | Desalination system |
JP2012179512A (en) * | 2011-02-28 | 2012-09-20 | Omega:Kk | Electrolyzing method |
JP2012196601A (en) * | 2011-03-18 | 2012-10-18 | Omega:Kk | Wastewater treatment method |
JP2012217943A (en) * | 2011-04-11 | 2012-11-12 | Takasago Thermal Eng Co Ltd | Method for desalting and system for desalting |
JP2012046422A (en) * | 2011-11-02 | 2012-03-08 | Mitsubishi Heavy Ind Ltd | Salt maker and salt making method |
JP2015509048A (en) * | 2012-02-02 | 2015-03-26 | タンジェント カンパニー エルエルシー | Deionization of electrochemically reclaimed water |
JP2016168542A (en) * | 2015-03-12 | 2016-09-23 | 株式会社東芝 | Device and method for generating electrolytic water |
CN115504551A (en) * | 2022-01-27 | 2022-12-23 | 江苏日泰环保工程有限公司 | Electrodialysis system that material is stable |
Also Published As
Publication number | Publication date |
---|---|
JP2704629B2 (en) | 1998-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3716042B2 (en) | Acid water production method and electrolytic cell | |
JP3913923B2 (en) | Water treatment method and water treatment apparatus | |
US4707240A (en) | Method and apparatus for improving the life of an electrode | |
US3869376A (en) | System for demineralizing water by electrodialysis | |
JP3048612B2 (en) | Electrolytic ozone generator | |
AU2014212394B2 (en) | Rechargeable electrochemical cells | |
JP2001113281A (en) | Electrodeionization equipment and pure water production equipment | |
JP2001502229A (en) | How to reduce or prevent scale | |
KR101436138B1 (en) | A seawater electrolysi and fuel cell complex system | |
JP5764474B2 (en) | Electrolytic synthesis apparatus, electrolytic treatment apparatus, electrolytic synthesis method, and electrolytic treatment method | |
KR102207458B1 (en) | A fresh water system capable of producing hydrogen gas | |
AU2014362830A1 (en) | Method for producing oxidized water for sterilization use without adding electrolyte | |
JP2704629B2 (en) | Electrodialysis machine | |
JP4710176B2 (en) | Ultrapure water production equipment | |
KR20210010937A (en) | A fresh water system capable of producing hydrogen gas | |
KR20140076540A (en) | A seawater electrolysi and fuel cell complex system | |
JP2007283228A (en) | Electric deionizer | |
JP3695338B2 (en) | Method for producing deionized water | |
JPH10291808A (en) | Production method of aqueous hydrogen peroxide and device therefor | |
JP3081079B2 (en) | Decarbonation equipment and pure water production equipment incorporating the equipment | |
JP2011121027A (en) | Electric type deionized water producing apparatus | |
JP2002205071A (en) | Electric deionized water manufacturing apparatus and method of manufacturing deionized water | |
AU2020341933B2 (en) | Apparatus for producing acidic aqueous solution and method for producing acidic aqueous solution | |
JP2007245120A (en) | Electrically operated apparatus for producing deionized water | |
JP3894039B2 (en) | Operation method of electrodeionization equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |