JPH02282495A - Production of aluminum alloy material forming stable bluish gray anodic oxide film - Google Patents
Production of aluminum alloy material forming stable bluish gray anodic oxide filmInfo
- Publication number
- JPH02282495A JPH02282495A JP10176589A JP10176589A JPH02282495A JP H02282495 A JPH02282495 A JP H02282495A JP 10176589 A JP10176589 A JP 10176589A JP 10176589 A JP10176589 A JP 10176589A JP H02282495 A JPH02282495 A JP H02282495A
- Authority
- JP
- Japan
- Prior art keywords
- oxide film
- anodic oxide
- cooling rate
- color
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、硫酸浴による陽極酸化処理を施して利用され
るアルミニウム合金材およびその加工材に関するもので
あって、建材、器物、装飾品等の外観を美しくし、同時
に耐食性を向上させるものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to aluminum alloy materials and processed materials thereof that are used after being anodized in a sulfuric acid bath, and are useful for building materials, utensils, ornaments, etc. It makes the appearance beautiful and improves corrosion resistance at the same time.
[従来の技術]
現在、硫酸浴による通常の陽極酸化処理で灰色皮膜を得
る合金としてはAl−Fe系およびAl−3i系が知ら
れているるAl−Fe系ではA1bFe化合物が、Al
−3t系ではSi粒子が陽極酸化処理後、皮膜中に残存
して白色光の反射を妨げる(波長の一部を吸収する)た
め灰色を呈すると考えられている。[Prior Art] At present, Al-Fe and Al-3i alloys are known as alloys that form a gray film through normal anodic oxidation treatment using a sulfuric acid bath.
In the -3t series, it is thought that the Si particles remain in the film after the anodizing treatment and prevent reflection of white light (absorb part of the wavelength), resulting in a gray color.
[発明が解決しようとする課題]
At−Fe系合金は凝固するときに共晶反応をおこし、
共晶化合物を生成する。一般に冷却速度1’c /se
c以下で凝固するとき生成する化合物は、平衡相のAl
3Feであり、凝固速度(冷却速度)が1〜b
であるAl6Feが生成し、10℃/secより速くな
るとAl、Feなる化合物が生成するといわれている。[Problems to be solved by the invention] At-Fe alloys cause a eutectic reaction when solidifying,
Produces a eutectic compound. Generally cooling rate 1'c/se
The compound produced when solidifying below c is the equilibrium phase Al
It is said that Al6Fe, which is 3Fe and has a solidification rate (cooling rate) of 1 to b, is produced, and when the solidification rate is faster than 10°C/sec, compounds of Al and Fe are produced.
しかし、実際の半連続鋳造による鋳塊を調査してみると
、冷却速度が50°C/see以下の部分ではAl3F
eやAl6Fe化合物が混在しており、極く表層の急冷
部にはA1.Fe化合物も見られ、冷却速度が不均一で
あると考えられる。However, when we investigated actual ingots produced by semi-continuous casting, we found that Al3F
A1.e and Al6Fe compounds coexist, and A1. Fe compounds were also observed, suggesting that the cooling rate was non-uniform.
硫酸浴中における陽極酸化処理により、Al3Fe%A
1mFe化合物は酸化されて皮膜中には化合物として残
存しないが、Al6Fe化合物は酸化されずに皮膜中に
残存して白色光を通過させないためにグレーを呈して見
えることから、通常の半連続鋳造による鋳塊により製造
される製品を陽極酸化した場合、その冷却速度の不均一
さ換言すればAl6Fe化合物分布の不均一さによって
陽極酸化皮膜色にむらが生じる。By anodizing treatment in a sulfuric acid bath, Al3Fe%A
The 1mFe compound is oxidized and does not remain as a compound in the film, but the Al6Fe compound remains in the film without being oxidized and appears gray because it does not allow white light to pass through. When a product manufactured from an ingot is anodized, the color of the anodic oxide film becomes uneven due to non-uniformity in the cooling rate, in other words, non-uniformity in the distribution of the Al6Fe compound.
[課題を解決するための手段]
本発明は、(1) 0.3%≦Fe≦2.2%、0.
03%≦Si≦0.5%、 0.005≦Cu≦0.5
%と0.02%≦Be≦0.10%を含み、残部Alと
不可避的不純物から成るアルミニウム合金を溶解し、こ
れを2〜50’C/secの冷却速度で凝固させて鋳塊
としたことを特徴とする安定した青みグレー色の陽極酸
化皮膜を生成するアルミニウム合金鋳塊の製造方法およ
び、(2)上記(1)における合金鋳塊を550℃より
低い温度で圧延、押出し、熱処理の組合せからなる加工
熱処理法で加工してなる安定した青みグレー色の陽極酸
化皮膜を生成するアルミニウム合金材の製造方法である
。[Means for Solving the Problems] The present invention provides (1) 0.3%≦Fe≦2.2%, 0.3%≦Fe≦2.2%, 0.3%≦Fe≦2.2%;
03%≦Si≦0.5%, 0.005≦Cu≦0.5
% and 0.02%≦Be≦0.10%, with the remainder being Al and inevitable impurities, was melted and solidified at a cooling rate of 2 to 50'C/sec to form an ingot. (2) A method for producing an aluminum alloy ingot that produces a stable bluish-gray anodic oxide film, characterized by This is a method for producing an aluminum alloy material that produces a stable bluish-gray anodic oxide film processed by a processing heat treatment method consisting of a combination.
アルミニウム合金の陽極酸化皮膜色を安定化するには、
Al 3 Fe、Al6Fe。To stabilize the color of the anodic oxide film on aluminum alloys,
Al3Fe, Al6Fe.
Al、、Fe化合物(以下共晶化合物という)粒子の種
類、量、大きさ、分散を制御する必要がある。これらの
化合物は凝固時に生成する共晶化合物で、その生成には
成分および鋳造条件、特に冷却速度(凝固速度)の影響
が大きい。したがって、皮膜色を安定化するには鋳造条
件、特に冷却速度(凝固速度)の影響が大きい。したが
って、皮膜色を安定化するには鋳造条件によって共晶化
合物の生成が変動しにくいような成分を調合すると都合
がよい。It is necessary to control the type, amount, size, and dispersion of Al, Fe compound (hereinafter referred to as eutectic compound) particles. These compounds are eutectic compounds produced during solidification, and their production is greatly influenced by the components and casting conditions, especially the cooling rate (solidification rate). Therefore, casting conditions, particularly cooling rate (solidification rate), have a large influence on stabilizing the film color. Therefore, in order to stabilize the color of the film, it is convenient to mix ingredients that will make it difficult for the production of eutectic compounds to fluctuate depending on the casting conditions.
そこで、各種元素をAl−Fe合金に添加し冷却速度と
陽極酸化皮膜色との関係を調べた結果、Beを添加する
と特にAl6Fe化合物の生成が安定し、かつ、共晶化
合物の分散が微細均一になるために皮膜の色調が安定化
することが明らかになった。そこで本発明は上記の如き
構成をとったのである。Therefore, as a result of adding various elements to the Al-Fe alloy and investigating the relationship between the cooling rate and the color of the anodic oxide film, we found that the addition of Be stabilized the formation of Al6Fe compounds in particular, and the dispersion of the eutectic compounds was fine and uniform. It became clear that the color tone of the film was stabilized due to the Therefore, the present invention has adopted the above configuration.
本発明における請求範囲の限定理由は下記のとおりであ
る。The reasons for limiting the scope of claims in the present invention are as follows.
Fe:Feはその含有量に応じて淡いグレー色から濃い
グレー色に渡り広い範囲の陽極酸化皮膜色を与える。し
かし、その含有量が0.3%未満ではグレー色を発せず
、2.2%より多くなると粗大なAl3Feの初晶化合
物を生じるため、圧延、押出し加工の時表面欠陥を発生
させる原因となり好ましくない。また、Feの含有量が
増加すると陽極酸化皮膜の欠陥が増し皮膜の耐候性も低
下するため2.2%以下が好ましい。Fe: Fe gives an anodic oxide film a wide range of colors from light gray to dark gray depending on its content. However, if the content is less than 0.3%, it will not produce a gray color, and if it is more than 2.2%, coarse primary crystal compounds of Al3Fe will be produced, which will cause surface defects during rolling and extrusion processing, so this is not preferable. do not have. Further, as the Fe content increases, defects in the anodic oxide film increase and the weather resistance of the film also decreases, so it is preferably 2.2% or less.
Be:Beの添加は、Al5Fe化合物の生成が安定し
、かつ共晶化合物の分散が微細均一になるため陽極酸化
皮膜色が安定する。Be: Addition of Be stabilizes the production of the Al5Fe compound and makes the dispersion of the eutectic compound fine and uniform, thereby stabilizing the color of the anodic oxide film.
しかし、Beを0102%未満にした場合では、冷却速
度による共晶化合物の生成が変動しやすく、皮膜色の変
動を抑える効果が期待できない。また、Beを0.10
%より多く添加した場合では冷却速度による共晶組織の
不安定性は減少するもののグレー色に発色する効果は得
られなくなる。However, when Be is less than 0.102%, the formation of eutectic compounds tends to vary depending on the cooling rate, and no effect on suppressing variations in film color can be expected. Also, Be is 0.10
%, the instability of the eutectic structure due to the cooling rate is reduced, but the effect of producing a gray color cannot be obtained.
Si :Stはその含有量が少ない方が好ましく、0
、596より多くなるとAl−Fe−Si化合物が生成
しやすくなり、青みグレー色が得られなくなる。また、
Siを0.03%より少なくすることは、地金純度を高
くしなければならなくなり、経済的な利点が失われる。It is preferable that the content of Si:St is small, and 0
, 596, Al-Fe-Si compounds are likely to be produced, making it impossible to obtain a bluish-gray color. Also,
If the Si content is less than 0.03%, the metal purity must be increased, and the economic advantage is lost.
Cu : Cuはその添加によりエツチング性がよくな
り、その結果陽極酸化皮膜色が均一になるが、0.5%
よりも多く添加されると陽極酸化皮膜色が不均一なもの
となるので好ましくない。また、Cuを0.005%よ
り少なくすることは、地金純度を高くしなければならな
くなり、経済的な利点が失われる。Cu: The addition of Cu improves etching properties, resulting in a uniform color of the anodic oxide film, but at 0.5%
If it is added in an amount greater than 1, the color of the anodic oxide film will become non-uniform, which is not preferable. Furthermore, reducing Cu to less than 0.005% requires higher metal purity, which loses economic advantages.
その他成分:合金溶製に際し結晶組織改善のためしばし
ば添加される0、1%までのTiおよび0.05%まで
のBの添加は、本発明合金材料の陽極酸化皮膜色の安定
化に特に影響がないので差支えない。Other components: The addition of up to 0.1% Ti and up to 0.05% B, which are often added to improve the crystal structure during alloy melting, has a particular effect on stabilizing the color of the anodic oxide film of the alloy material of the present invention. It doesn't matter since I don't have one.
冷却速度:冷却速度が 1℃/sec以下ではAl5F
eの生成量が極めて少なく、はとんどがAl3Feとな
るためグレー色が得られにくくなる。また、50℃/s
ec以上になるとAl、、Feの量が多くなり、グレー
色が得られにくくなる。Cooling rate: Al5F when the cooling rate is less than 1℃/sec
The amount of e produced is extremely small, and most of it becomes Al3Fe, making it difficult to obtain a gray color. Also, 50℃/s
If it exceeds ec, the amount of Al, . . . Fe increases, making it difficult to obtain a gray color.
加工熱処理温度二準安定相であるAl6Feは550℃
以上の熱処理によって溶入化もしくは安定相のAl3F
e化合物に変態するため、グレー色が得られにくくなる
。Processing heat treatment temperature Two metastable phase Al6Fe is 550℃
The above heat treatment results in infiltration or stable phase Al3F.
Because it transforms into compound e, it becomes difficult to obtain a gray color.
[実施例コ 以下、実施例により本発明を具体的に説明する。[Example code] Hereinafter, the present invention will be specifically explained with reference to Examples.
実施例1[鋳塊における冷却速度と皮膜色との関係コ
表1に示すアルミニウム合金について冷却速度と陽極酸
化皮膜色との関係について調べた。Example 1 [Relationship between cooling rate and film color in ingot] The relationship between cooling rate and anodic oxide film color was investigated for the aluminum alloys shown in Table 1.
冷却速度は熱電対を鋳型内に固定し、溶湯が凝固すると
きの温度変化を/111定し、得られた温度−時間線図
の傾きから求めた。The cooling rate was determined from the slope of the temperature-time diagram obtained by fixing a thermocouple in the mold and determining the temperature change when the molten metal solidified by /111.
冷却速度を測定して製造した鋳塊に厚さ15μlの陽極
酸化皮膜を表2に示す陽極酸化処理条件でつけ、その陽
極酸化皮膜色を測定した。A 15 μl thick anodic oxide film was applied to the produced ingot by measuring the cooling rate under the anodizing treatment conditions shown in Table 2, and the color of the anodic oxide film was measured.
表1 合金成分(重量%)
表2 陽極酸化条件
皮膜の/IP1色は、β0/45°タイプのi’ll1
色計(日本重色工業■製NDIOID)を用いた。測定
場所は、鋳塊の冷却速度を測定したところとした。Table 1 Alloy composition (weight %) Table 2 /IP1 color of the anodized film is β0/45° type i'll1
A colorimeter (NDIOID manufactured by Nippon Heavy Industries, Ltd.) was used. The measurement location was the location where the cooling rate of the ingot was measured.
また、各々鋳込み方向(0’ 、180°)鋳込み方向
と直角の方向(90’ 、270°)の4方向から測色
し、その平均値を求め潤色値とした。表色系はL”a庫
す東表色系とした。Further, the color was measured from four directions: the casting direction (0', 180°) and the direction perpendicular to the casting direction (90', 270°), and the average value was calculated and used as the embellishment value. The color system was the L''a Tohyo color system.
Lll値は明度を表す(大;明るい、小;暗い)aIL
値は赤み緑みを表す(+側:赤、−側:緑)
b米値は黄み青みを表す(+側:黄、−側:青)
得られた鋳塊の冷却速度と皮膜色との関係を第1図に示
す。The Lll value represents the lightness (large; bright, small; dark) aIL
Values represent redness and greenness (+ side: red, - side: green) b value represents yellowness and bluishness (+ side: yellow, - side: blue) Cooling rate and film color of the obtained ingot The relationship is shown in Figure 1.
Beを添加しないNo、1の試料の場合、冷却速度の変
化により著しくLll値が変化する。これに対し、Be
を0.02%添加したNo、2の材料では、Lll値の
変化は少くなる。また、0.10%Beを添加したNo
、3の試料ではさらにL*値の変動は小さくなる。しか
し、0.20%添加したNo、4ではLlil値は冷却
速度に対し最も安定しているもののその値は大きくグレ
ー色は得られず発色効果がない。In the case of sample No. 1 to which Be is not added, the Lll value changes significantly due to a change in the cooling rate. On the other hand, Be
In the material No. 2 in which 0.02% of L was added, the change in the Lll value was small. In addition, No. 1 with 0.10% Be added
, 3, the variation in L* value becomes even smaller. However, in No. 4 with 0.20% addition, although the Llil value is the most stable with respect to the cooling rate, the value is large and no gray color is obtained and there is no coloring effect.
Beを添加したときの効果は、Llll値が安定するの
みでなく、a”値も安定する。a鬼値におよぼす効果は
、Beの添加量によって大きく変らない。また、blL
値はBeの添加量の増加とともに上昇し、0.2%Be
添加の合金では青みのグレーは得られにくい。The effect of adding Be is not only to stabilize the Llll value, but also to stabilize the a'' value.The effect on the a value does not change greatly depending on the amount of Be added.
The value increases with increasing amount of Be added, and 0.2%Be
It is difficult to obtain a bluish gray color with additive alloys.
実施例2[圧延板を用いた皮膜色の調査コ表3に示すN
011〜No、12の主成分を有するアルミニウム合金
鋳塊(500tx 100OW)を半連続鋳造により作
成し、15mm面削後1斗40℃に加熱し、熱間圧延し
6ffl11板とした。冷間圧延により 3mm板とし
た後、200〜500℃で中間焼鈍し、冷却圧延により
211IIl板とした。Example 2 [Investigation of film color using rolled plate] N shown in Table 3
An aluminum alloy ingot (500tx 100OW) having main components No. 011 to No. 12 was produced by semi-continuous casting, and after facing 15 mm, heated to 40° C. and hot rolled into a 6ffl11 plate. After forming a 3 mm plate by cold rolling, intermediate annealing was performed at 200 to 500°C, and a 211II plate was obtained by cooling rolling.
この板を実施例1と同じ条件で陽極酸化処理し、板幅方
向、圧延方向による皮膜色の平均と変動幅(ALll値
、ABit値:Δb*値;△L ” −L ” man
−L ” +ml ΔB IK −a” mat
a 、1 △b ” −b ” may−
b’m+n)を調査した。This plate was anodized under the same conditions as in Example 1, and the average and variation width of the film color depending on the plate width direction and rolling direction (ALll value, ABit value: Δb* value; ΔL ” -L ” man
-L ” +ml ΔB IK -a” mat
a , 1 △b ” -b ” may-
b'm+n) was investigated.
その結果を表4に示す。The results are shown in Table 4.
合金成分(重ht%)および中間焼鈍温度性1)Tiは
0.04%、それ以外の不純物は0.01%以下。Alloy components (weight ht%) and intermediate annealing temperature properties 1) Ti is 0.04%, other impurities are 0.01% or less.
表4 陽極酸化皮膜色とその振れ幅
[発明の効果]
本発明における合金およびその加工材は、安定した青み
グレー色の陽極酸化皮膜を得ることができる。Table 4: Anodic oxide film color and its variation [Effects of the invention] The alloy in the present invention and its processed material can provide a stable bluish-gray anodic oxide film.
第1図は鋳塊の冷却速度と陽極酸化皮膜色との関係を示
すグラフである。
ンru遇りl(”巳/記0)FIG. 1 is a graph showing the relationship between the cooling rate of the ingot and the color of the anodic oxide film. Nru encounter l (”snake/ki 0)
Claims (2)
、0.03%≦Si≦0.5%、0.005≦Cu≦0
.5%と0.02%≦Be≦0.10%を含み、残部A
lと不可避的不純物から成るアルミニウム合金を溶解し
、これを2〜50℃/secの冷却速度で凝固させて鋳
塊とすることを特徴とする安定した青みグレー色の陽極
酸化皮膜を生成するアルミニウム合金鋳塊の製造方法。(1) 0.3%≦Fe≦2.2% (weight%, same below)
, 0.03%≦Si≦0.5%, 0.005≦Cu≦0
.. 5% and 0.02%≦Be≦0.10%, the remainder A
Aluminum that produces a stable bluish-gray anodic oxide film characterized by melting an aluminum alloy consisting of l and inevitable impurities and solidifying it at a cooling rate of 2 to 50°C/sec to form an ingot. Method for manufacturing alloy ingots.
い温度で圧延、押出し、熱処理の組合せからなる加工熱
処理法で加工することを特徴とする安定した青みグレー
色の陽極酸化皮膜を生成するアルミニウム合金の製造方
法。(2) A stable bluish-gray anodic oxide film is produced by processing the alloy ingot according to claim (1) using a processing heat treatment method consisting of a combination of rolling, extrusion, and heat treatment at a temperature lower than 550°C. A method for producing aluminum alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10176589A JPH02282495A (en) | 1989-04-24 | 1989-04-24 | Production of aluminum alloy material forming stable bluish gray anodic oxide film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10176589A JPH02282495A (en) | 1989-04-24 | 1989-04-24 | Production of aluminum alloy material forming stable bluish gray anodic oxide film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02282495A true JPH02282495A (en) | 1990-11-20 |
Family
ID=14309323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10176589A Pending JPH02282495A (en) | 1989-04-24 | 1989-04-24 | Production of aluminum alloy material forming stable bluish gray anodic oxide film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02282495A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2473051A (en) * | 2009-09-01 | 2011-03-02 | Eurometal S A | Cold rolling a strip of Al-Si-Fe-Be alloy |
GB2473050A (en) * | 2009-08-29 | 2011-03-02 | P P H Eko Swiat | An aluminium-silicon-iron-beryllium alloy |
-
1989
- 1989-04-24 JP JP10176589A patent/JPH02282495A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2473050A (en) * | 2009-08-29 | 2011-03-02 | P P H Eko Swiat | An aluminium-silicon-iron-beryllium alloy |
GB2473050B (en) * | 2009-08-29 | 2014-02-19 | P P H Eko Swiat Jaroslaw Sliwakowski | Aluminium alloy and method for manufacturing of an aluminium alloy |
GB2473051A (en) * | 2009-09-01 | 2011-03-02 | Eurometal S A | Cold rolling a strip of Al-Si-Fe-Be alloy |
GB2473051B (en) * | 2009-09-01 | 2011-11-02 | Eurometal S A | A method for rolling of an aluminum alloy strip and an aluminum alloy strip, sheet and foil |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2432694A1 (en) | Production of aluminum alloy foils having high strength and good rollability | |
JPH02282495A (en) | Production of aluminum alloy material forming stable bluish gray anodic oxide film | |
JPH0259204B2 (en) | ||
JPS5810455B2 (en) | Aluminum alloy for rolling | |
US5110371A (en) | Aluminum alloys for forming colored anodic oxide films thereon and method for producing a sheet material of the alloy | |
JP2606469B2 (en) | Aluminum alloy for spontaneous coloring and production method thereof | |
JPH0372048A (en) | Aluminum alloy forming stable gray-colored anodically oxidized film | |
JPH02310347A (en) | Manufacture of aluminum alloy material forming stable bluish gray anodic oxidation film | |
JP2643632B2 (en) | Aluminum alloy wrought material for forming colored oxide film and method for producing the same | |
JPH07100837B2 (en) | Aluminum alloy for wrought and its manufacturing method | |
JP2544233B2 (en) | Aluminum alloy having a blue-gray color tone after anodizing treatment and method for producing the same | |
JPH0146598B2 (en) | ||
JPS6362836A (en) | Aluminum-alloy rolled sheet combining high strength with heat resistance and production thereof | |
JPH0971831A (en) | Gray-colored aluminum alloy sheet little in yellowish and reddish color tone after anodic oxidation treatment and its production | |
JPH08311589A (en) | Aluminum alloy material for reddish beige-colored anodic oxidation coating and its production | |
JPH01215946A (en) | Aluminum alloy material generating anodic oxidation film having bluish gray color and its manufacture | |
JPH05132731A (en) | Aluminum alloy having a gold color tone after anodic oxidation treatment and its production | |
JPH0512418B2 (en) | ||
JPH06340939A (en) | Aluminum alloy for developing pale gray color small in tincture of yellow | |
JPH0375640B2 (en) | ||
JPH07197166A (en) | Gray color developed aluminum alloy | |
JPS58224144A (en) | Aluminum alloy developing color spontaneously | |
JPS6120617B2 (en) | ||
JPS6357735A (en) | Rolled sheet of heat resistant aluminum alloy and its production | |
JPH08269649A (en) | Production of aluminum alloy material for anodic oxidation treatment |