[go: up one dir, main page]

JPH0228147A - Production of lactam derivative - Google Patents

Production of lactam derivative

Info

Publication number
JPH0228147A
JPH0228147A JP63177057A JP17705788A JPH0228147A JP H0228147 A JPH0228147 A JP H0228147A JP 63177057 A JP63177057 A JP 63177057A JP 17705788 A JP17705788 A JP 17705788A JP H0228147 A JPH0228147 A JP H0228147A
Authority
JP
Japan
Prior art keywords
formula
reaction
acid
phosphate
acid catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63177057A
Other languages
Japanese (ja)
Other versions
JP2720170B2 (en
Inventor
Shigemitsu Tachi
太智 重光
Yoshimasa Takahashi
良昌 高橋
Yoshikimi Yamamoto
山本 義公
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ouchi Shinko Chemical Industrial Co Ltd
Original Assignee
Ouchi Shinko Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ouchi Shinko Chemical Industrial Co Ltd filed Critical Ouchi Shinko Chemical Industrial Co Ltd
Priority to JP63177057A priority Critical patent/JP2720170B2/en
Publication of JPH0228147A publication Critical patent/JPH0228147A/en
Application granted granted Critical
Publication of JP2720170B2 publication Critical patent/JP2720170B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Other In-Based Heterocyclic Compounds (AREA)
  • Hydrogenated Pyridines (AREA)
  • Pyrrole Compounds (AREA)

Abstract

PURPOSE:To obtain the subject compound useful for synthetic intermediate of nylon in short reaction time, without necessity of neutralization, without corrosiveness of stainless vessel, in high purification and high yield by reacting aniline derivative and lactone derivative using specific acid catalyst. CONSTITUTION:An aniline derivative expressed by formula I (R<1>, R<2> is H, 1-8C alkyl, alkoxy, dialkylamino, alkylamino, arylamino or halogen) is reacted with a lactone derivative expressed by formula II (R<3> is H, 1-9C alkyl; n is 2-13), preferably using 0.5-3.0mol compound expressed by formula I to 1mol compound expressed by formula II at 50-300 deg.C, especially 100-250 deg.C using phosphoric acid and/or phosphate (e.g., phosphoric acid, polyphosphoric acid or sodium hydrogen phosphate) as acid catalyst to obtain a compound expressed by formula III. Besides, amount of use of the acid catalyst is preferably in a range of 0.001-1.0mol, especially 0.01-0.5mol to 1mol of compound expressed by formula II.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、酸触媒としてリン酸及び/又はリンIII存
在下、下記反応式(1)で示される反応に従い一般式[
I]で示されるアニリン誘導体と一般式[n]で示され
るラクトン誘導体とを反応させて、−数式[III]で
示されるラクタム誘導体を製造する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to the reaction of the general formula [
The present invention relates to a method for producing a lactam derivative represented by formula [III] by reacting an aniline derivative represented by formula [I] with a lactone derivative represented by general formula [n].

[I] [II] (CH2)n   CH−R” [I11] 」−R20(1) (ただし、式中、R1、R2は水素原子、炭素原子1か
ら8のアルキル基、アルコキシ基、ジアルキルアミノ基
、アルキルアミノ基、アリールアミノ基及びハロゲンを
、R3は水素原子、炭素原子1から9のアルキル基を、
nは2から13の整数を表す。) (従来の技術及び発明が解決しようとする問題点) ラクタム誘導体は、ナイロンの合成中間体として有用な
ものでおる。
[I] [II] (CH2)n CH-R" [I11] "-R20(1) (wherein, R1 and R2 are hydrogen atoms, alkyl groups having 1 to 8 carbon atoms, alkoxy groups, dialkylamino group, alkylamino group, arylamino group and halogen, R3 is a hydrogen atom, an alkyl group having 1 to 9 carbon atoms,
n represents an integer from 2 to 13. ) (Prior art and problems to be solved by the invention) Lactam derivatives are useful as intermediates in the synthesis of nylon.

ラクタム誘導体の製造法について、N−フェニル−2−
ピロリドンを例に説明すると、従来シクロペンタノンと
アニリンの反応[HlKunz−ek、G、3arn 
i kOW:Chem、3er。
Regarding the production method of lactam derivatives, N-phenyl-2-
Taking pyrrolidone as an example, conventional reaction of cyclopentanone and aniline [HlKunz-ek, G, 3arn
i kOW: Chem, 3er.

、102.351 (1969)]、]4−ブロモーn
−ブチリルクロライとアニリンの反応[M。
, 102.351 (1969)], ]4-bromo n
-Reaction of butyrylchloride and aniline [M.

S、Manhas、S、J、JenCJ :J、Orc
]、Chem、、32.1246 (1967)]、]
T−ブチロラクトとアニリンの反応[W、L。
S, Manhas, S, J, JenCJ: J, Orc.
], Chem, 32.1246 (1967)], ]
Reaction of T-butyrolact and aniline [W, L.

Meyer、W、P、Vanghan :J、O−rg
、Chem、、22.1554 (1957)]、]T
−ブチロラクトとアニリンの塩酸塩の反応[8,S、K
uka l enko、N、A、 Gr−acheva
 :Kh in、Geterots i −に!、5o
ed in、7.773 (1971)、Chem、A
bstr、、76.250079(1972)]等が報
告されていると共に精製方法としては、蒸留精製法ある
いは再結晶法が用いられている。
Meyer, W., P., Vanghan: J., O-rg.
, Chem, 22.1554 (1957)], ]T
-Reaction of butyrolactate and aniline hydrochloride [8,S,K
ukal enko, N, A, Gr-acheva
:Kh in, Geterots i-ni! ,5o
ed in, 7.773 (1971), Chem, A.
bstr, 76.250079 (1972)], and the purification method used is a distillation purification method or a recrystallization method.

なあ、工業的にN−フェニル−2−ピロリドンの様な高
沸点物(N−フェニル−2−ピロリドン沸点(21mm
HL)=195〜200℃)の蒸留精製を行う場合、蒸
留釜には熱伝導率、耐久性(耐圧性)、蒸留釜の材料費
等を考慮して、ステンレス製の蒸留釜を用いるのが通例
である。
By the way, industrially, high-boiling substances such as N-phenyl-2-pyrrolidone (N-phenyl-2-pyrrolidone boiling point (21mm
When carrying out distillation purification at temperatures (HL) = 195 to 200°C, it is recommended to use a stainless steel distillation pot, taking into account thermal conductivity, durability (pressure resistance), material cost of the still, etc. It is customary.

上記の製造法及び精製法のうち工業的に製造する場合、
反応としては収率、反応工程の短さ、操作性等の観点か
ら、アニリンとγ−ブチロラクトンの反応が、また精製
法としては簡便さの観点から、蒸留精製法が優れている
と判断される。
Among the above manufacturing methods and purification methods, when manufacturing industrially,
The reaction of aniline and γ-butyrolactone is judged to be superior in terms of yield, shortness of the reaction process, and operability, and the distillation purification method is judged to be superior in terms of simplicity as a purification method. .

しかしながら、アニリンとγ−ブチロラクトンとの反応
によるN−フェニル−2−ピロリドンの製造法の問題と
しては、上記のW、L、MeV−erらの行った無触媒
反応では、反応時間が3日間と非常に長く工業的に好ま
しくない。また、上記のS、S、Kuka l enk
oらが行ったアニリンの塩酸塩とγ−ブチロラクトンの
反応では反応時間は4〜20時間と短くなるものの、塩
酸はステンレスの腐蝕性を有しているため、ガラス製又
はグラスライニング製反応釜にて反応俊、中和し、その
後ステンレス製蒸留釜に移し、蒸留精製を行わなければ
ならず、操作性の点で非常に繁雑であるという問題点が
ある。
However, the problem with the method for producing N-phenyl-2-pyrrolidone through the reaction of aniline and γ-butyrolactone is that in the noncatalytic reaction conducted by W, L, MeV-er et al., the reaction time was only 3 days. Very long and industrially undesirable. Also, the above S, S, Kuka le enk
Although the reaction time of the reaction between aniline hydrochloride and γ-butyrolactone conducted by et al. was shortened to 4 to 20 hours, hydrochloric acid corrodes stainless steel, so it is difficult to use a glass or glass-lined reaction vessel. The problem is that it is very complicated in terms of operability, as it must be reacted and neutralized, then transferred to a stainless steel distillation pot, and purified by distillation.

(問題点を解決するための手段) 本発明者らは、上記の問題点を克服すべく鋭意研究を重
ねた結果、酸触媒としてリン酸及び/又はリン酸塩を用
いることによりアニリン誘導体[I]とラクトン誘導体
[II]との脱水縮合反応が極めて短時間に終了し、か
つ何ら中和することなく引き続いて減圧蒸留精製するこ
とにより、極めて容易にラクタム誘導体[111Jを高
収率で得られること、並びにリン酸及び/又はリン酸塩
を酸触媒として用いた場合、ステンレスを何ら腐蝕しな
いことを見出し、本発明を完成させるに至った。
(Means for Solving the Problems) As a result of extensive research in order to overcome the above problems, the present inventors have discovered that aniline derivatives [I ] and the lactone derivative [II] is completed in a very short time, and the lactam derivative [111J] can be obtained very easily in high yield by subsequent purification by distillation under reduced pressure without any neutralization. In addition, the present inventors have discovered that stainless steel does not corrode at all when phosphoric acid and/or phosphate is used as an acid catalyst, leading to the completion of the present invention.

本発明の製造法は、酸触媒としてリン酸及び/又はリン
酸塩を使用することから、上記の従来法に比較して反応
時間の短縮化、中和操作の省略及びステンレス反応釜の
腐蝕性がないことより反応終了後減圧蒸留精製も同一の
ステンレス反応釜で行い得ることに伴う操作の簡略化が
できることから、経済的に有利であり工業化実施可能な
方法である。
Since the production method of the present invention uses phosphoric acid and/or phosphate as an acid catalyst, the reaction time is shortened, the neutralization operation is omitted, and the stainless steel reaction pot is less corrosive than the above-mentioned conventional method. This is an economically advantageous and industrially viable method because the vacuum distillation purification after the completion of the reaction can be carried out in the same stainless steel reaction vessel, which simplifies the operation.

以下、本発明の実施態様を具体的に説明する。Embodiments of the present invention will be specifically described below.

本発明の製造法に用いる酸触媒としてのリン酸及び/又
はリン酸塩は、リン酸、ボ1ノリン酸、メタリン酸、リ
ン酸二水素アンモニウム、リン酸水素ニアンモニウム、
リン酸三アンモニウム、リン酸二水素ナトリウム、リン
酸−ナトリウム、リン酸水素二ナトリウム、リン酸三ナ
トリウム、リン酸二水素カリウム、リン酸−カリウム、
リン酸水素二カリウム、リン酸三カリウム、ビス(リン
酸二水素)カルシウム、リン酸−カルシウム、リン酸水
素カルシウム、リン酸二カルシウム、リン酸三カルシウ
ム、リン酸水素ナトリウム等が挙げられるが、これらに
限定されるものではない。
The phosphoric acid and/or phosphate salt used as an acid catalyst in the production method of the present invention includes phosphoric acid, bonolinic acid, metaphosphoric acid, ammonium dihydrogen phosphate, ammonium hydrogen phosphate,
Triammonium phosphate, sodium dihydrogen phosphate, sodium phosphate, disodium hydrogen phosphate, trisodium phosphate, potassium dihydrogen phosphate, potassium phosphate,
Examples include dipotassium hydrogen phosphate, tripotassium phosphate, bis(dihydrogen phosphate) calcium, calcium phosphate, calcium hydrogen phosphate, dicalcium phosphate, tricalcium phosphate, sodium hydrogen phosphate, etc. It is not limited to these.

本発明の製造法に用いるアニリン誘導体[I]は、アニ
リン、p−トルイジン、m−トルイジン、o−トルイジ
ン、混合トルイジン、2,3−キシリジン、2,4−キ
シリジン、2,5−キシリジン、2,6−キシリジン、
3,4−キシリジン、3.5−キシリジン、混合キシリ
ジン、p−エチルアニリン、m−エチルアニリン、0−
エチルアニリン、p−n−プロピルアニリン、p−n−
ブチルアニリン、p−n−ペンチルアニリン、pn−ヘ
キシルアニリン、p−n−へブチルアニリン、p−n−
オクチルアニリン、N、N−ジメチル−p−フェニレン
ジアミン、N、N−ジエチル−p−フェニレンジアミン
、N−メチル−p−フェニレンジアミン、N−シクロへ
キシル−p−フェニレンジアミン、N−フェニル−p−
フェニレンジアミン、N−トリル−p−フェニレンジア
ミン、0−クロロアニリン、m−クロロアニリン、p−
クロロアニリン、0−ブロモアニリン、m−プロモアニ
リン、p−ブロモアニリン、p−メトキシアニリン、p
〜エトキシアニリン等が挙げられるが、これらに限定さ
れるものではない。
Aniline derivatives [I] used in the production method of the present invention include aniline, p-toluidine, m-toluidine, o-toluidine, mixed toluidine, 2,3-xylidine, 2,4-xylidine, 2,5-xylidine, 2 ,6-xylidine,
3,4-xylidine, 3,5-xylidine, mixed xylidine, p-ethylaniline, m-ethylaniline, 0-
Ethylaniline, pn-propylaniline, pn-
Butylaniline, pn-pentylaniline, pn-hexylaniline, pn-hebutylaniline, pn-
Octylaniline, N,N-dimethyl-p-phenylenediamine, N,N-diethyl-p-phenylenediamine, N-methyl-p-phenylenediamine, N-cyclohexyl-p-phenylenediamine, N-phenyl-p −
Phenylenediamine, N-tolyl-p-phenylenediamine, 0-chloroaniline, m-chloroaniline, p-
Chloroaniline, 0-bromoaniline, m-promoaniline, p-bromoaniline, p-methoxyaniline, p
-ethoxyaniline, etc., but are not limited to these.

本発明の製造法に用いるラクトン誘導体[II]は、γ
−ブチロラクトン、γ−バレロラクトン、δ−バレロラ
クトン、ε−カプロラクトン、T−ヘキサラクトン、γ
−ヘプタラクトン、γ−ノナラクトン、δ−ノナラクト
ン、δ−デカラクトン、T−ウンデカラクトン、γ−ド
デカラクトン、δ−ドデカラクトン、δ−テトラデカラ
クトン、15−ペンタデカラクトン等が挙げられるが、
これらに限定されるものではない。
The lactone derivative [II] used in the production method of the present invention is γ
-butyrolactone, γ-valerolactone, δ-valerolactone, ε-caprolactone, T-hexalactone, γ
-Heptalactone, γ-nonalactone, δ-nonalactone, δ-decalactone, T-undecalactone, γ-dodecalactone, δ-dodecalactone, δ-tetradecalactone, 15-pentadecalactone, etc.
It is not limited to these.

本発明の製造法の反応は、溶媒存在下おるいは無溶媒下
、反応中生成する水を系外に留去しながら行うのが好ま
しいか、溶媒存在下反応を行う場合用いる溶媒としては
、ベンゼン、トルエン、キシレン、メシチレン、エチル
ベンゼン、プロピルベンゼン、ブチルベンゼン、ジエチ
ルベンゼン等が挙げられるが、これらに限定されるもの
ではない。
The reaction of the production method of the present invention is preferably carried out in the presence of a solvent or in the absence of a solvent, while water produced during the reaction is distilled out of the system, or when the reaction is carried out in the presence of a solvent, the solvent used is Examples include, but are not limited to, benzene, toluene, xylene, mesitylene, ethylbenzene, propylbenzene, butylbenzene, diethylbenzene and the like.

本発明の製造法に用いる酸触媒としてのリン酸及び/又
はリン酸塩の使用量は、ラクトン誘導体[■]1モルに
対して0.001モルへ−1,0モル、好ましくは0.
01モル〜0.5モルの範囲である。
The amount of phosphoric acid and/or phosphate used as the acid catalyst used in the production method of the present invention is from 0.001 mol to 1.0 mol, preferably 0.00 mol, per 1 mol of lactone derivative [■].
The amount ranges from 0.01 mol to 0.5 mol.

本発明の製造法に用いるアニリン誘導体[I]の使用量
は、ラクトン誘導体[■]1モルに対して0.5モル〜
3.0モル、好ましくは1.0モル−2i 0モルの範
囲である。
The amount of aniline derivative [I] used in the production method of the present invention is 0.5 mol to 1 mol of lactone derivative [■].
3.0 mol, preferably in the range 1.0 mol - 2i 0 mol.

本発明の製造法に用いる溶媒存在下で反応を行う場合の
溶媒使用量は、ラクトン誘導体[■]1モルに対して1
0d〜1100(、好ましくは50IIIIl〜500
rIIIlの範囲である。
When carrying out the reaction in the presence of a solvent used in the production method of the present invention, the amount of solvent used is 1 mole of lactone derivative [■].
0d~1100 (, preferably 50III1~500
rIIIl range.

本発明の製造法に用いる反応温度は、50’C〜300
℃の範囲で行うことができるが、好ましくは100℃〜
250℃の範囲でおる。
The reaction temperature used in the production method of the present invention is 50'C to 300°C.
It can be carried out at a temperature range of 100°C to 100°C.
Temperature range is 250℃.

(発明の効果) 本発明の製造法は、アニリン誘導体[I]とラクトン誘
導体[■]からラクタム誘導体[I[1]を得る反応に
おいて、酸触媒としてリン酸及び/又はリンr!i塩を
用いることにより、反応と蒸留精製とを同一のステンレ
ス製反応釜にて、同反応釜を腐蝕させることなく、短時
間反応で、中和操作も省略でき、かつ高収率、高純度で
容易にラクタム誘導体[I11]を1昇ることを可能な
らしめた。
(Effects of the Invention) The production method of the present invention provides phosphoric acid and/or phosphorus r! as an acid catalyst in the reaction to obtain a lactam derivative [I[1] from an aniline derivative [I] and a lactone derivative [■]. By using i-salt, the reaction and distillation purification can be carried out in the same stainless steel reaction vessel, the reaction time can be shortened without corroding the reaction vessel, neutralization operation can be omitted, and high yield and high purity can be achieved. It was made possible to easily raise the lactam derivative [I11] by 1.

次に、N−フェニル−2−ピロリドンの製造法を例に挙
げて、実施例により本発明の効果をざらに詳細に説明す
る。
EXAMPLES Next, the effects of the present invention will be roughly explained in detail using Examples, taking a method for producing N-phenyl-2-pyrrolidone as an example.

(実施例) [実施例−1,2、比較例1〜3] 還流冷却器、攪拌渫、温度計を装備した四つロフラスコ
にγ−ブチロラクトン86.07[1゜0モル1、アニ
リン139.5[1,5モル1、ステンレス(sus 
 304)の0.1Rgの単位連精秤した約1gのテス
トピース及び触媒の所定量を仕込み、加熱昇温後、攪拌
上生成する水を系外へ留去しながら、所定温度で所定時
間反応を行い所定量の水(18d)が留去したところで
反応を終了した。
(Example) [Examples 1 and 2, Comparative Examples 1 to 3] 86.07 [1°0 mol 1] of γ-butyrolactone, 139.9% of aniline was placed in a four-bottle flask equipped with a reflux condenser, stirring paddle, and thermometer. 5 [1.5 mol 1, stainless steel (sus
Approximately 1 g of a 0.1Rg test piece of 304) weighed accurately in units and a predetermined amount of catalyst were charged, and after heating and raising the temperature, the reaction was carried out at a predetermined temperature for a predetermined time while stirring and distilling the generated water out of the system. The reaction was terminated when a predetermined amount of water (18d) was distilled off.

この時点で、ステンレスのテストピースを取り出し、ア
セトンにて表面に付着したオイル状物等をそのテストピ
ースの表面を傷つけることなく除去し、屓屹後0.I!
Itgの単位迄、再び精秤し重量変化率をテストピース
の腐蝕率とした。
At this point, take out the stainless steel test piece, remove any oily substances adhering to the surface with acetone without damaging the surface of the test piece, and let it melt to zero. I!
It was again precisely weighed to the unit of Itg, and the weight change rate was taken as the corrosion rate of the test piece.

次に、反応系にキシレン100dと中和当量の炭酸ナト
リウムを溶解させた水溶液100dを添加し、60℃で
30分間加熱攪拌後、静置分液した。ざらに、水100
m1を添加し、60℃で30分間加熱攪拌後静置分液す
るという水洗操作を2回繰り返し行った。得られた有機
相からキシレンを留去後、減圧蒸留により目的物である
N−フェニル−2−ピロリドンを沸点:190℃〜19
2’C(20mmH9>の留分として得た。その結果を
表−1に示した。
Next, 100 d of an aqueous solution in which 100 d of xylene and a neutralizing amount of sodium carbonate were dissolved was added to the reaction system, and after heating and stirring at 60° C. for 30 minutes, the mixture was left to separate. Zara, water 100
The water washing operation of adding ml, heating and stirring at 60° C. for 30 minutes, and then standing to separate the liquids was repeated twice. After distilling off xylene from the obtained organic phase, the target product N-phenyl-2-pyrrolidone was distilled under reduced pressure with a boiling point of 190°C to 19°C.
It was obtained as a fraction of 2'C (20mmH9>). The results are shown in Table 1.

表−1から分るように、酸触媒として使用した硫酸、塩
酸は反応を促進させるが、しかしステンレス(sus−
304>のテストピースを著しく腐蝕させる(比較例−
2,3)に対して、酸触媒として使用したリン酸、リン
酸二水素アンモニウムは、反応の促進能力が5A酸、塩
酸と同等おるいはそれ以上であると共に、ステンレス(
SUS304)のテストピースを全く腐蝕させないこと
が明確に分る(実施例−1,2)。
As can be seen from Table 1, sulfuric acid and hydrochloric acid used as acid catalysts accelerate the reaction, but stainless steel (sus-
304> test piece was significantly corroded (comparative example -
2, 3), the phosphoric acid and ammonium dihydrogen phosphate used as acid catalysts have the same or higher ability to promote the reaction than 5A acid and hydrochloric acid, and also
It is clearly seen that the test piece made of SUS304) was not corroded at all (Examples 1 and 2).

[実施例−3,4] 実施例−1,2におけるキシレン100m1、中和当量
の炭酸ナトリウム水溶液100dを用いての中和操作及
び水100m1を用いての水洗操作を省略し、反応終了
後、同じ反応容器(フラスコ)で減圧蒸留した以外は、
実施例−1,2と同一操作を行った。なお、ステンレス
(sus−304>のテストピースは、減圧蒸留精製後
、フラスコから取り出し、実施例−1,2と同一の操作
にて重量変化率を測定した。その結果は表−2に示した
[Examples 3 and 4] The neutralization operation using 100 ml of xylene and 100 d of a neutralization equivalent sodium carbonate aqueous solution and the water washing operation using 100 ml of water in Examples 1 and 2 were omitted, and after the reaction was completed, Except for vacuum distillation in the same reaction vessel (flask),
The same operation as in Examples 1 and 2 was performed. In addition, the stainless steel (sus-304) test piece was taken out from the flask after being purified by vacuum distillation, and the weight change rate was measured using the same procedure as in Examples 1 and 2. The results are shown in Table 2. .

表−2から分るように、中和操作を省略して反応終了後
、減圧蒸留精製を行っても、ステンレス(sus−30
4)のテストピースを腐蝕させることなく、高収率、高
純度で目的物であるN−フェニル−2−ピロリドンが1
昇られることが分る。
As can be seen from Table 2, even if the neutralization operation is omitted and vacuum distillation purification is performed after the reaction, stainless steel (sus-30
4) The target product, N-phenyl-2-pyrrolidone, was produced with high yield and high purity without corroding the test piece.
I know that I will ascend.

[実施例−5、比較例−4,5] 実施例−1、比較例−1,2において、原料仕込み時に
キシレン100r111を添加し、キシレン還流下反応
を行い、かつ反応時間が35時間で反応を終了した以外
は、実施例−1、比較例−1,2と同一操作を行った。
[Example-5, Comparative Examples-4 and 5] In Example-1 and Comparative Examples-1 and 2, 100r111 of xylene was added at the time of raw material preparation, the reaction was carried out under xylene reflux, and the reaction took 35 hours. The same operations as in Example 1 and Comparative Examples 1 and 2 were performed except that .

その結果を表−3に示した。The results are shown in Table-3.

表−3から分るように、酸触媒としての硫酸はテストピ
ース(sus−304)を腐蝕させるに対して、酸触媒
としてのリン酸はテストピース(sus−304>を何
ら腐蝕させることなく反応を促進し、高収率、高純度に
て目的物であるNフェニル−2−ピロリドンが得られる
ことが分る。
As can be seen from Table 3, sulfuric acid as an acid catalyst corrodes the test piece (SUS-304), while phosphoric acid as an acid catalyst reacts without corroding the test piece (SUS-304). It can be seen that the target product, N-phenyl-2-pyrrolidone, can be obtained in high yield and purity.

Claims (1)

【特許請求の範囲】[Claims] (1)一般式[ I ] ▲数式、化学式、表等があります▼[ I ] (ただし、式中、R^1、R^2は水素原子、炭素原子
1から8のアルキル基、アルコキシ基、ジアルキルアミ
ノ基、アルキルアミノ基、アリールアミノ基及びハロゲ
ンを表す。) で示されるアニリン誘導体を、酸触媒の存在下、一般式
[II] ▲数式、化学式、表等があります▼[II] (ただし、式中、R^3は水素原子、炭素原子1から9
のアルキル基を、nは2〜13の整数を表す。) で示されるラクトン誘導体と反応させて、一般式[III
] ▲数式、化学式、表等があります▼[III] で示されるラクタム誘導体を製造する方法において、酸
触媒としてリン酸及び/又はリン酸塩を用いることを特
徴とするラクタム誘導体の製造法。
(1) General formula [I] ▲Mathematical formulas, chemical formulas, tables, etc.▼[I] (In the formula, R^1 and R^2 are hydrogen atoms, alkyl groups with 1 to 8 carbon atoms, alkoxy groups, represents a dialkylamino group, an alkylamino group, an arylamino group, and a halogen) in the presence of an acid catalyst. , where R^3 is a hydrogen atom, carbon atoms 1 to 9
n represents an integer of 2 to 13. ) is reacted with a lactone derivative represented by the general formula [III
] ▲There are mathematical formulas, chemical formulas, tables, etc.▼ [III] A method for producing a lactam derivative characterized by using phosphoric acid and/or a phosphate salt as an acid catalyst.
JP63177057A 1988-07-18 1988-07-18 Method for producing lactam derivatives Expired - Lifetime JP2720170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63177057A JP2720170B2 (en) 1988-07-18 1988-07-18 Method for producing lactam derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63177057A JP2720170B2 (en) 1988-07-18 1988-07-18 Method for producing lactam derivatives

Publications (2)

Publication Number Publication Date
JPH0228147A true JPH0228147A (en) 1990-01-30
JP2720170B2 JP2720170B2 (en) 1998-02-25

Family

ID=16024375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63177057A Expired - Lifetime JP2720170B2 (en) 1988-07-18 1988-07-18 Method for producing lactam derivatives

Country Status (1)

Country Link
JP (1) JP2720170B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20121070A1 (en) * 2012-06-19 2013-12-20 Novamont Spa PREPARATION PROCESS OF COMPLEX OLIGOMERIC STRUCTURES
CN114605307A (en) * 2022-03-10 2022-06-10 浙江新和成股份有限公司 Amination reaction and catalyst therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49132096A (en) * 1973-04-19 1974-12-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49132096A (en) * 1973-04-19 1974-12-18

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20121070A1 (en) * 2012-06-19 2013-12-20 Novamont Spa PREPARATION PROCESS OF COMPLEX OLIGOMERIC STRUCTURES
WO2013189915A1 (en) * 2012-06-19 2013-12-27 Novamont S.P.A. Process for the preparation of complex oligomeric structures.
EA027772B1 (en) * 2012-06-19 2017-08-31 НОВАМОНТ С.п.А. Process for the preparation of complex oligomeric structures
CN114605307A (en) * 2022-03-10 2022-06-10 浙江新和成股份有限公司 Amination reaction and catalyst therefor

Also Published As

Publication number Publication date
JP2720170B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
US5453516A (en) Preparation of 5-membered ring heterocycles
CA2373834C (en) A process for the production of thiazolidine
US3424795A (en) Alpha,alpha&#39;-bis(aminoaryl)-xylenes
JPH05148206A (en) Preparation of monoester-monoamide, monoacid- monoamide and bisamide of once and twice substituted malonic acid, compound prepared by the process
JP2002531428A (en) Method for purifying triethanolamine
JPH0228147A (en) Production of lactam derivative
CN116134023A (en) Process for preparing aminofurans
SU577970A3 (en) Method of preparing alkanelamine derivatives or salts thereof
Hurd et al. Reaction of propiolactone with heterocyclic amines
JP3205618B2 (en) Method for producing aniline containing fluorine and novel aniline containing fluorine
JPH0383954A (en) Method of reducing the contents of primary and secondary amines in tertiary amine
DeBernardis et al. Evaluation of the side arm of (naphthylvinyl) pyridinium inhibitors of choline acetyltransferase
US3852287A (en) Preparation of thionamides
JP2729806B2 (en) Purification method of lactam derivatives
US2827483A (en) Trialkylamine salts of dithiocarbanilic acids
DK169621B1 (en) Propionamidine derivatives and process for their preparation
US4035375A (en) N-Substituted amino pyridines and derivatives thereof
CZ16596A3 (en) Process for preparing 2-chloropyridines substituted in position 2
CA1066305A (en) PROCESS FOR MANUFACTURING N-ACYL DERIVATIVES OF GLYCINES .alpha.-SUBSTITUTED BY RADICALS OF AROMATIC NATURE AND NOVEL PRODUCTS THEREOF
US20070004937A1 (en) Methods for the preparation of phosphonic acid derivatives
EP0131921B1 (en) Ortho-(mono-substituted amino)phenylimines and production thereof
US4588837A (en) Process for the preparation of fluorocarboxylic acids
Cheng et al. Synthesis of and α-and β-Amino Ketone Analogs of Amino Acids as Antibacterial Agents
US3291827A (en) Process for preparing n, n&#39;-dicyanoamidine salts
JPH0774195B2 (en) Process for producing N-substituted-α, β-unsaturated dicarboxylic acid cyclic imide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11