JPH02280811A - gas separation equipment - Google Patents
gas separation equipmentInfo
- Publication number
- JPH02280811A JPH02280811A JP1101451A JP10145189A JPH02280811A JP H02280811 A JPH02280811 A JP H02280811A JP 1101451 A JP1101451 A JP 1101451A JP 10145189 A JP10145189 A JP 10145189A JP H02280811 A JPH02280811 A JP H02280811A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- tank
- nitrogen
- valve
- adsorption tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Of Gases By Adsorption (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は気体分離装置に係り、特にPSA式(Pres
sure Swing Adsorption)の気体
分離装置に同し、例えば窒素発生H置又は酸素発生装置
として用いて好適な気体分離装置に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a gas separation device, and in particular to a PSA type (Pres
The present invention relates to a gas separation device suitable for use as a nitrogen generating device or an oxygen generating device, for example.
従来の技術
一般に、PSA式気体分離装置は、分子ふるいカーボン
からなる吸着剤を用いて、空気を窒素と酸素に分離し、
いずれか一方を製品ガスとして取出し、使用するもので
ある。Conventional technology In general, a PSA gas separation device uses an adsorbent made of molecular sieve carbon to separate air into nitrogen and oxygen.
Either one is taken out and used as a product gas.
このため、例えばPSA式の窒素発生装置にあっては、
@着剤を充填した吸!!槽に圧縮空気を導入して昇圧す
る吸着工程と、吸着槽内を大気開放し又は真空ポンプた
減圧する脱着工程とを繰返し、吸着工程では吸着槽内の
吸着剤にM素分子を吸着させて、窒素を外部に取出し、
一方11!2着工程では@着された酸素を脱着し、次の
吸着工程に備えるようになっている。そして、製品ガス
である窒素は吸着槽内を昇任状態にして取出すものであ
るため、発生する窒素ガスはwIR的で圧力変化も大き
い。このため、窒素ガスを一定圧力で、かつ連続的に使
用する場合には取出側に製品タンクを設け、製品タンク
内に窒素ガスを貯えるように構成されている。For this reason, for example, in a PSA type nitrogen generator,
@Suction filled with adhesive! ! An adsorption step in which compressed air is introduced into the tank to raise the pressure, and a desorption step in which the inside of the adsorption tank is opened to the atmosphere or depressurized using a vacuum pump are repeated. , extract nitrogen to the outside,
On the other hand, in the 11!2 adsorption step, the attached oxygen is desorbed and prepared for the next adsorption step. Since nitrogen, which is a product gas, is taken out after the inside of the adsorption tank is in an ascending state, the nitrogen gas generated is similar to WIR and has a large pressure change. For this reason, when nitrogen gas is used continuously at a constant pressure, a product tank is provided on the extraction side and the nitrogen gas is stored in the product tank.
そして、従来の装置では、装置を停止さぜる際その場で
即停止したり、脱着゛r程俊吸am内の残存ガスを大気
中に排出し、吸着槽内を大気圧に減圧した排気工程で停
止していた。In conventional equipment, when the equipment is stopped, it is stopped immediately, or the remaining gas in the adsorption tank is quickly discharged into the atmosphere during the desorption process, and the pressure inside the adsorption tank is reduced to atmospheric pressure. The process had stopped.
発明が解決しようとする課題
ところが、従来の装置においては、再起動する際、吸着
槽内が排気工程の状態から運転が開始されることになり
、即ち、吸着槽内には製品ガス(窒素ガス)の純度を低
下させるガス(例えば酸素)が多量に残留しているため
、前述の吸着工程l12着工程等を繰返さなければなら
ず、規定純度の窒素ガスが生成されるまでかなりの時間
を要するといった課題がある。Problems to be Solved by the Invention However, in the conventional equipment, when restarting, the operation starts from the state in which the adsorption tank is in the exhaust process, that is, the product gas (nitrogen gas) is ) Since there remains a large amount of gas (e.g. oxygen) that reduces the purity of nitrogen gas, the adsorption process described above must be repeated, and it takes a considerable amount of time to generate nitrogen gas of the specified purity. There are issues such as:
そこで、本発明は上記課題を解決した気体分離装置を提
供することを目的とする。Therefore, an object of the present invention is to provide a gas separation device that solves the above problems.
課題を解決するための手段
本発明は上記気体分離装置において、運転停止信号が入
力すると製品ガスの吐出を止め、その後昇圧状態にある
吸着槽の取出しが完了すると吸着槽内の気体を排出した
後、製品タンク内の高純度ガスを吸着槽に還流し吸着槽
内を高純度ガスによって掃気させる手段を具備してなる
。Means for Solving the Problems The present invention provides the above-mentioned gas separation apparatus, which stops the discharge of product gas when an operation stop signal is input, and then discharges the gas in the adsorption tank when the removal of the adsorption tank in a pressurized state is completed. The apparatus is equipped with means for returning high-purity gas in the product tank to the adsorption tank and scavenging the inside of the adsorption tank with the high-purity gas.
作用
運転停止時機lI槽内に製品ガスを運流し、再起113
118着槽内に高純度の製品ガスが貯溜された状態で運
転スタートできるので、再起動開始から短時清で高純度
の製品ガスの生成が可能となる。Product gas is transported into the II tank and restarted 113
Since operation can be started with high-purity product gas stored in the tank 118, high-purity product gas can be generated in a short period of time from the start of restart.
実施例
第1図に本発明になる気体分離装置の・一実施例を示す
。Embodiment FIG. 1 shows an embodiment of the gas separation apparatus according to the present invention.
am中、1.2は第1、第2の吸着槽で、各吸着槽1.
2内にはそれぞれ分子ふるいカーボンIA、2Aが充填
されている。am, 1.2 is the first and second adsorption tank, and each adsorption tank 1.2 is the first and second adsorption tank.
2 is filled with molecular sieve carbons IA and 2A, respectively.
3は圧縮空気供給源となるコンプレッサで、コンプレッ
サ3からの圧縮空気はドライヤ4、供給流急調整弁5、
配管6.7を介して@薯槽1,2にそれぞれ交互に供給
されるようになっており、このため該配管6.7の途中
にはそれぞれN4a弁からなる空気供給用弁8.9が設
けられている。3 is a compressor that serves as a compressed air supply source, and the compressed air from the compressor 3 is supplied to a dryer 4, a supply flow adjustment valve 5,
Air is supplied alternately to the yam tanks 1 and 2 via piping 6.7, and for this reason, air supply valves 8.9 each consisting of an N4a valve are installed in the middle of the piping 6.7. It is provided.
10.11は脱着時に吸着槽1,2からの気体を排出す
る配管で、共通排出配管12に接続されており、排出配
管12は脱薯排ガスを排出するようになっている。そし
て、前記配管10.11の途中にはそれぞれ吸着槽1.
2内の1!211排ガスを半すイクル毎に交互に排出す
る電磁弁からなる気体排出用弁13.14が設けられて
いる。10.11 is a pipe for discharging gas from the adsorption tanks 1 and 2 during desorption, and is connected to a common discharge pipe 12, and the discharge pipe 12 is designed to discharge desalted exhaust gas. In the middle of the pipes 10 and 11, adsorption tanks 1.
Gas exhaust valves 13 and 14 are provided which are electromagnetic valves that alternately exhaust the 1!211 exhaust gas in each half cycle.
15.16は吸着e11.2からの窒素をそれぞれ取出
す取出弁配管、17は各配管15.16と連結した取出
配管で、配管15.16の途中には半サイクルの闇だけ
後述の1lJtl)の下に交互に開弁する電磁弁からな
る取出用弁18.19がそれぞれ設けられている。また
前記取出配管17は製品タンクと6での窒素タンク20
と接続されている。Reference numerals 15.16 and 15.16 are take-out valve pipes for taking out the nitrogen from adsorption e11.2 respectively, 17 is take-out pipes connected to each pipe 15.16, and in the middle of pipe 15.16 there is a half-cycle darkness (1lJtl) described later. At the bottom, take-out valves 18 and 19 each consisting of a solenoid valve that opens alternately are provided. Further, the extraction pipe 17 is connected to the product tank and the nitrogen tank 20 at 6.
is connected to.
又、取出排管17の途中には電磁弁からなる取出用rj
ar11弁21ζ、窒素タンク20へ供給される窒素ガ
スの流量を調整する取出流Ill整弁22とが設けられ
ている。尚、取出用tti111弁21は窒素ガスを取
出すm開弁しているが、後述するように取出用弁18.
19を同時に開弁し第1、第2の@着槽1,2間の均圧
操作を行なう際には開弁される。In addition, in the middle of the take-out drain pipe 17, there is a take-out rj consisting of a solenoid valve.
An ar11 valve 21ζ and a take-out flow Ill regulating valve 22 for adjusting the flow rate of nitrogen gas supplied to the nitrogen tank 20 are provided. Note that the take-out valve 111 is open to take out nitrogen gas, but as will be described later, the take-out valve 18.
19 are opened at the same time to perform a pressure equalization operation between the first and second tanks 1 and 2.
23は圧力スイッチで、窒素タンク20内の圧力が所定
圧力に達したことを検出する。′24は窒素タンク20
に接続された取出配管で、その途中には電磁弁からなる
取出用弁25が設けられると共に、取出流ff1W整弁
26が設けられている。23 is a pressure switch that detects that the pressure within the nitrogen tank 20 has reached a predetermined pressure. '24 is nitrogen tank 20
A take-out valve 25 made of a solenoid valve is provided in the middle of the take-out pipe connected to the take-out pipe, and a take-out flow ff1W regulating valve 26 is provided.
27は酸素センサで、電磁弁からなる開閉弁28を介し
て取出配f!24内を流れる気体を供給され、窒素タン
ク20より取出された気体の酸素純度を検出する。又、
酸素セン+J27からの酸素純度検出信号は後述する!
11111回路29に入力される。27 is an oxygen sensor, which is taken out and distributed via an on-off valve 28 consisting of a solenoid valve. 24 and detects the oxygen purity of the gas taken out from the nitrogen tank 20. or,
The oxygen purity detection signal from oxygen sensor + J27 will be described later!
The signal is input to the 11111 circuit 29.
なお、酸素センサ27としては酸素分子の常磁性を利用
した磁気式[センサ、酸素が711′IA膜を介して電
解液に入ると電極で酸化還元反応が起き1!流が流れる
のを利用した電磁式MKセンサ、ジルコニア磁器の内外
面に電極を設け、S!素線純度よって起電力が発生する
のを利用したジルコニア式図素センサ等が用いられる。The oxygen sensor 27 is a magnetic type sensor that utilizes the paramagnetism of oxygen molecules; when oxygen enters the electrolyte through the 711'IA membrane, a redox reaction occurs at the electrodes. An electromagnetic MK sensor that utilizes the flow of current, electrodes are provided on the inner and outer surfaces of zirconia porcelain, and S! A zirconia graphene sensor or the like is used, which utilizes the electromotive force generated depending on the purity of the wire.
30は取出配管24から取出される窒素純度、即ら酸*
、a度を設定する純度設定スイッチで、窒素タンク20
から取出すべき窒素ガス純度に応じて適宜に設定される
ものである。30 is the purity of nitrogen extracted from the extraction pipe 24, that is, the acid*
, with the purity setting switch to set the a degree, the nitrogen tank 20
It is set appropriately depending on the purity of the nitrogen gas to be extracted from the nitrogen gas.
また、υfi11回路29は例えばマイクロコンビl−
夕等によって構成される弁制御1段で、入力側には酸素
センサ27、純度設定スイッチ30.圧力スイッチ23
6接続され、出力側は前述した供給流量調整弁5と接続
されている。このI制御回路29の記憶回路には窒素ガ
スを生成する通常運転モードにより8弁を開閉するプロ
グラムAと、運転を停止させる際8弁を開閉するプログ
ラムBと。In addition, the υfi11 circuit 29 is, for example, a micro combination l-
It has one stage of valve control, consisting of a valve control, an oxygen sensor 27, a purity setting switch 30, etc. on the input side. Pressure switch 23
6 are connected, and the output side is connected to the aforementioned supply flow rate regulating valve 5. The memory circuit of this I control circuit 29 includes a program A that opens and closes eight valves in a normal operation mode that generates nitrogen gas, and a program B that opens and closes eight valves when stopping operation.
取出される窒素純度を純度設定スイッチ3oによる設定
値に維持するように、供給流量調整弁5の弁開度を61
1111するプログラムCとが格納されている。The valve opening degree of the supply flow rate regulating valve 5 is set to 61° so that the nitrogen purity taken out is maintained at the value set by the purity setting switch 3o.
1111 program C is stored.
さらに、31はシーケンサで、$13111回路29の
プログラムに基づいて、空気供給用弁8,9、気体排出
用弁13.14、取出用弁18.19、取出用開閉弁2
1、取出用弁25、開閉弁28を開rWltsmする。Furthermore, 31 is a sequencer, based on the program of $13111 circuit 29, air supply valves 8, 9, gas discharge valves 13, 14, extraction valves 18, 19, extraction opening/closing valve 2.
1. Open the take-out valve 25 and the on-off valve 28.
尚、上記シーケンサ31によりItn rfl &11
mされる各電磁弁は、量弁信号の供給により励磁され
たとき開弁し、励磁されないときにはバネ力で閉弁する
ようになっている。It should be noted that the sequencer 31 allows Itn rfl &11
Each of the electromagnetic valves is opened when energized by the supply of a quantity valve signal, and closed by a spring force when not energized.
次に、上記のように構成された窒素発生i置の動作につ
き説明する。尚、制御回路29は第2図に示す処理を実
行する。Next, the operation of the nitrogen generating station configured as described above will be explained. Note that the control circuit 29 executes the processing shown in FIG.
まず、窒素発生装置としての基本動作について、第3図
、第4図を参照しながら述べる。First, the basic operation of the nitrogen generator will be described with reference to FIGS. 3 and 4.
まず、制御四路29は第2図中ステップS1において起
動スイッチがオンにされると、ステップS2に移り通常
運転のプログラムAを実行する。First, when the start switch is turned on in step S1 in FIG. 2, the four-way control 29 moves to step S2 and executes program A for normal operation.
即ち、窒素発生装置を起動すると、lIIm回路29(
図示せず)の制御の下に、シーケンサ31が作動し、通
常運転による窒素発生が行われる。That is, when the nitrogen generator is started, the lIIm circuit 29 (
(not shown), the sequencer 31 operates to generate nitrogen through normal operation.
まず、第4図に示すように■、■、■の動性が実行され
る。第3図中の■は、空気供給用弁9と気体排出用弁1
3が開弁し、第2の吸着m2に原料気体としての圧縮空
気が供給されて第2の吸着槽2は昇任状態にあり、分子
ふるいカーボン2AにS県が吸着され、一方第1の@看
槽1は減圧状態にあり、吸着していた酸素が脱着して排
出されている状態を丞している、。First, as shown in FIG. 4, the dynamics of ■, ■, ■ are executed. ■ in Figure 3 indicates air supply valve 9 and gas discharge valve 1.
3 is opened, compressed air as a raw material gas is supplied to the second adsorption tank 2, and the second adsorption tank 2 is in the ascending state, S prefecture is adsorbed to the molecular sieve carbon 2A, while the first @ The tank 1 is under reduced pressure, and the adsorbed oxygen is being desorbed and discharged.
次に、第3図中の■は空気供給用弁9と気体排出用弁1
3の他に、新たに取出用弁19及び取出用開閉弁21を
開弁し、第2の吸着槽2内の窒素ガスを取出している状
態を示している。このとき、第1の吸着W41は減圧状
態のままである。Next, ■ in Fig. 3 indicates the air supply valve 9 and the gas discharge valve 1.
3, the take-out valve 19 and the take-out on/off valve 21 are newly opened to take out nitrogen gas from the second adsorption tank 2. At this time, the first adsorption W41 remains in a reduced pressure state.
次に、第3図中の■は均圧操負で、各取出用弁18.1
9を開弁すると共に、取出用開閉弁21及び空気供給用
弁9、気体排出用弁13を閉弁する。これにより、第2
の吸着槽2内に残存する窒素富化ガスは第1の吸着槽1
に回収され、各吸着槽1,2は均圧となる。なお、前記
均圧操作は通常1〜10秒である。Next, ■ in Fig. 3 is a pressure equalization operation, and each take-out valve 18.1
At the same time, the take-out on-off valve 21, the air supply valve 9, and the gas discharge valve 13 are closed. This allows the second
The nitrogen-enriched gas remaining in the adsorption tank 2 is transferred to the first adsorption tank 1.
The adsorption tanks 1 and 2 have equal pressure. Note that the pressure equalization operation usually takes 1 to 10 seconds.
これにより、1サイクルのうちの館寧の半サイクルが終
了したことになり、空気供給用弁8、気体排出用弁14
を開弁することによって、第4図(B)に示すように第
3図中の■〜■に示す後半の半サイクルを繰返す。かく
して、1サイクルを120秒とすると、吸着槽1,2か
らは各半サイクルの後半で窒素ガスを取出し、窒素タン
ク20に供給することができる。そして、起動後しばら
くすると、発生する窒素ガスの純度は安定する。This means that the Tatene half cycle of one cycle has been completed, and the air supply valve 8 and the gas discharge valve 14 have been completed.
By opening the valve, as shown in FIG. 4(B), the latter half cycle shown by ■ to ■ in FIG. 3 is repeated. Thus, if one cycle is 120 seconds, nitrogen gas can be taken out from the adsorption tanks 1 and 2 in the latter half of each half cycle and supplied to the nitrogen tank 20. After a while after startup, the purity of the nitrogen gas generated becomes stable.
ここで、第2図中、ステップS3において停止スイッチ
(図示せず)がオンにされると、制御回路29ではプロ
グラムBの処理が実行される。即ら、停止スイッチのオ
ンにより、まず取出用弁25を閉弁させる(ステップ3
4)。次のス゛1ツブS5では、前述の通常運転(ステ
ップS2と同じ窒素ガス生成動作)が行なわれる。この
とき、窒素タンク20の取出用弁25は閉弁しているの
で、吸1ffi1.2で窒素が生成され、第3図及び第
4図に示す1サイクルを数回繰り返すと、窒素タンク2
0内は高純度の窒素ガスがさらに貯溜されるとともによ
り圧力が上背する。Here, when a stop switch (not shown) is turned on in step S3 in FIG. 2, the control circuit 29 executes the process of program B. That is, by turning on the stop switch, the take-out valve 25 is first closed (step 3).
4). In the next step S5, the above-mentioned normal operation (the same nitrogen gas generation operation as in step S2) is performed. At this time, the take-out valve 25 of the nitrogen tank 20 is closed, so nitrogen is generated at 1ffi1.2 of suction, and when one cycle shown in FIGS. 3 and 4 is repeated several times, the nitrogen tank 20 is closed.
Inside 0, high purity nitrogen gas is further stored and the pressure increases.
次のステップS6で停止信号入力時に昇任状態の吸11
fiの取出しが完了すると(シーケンサ31の内部では
所定のタイマーのタイマーアップ等の時間管理をしてい
る手段によって検知する)窒素タンク20内の圧力が所
定圧力以上に昇圧したことが検知されてステップS5の
通常運転は停止する。続いて、全ての電磁弁が閉弁され
る(ステップ87)。In the next step S6, when the stop signal is input, the promotion state is 11.
When the removal of fi is completed (inside the sequencer 31, it is detected by time management means such as timer up of a predetermined timer), it is detected that the pressure in the nitrogen tank 20 has increased to a predetermined pressure or more, and the step is started. Normal operation of S5 is stopped. Subsequently, all electromagnetic valves are closed (step 87).
次に、気体排出用弁13.14を1…時に開弁し、(ス
テップS8)、この状態を時M t Iの間保持する〈
ステップ89)。この間に吸着槽1.2内の残存ガスは
大気中に排気され、@肴槽1,2内は大気圧に減圧され
る。Next, the gas exhaust valves 13 and 14 are opened at 1... (step S8), and this state is maintained for the time M t I.
Step 89). During this time, the residual gas in the adsorption tank 1.2 is exhausted to the atmosphere, and the pressure inside the snack tanks 1 and 2 is reduced to atmospheric pressure.
次のステップ810では取出用弁18.19を同時に開
弁する。これにより、窒素タンク20に蓄圧された高純
度の窒素ガスが取出用弁18゜19を介して吸it槽1
,2に還流する。そのため、@着槽1,2に残存する低
純度の窒素ガス及び酸素は、窒素タンク20からの窒素
ガスの圧力により気体排出用弁13.14を介して損気
され、吸着槽1.2内は高純度の窒素ガスにより節気さ
れる。ステップ811において、上記@看槽1,2内に
窒素ガスの還流が時1jfl j 2継続されると、吸
着111.2内は残存ガスが排気されるとともに高純度
の窒素ガスで満される。次に、上記損気、還流工程で開
弁させた気体排出用弁13.14及び取出用弁18.1
9を閉弁する(ステップ512)。In the next step 810, the take-out valves 18 and 19 are simultaneously opened. As a result, the high-purity nitrogen gas accumulated in the nitrogen tank 20 is transferred to the suction tank 1 through the take-out valves 18 and 19.
, 2. Therefore, the low-purity nitrogen gas and oxygen remaining in the adsorption tanks 1 and 2 are degassed by the pressure of nitrogen gas from the nitrogen tank 20 through the gas discharge valve 13.14, and the inside of the adsorption tank 1.2 is High purity nitrogen gas saves air. In step 811, when the reflux of nitrogen gas into the above-mentioned @nursing tanks 1 and 2 is continued for a period of time 1j fl j 2, the remaining gas is exhausted from the adsorption tank 111.2, and the interior of the adsorption tank 111.2 is filled with high-purity nitrogen gas. Next, the gas discharge valve 13.14 and the gas extraction valve 18.1 opened in the above-mentioned gas loss and reflux process.
9 is closed (step 512).
そして、シーケンサ31及びt、1)il11回路29
は装置全体を停止モードとする(ステップ513)。And the sequencer 31 and t, 1) il11 circuit 29
puts the entire device into stop mode (step 513).
このように、停止スイッチを操作した時点で、上記ステ
ップ83〜313の処理が実行されるため、装置が停止
したときは、吸着槽1.2内は窒素タンク20内に蓄圧
された高純度の窒素ガスで満されている。従って、再起
動しようとして起動スイッチをオンにしたとぎには、従
来の装置の如く吸着槽1.2内が大気開放のままやその
ままで停止0だ場合よりも、ぎわめで短い時間で高純度
の窒素ガスを吸着槽1,2より取出すことが可能となる
。In this way, when the stop switch is operated, the processes in steps 83 to 313 described above are executed, so when the apparatus is stopped, the high-purity gas stored in the nitrogen tank 20 is stored in the adsorption tank 1.2. Filled with nitrogen gas. Therefore, when the startup switch is turned on to restart, high purity can be obtained in a much shorter time than when the adsorption tank 1.2 is left open to the atmosphere or stopped as it is in the conventional equipment. It becomes possible to take out nitrogen gas from the adsorption tanks 1 and 2.
よって、例えば前日の終業時に装置を停止させても、翌
朝起動スイッチをオンにした後の準備運転時間(持ち時
間)が短くて済み、作業者が起動してから所定の純度の
窒素ガスが得られるまで長v1問待つことが無くなり、
作業の能率が高められる。Therefore, even if the equipment is stopped at the end of the previous day's work, for example, the preparatory operation time (time required) after turning on the start switch the next morning is shortened, and nitrogen gas of a predetermined purity can be obtained after the worker starts it up. You no longer have to wait for a long v1 question until you are asked,
Work efficiency is improved.
尚、上記実施例ではステップ812において気体排出用
弁13.14と取出用弁18.19とを同時に開弁させ
たが、気体排出用弁13.14を開弁してしばらく時間
をおいてから取出用弁18゜19を開弁するようにして
も良い。In the above embodiment, the gas discharge valve 13.14 and the take-out valve 18.19 were opened at the same time in step 812, but after a while after the gas discharge valve 13.14 was opened. The take-out valves 18 and 19 may be opened.
又、上記停止スイッチがオンにされて実行される取出工
程、吸着槽1,2の排気及び連流r程は、停止作業時に
行なわれる工程であり、通常運転時、即ち第4図に示す
昇圧、取出、均圧、減圧の各[稈とは切り離して実行さ
れるよう設定されている。Furthermore, the take-out process, the evacuation of adsorption tanks 1 and 2, and the continuous flow r process, which are executed when the stop switch is turned on, are processes that are performed during the stop operation, and are performed during normal operation, that is, the pressure increase shown in FIG. , extraction, pressure equalization, and pressure reduction [set to be executed separately from the culm].
尚、上記実施例以外にも例えば停止信号入力により均圧
1稈を行ないその後製品タンク内の製品ガスを@着槽へ
還流させることも考えられるが、この場合均圧工程後吸
着槽内の圧力が取出し時よりも減圧されてから吸着槽内
の残留ガスを排気することになり、吸着槽内の残留ガス
を充分に損気することができない。即ち、均[E][程
後に製品ガスを還流させる場合、吸着槽内に残留ガスが
残つている状態でt4111!度のガスを還流させるこ
とになり、還流後の吸着槽内のガスのKI団が低下する
。In addition to the above embodiments, it is also possible to perform pressure equalization for one culm by inputting a stop signal and then return the product gas in the product tank to the adsorption tank, but in this case, the pressure in the adsorption tank after the pressure equalization step The residual gas in the adsorption tank must be exhausted after the pressure is lower than when it is taken out, and the residual gas in the adsorption tank cannot be sufficiently degassed. That is, when the product gas is refluxed after homogenization [E][t4111!] with residual gas remaining in the adsorption tank! As a result, the KI group of the gas in the adsorption tank after reflux decreases.
発明の効果
上述の如く、本発明になる気体分離装置は、運転停止操
作によりvti?¥が停止する直前に、吸着槽内の残存
ガスを排気しその後製品タンク内の高純度の製品ガスを
吸着槽内に還流させて吸着槽を掃気して停止させるため
、再起動させるときは吸着槽内に高純度の製品ガスが満
された状態で運転をスタートできることになり、排気゛
[程のまま停止する従来の装置よりも極めて短い時間で
規定純度の製品ガスを取り出すことが可能となり、起動
時の持ち時間を短縮することができる雪の特長を有する
。Effects of the Invention As described above, the gas separation device according to the present invention has a vti? Immediately before the machine stops, the residual gas in the adsorption tank is exhausted, and then the high-purity product gas in the product tank is circulated back into the adsorption tank to scavenge the adsorption tank and shut down. Operation can now be started with the tank filled with high-purity product gas, making it possible to extract product gas of specified purity in an extremely shorter time than with conventional equipment, which stops when the tank is exhausted. It has the feature of snow that can shorten the time it takes to start up.
第1図は本発明になる気体分l1lll装置の一実施例
の概略構成図、第2図は1Ill 6!1回路が実行す
る処理のノロ−チャート、第3図及び第4図は気体分離
装置の通常運転の動・作を説明するための工程図である
。
1・・・第1の吸着槽、2・・・第2の@肴槽、3・・
・コンプレッサ、5・・・供給流囚調整弁、8.9・・
・空気供給用弁、13.14・・・気体排出用弁、18
゜19・・・取出用弁、20・・・窒素タンク、21・
・・取出用開閉弁、27・・・酸素センリ、29・・・
制御回路、30・・・純度設定スイッチ、31・・・シ
ーケンサ。
特許出願人 ト キ コ 株式会社
第2図
第3図
第4図Fig. 1 is a schematic configuration diagram of an embodiment of the gas separation device according to the present invention, Fig. 2 is a flowchart of the processing executed by the 1Ill 6!1 circuit, and Figs. 3 and 4 are the gas separation device. FIG. 1... first adsorption tank, 2... second @ snack tank, 3...
・Compressor, 5... Supply flow adjustment valve, 8.9...
・Air supply valve, 13.14... Gas discharge valve, 18
゜19...Takeout valve, 20...Nitrogen tank, 21.
...Take-out on-off valve, 27...Oxygen sensor, 29...
Control circuit, 30...Purity setting switch, 31...Sequencer. Patent applicant: Tokiko Co., Ltd. Figure 2 Figure 3 Figure 4
Claims (1)
を供給し、前記吸着槽が昇圧状態にある間に取出用弁を
開弁させて該吸着剤により生成された製品ガスを製品タ
ンクに貯溜する気体分離装置において、 運転停止信号が入力すると製品ガスの吐出を止め、その
後昇圧状態にある吸着槽の取出しが完了すると前記吸着
槽内の気体を排出した後、前記製品タンク内の高純度ガ
スを前記吸着槽に還流し吸着槽内を高純度ガスによつて
掃気させる手段を具備してなる気体分離装置。[Claims] A compressed raw material gas is supplied to an adsorption tank filled with an adsorbent, and while the adsorption tank is in a pressurized state, a take-out valve is opened to produce the gas produced by the adsorbent. In a gas separation device that stores product gas in a product tank, when an operation stop signal is input, the discharge of the product gas is stopped, and after the removal of the adsorption tank in a pressurized state is completed, the gas in the adsorption tank is discharged. A gas separation device comprising means for returning high-purity gas in the product tank to the adsorption tank and scavenging the inside of the adsorption tank with the high-purity gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1101451A JPH02280811A (en) | 1989-04-20 | 1989-04-20 | gas separation equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1101451A JPH02280811A (en) | 1989-04-20 | 1989-04-20 | gas separation equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02280811A true JPH02280811A (en) | 1990-11-16 |
Family
ID=14301059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1101451A Pending JPH02280811A (en) | 1989-04-20 | 1989-04-20 | gas separation equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02280811A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006008464A (en) * | 2004-06-28 | 2006-01-12 | Ngk Spark Plug Co Ltd | Oxygen concentrator |
US7326276B2 (en) | 2004-02-09 | 2008-02-05 | Honda Motor Co., Ltd. | Method of shutting off fuel gas manufacturing apparatus |
JP2018051447A (en) * | 2016-09-27 | 2018-04-05 | 株式会社クラレ | Operation method of gas separator, and control device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS575571A (en) * | 1980-06-14 | 1982-01-12 | Mutsumi Yamashita | Power generator |
JPS598605A (en) * | 1982-07-07 | 1984-01-17 | Osaka Oxgen Ind Ltd | Concentration of nitrogen |
JPS61187916A (en) * | 1985-02-14 | 1986-08-21 | Toyo Sanso Kk | Controlling method of on-off valve in oxygen condensing apparatus |
JPS643003A (en) * | 1987-06-25 | 1989-01-06 | Kobe Steel Ltd | Process for producing high-purity nitrogen by pressure-swing adsorption and apparatus therefor |
JPS6490011A (en) * | 1987-09-29 | 1989-04-05 | Ckd Corp | Operation control method for pressure swing type mixed gas separation device |
-
1989
- 1989-04-20 JP JP1101451A patent/JPH02280811A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS575571A (en) * | 1980-06-14 | 1982-01-12 | Mutsumi Yamashita | Power generator |
JPS598605A (en) * | 1982-07-07 | 1984-01-17 | Osaka Oxgen Ind Ltd | Concentration of nitrogen |
JPS61187916A (en) * | 1985-02-14 | 1986-08-21 | Toyo Sanso Kk | Controlling method of on-off valve in oxygen condensing apparatus |
JPS643003A (en) * | 1987-06-25 | 1989-01-06 | Kobe Steel Ltd | Process for producing high-purity nitrogen by pressure-swing adsorption and apparatus therefor |
JPS6490011A (en) * | 1987-09-29 | 1989-04-05 | Ckd Corp | Operation control method for pressure swing type mixed gas separation device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7326276B2 (en) | 2004-02-09 | 2008-02-05 | Honda Motor Co., Ltd. | Method of shutting off fuel gas manufacturing apparatus |
JP2006008464A (en) * | 2004-06-28 | 2006-01-12 | Ngk Spark Plug Co Ltd | Oxygen concentrator |
JP2018051447A (en) * | 2016-09-27 | 2018-04-05 | 株式会社クラレ | Operation method of gas separator, and control device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01104327A (en) | Apparatus for gas separation | |
US7722700B2 (en) | Apparatus and method of providing concentrated product gas | |
TW297780B (en) | ||
JPH02280811A (en) | gas separation equipment | |
JP2653698B2 (en) | Gas separation device | |
JP2958032B2 (en) | Gas separation device | |
JPS61187916A (en) | Controlling method of on-off valve in oxygen condensing apparatus | |
AU657835B2 (en) | Treating liquids | |
JP2954955B2 (en) | Gas separation device | |
JP3119659B2 (en) | Gas separation device | |
JP2532097B2 (en) | How to start the oxygen concentrator | |
JPH0577A (en) | Culture device | |
JP2514041B2 (en) | Air separation device | |
JPH062731Y2 (en) | Gas separation device | |
CN112858581A (en) | Calibration method for oxygen sensor of high-pressure nitrogen making equipment | |
JPH04156912A (en) | Gas separator | |
JPH0321317A (en) | Gas separation device | |
JP2910776B2 (en) | High pressure gas production equipment | |
JP6218464B2 (en) | Usage of pressure swing adsorption device and pressure swing adsorption device | |
JP2741889B2 (en) | Gas separation device | |
JPH0231813A (en) | gas separation equipment | |
JPH03106415A (en) | Gas separation device | |
JPH03135411A (en) | Gas separating installation | |
JPH0938443A (en) | Gas separation device | |
JPH0352613A (en) | High pressure gas production equipment |