JPH02276269A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPH02276269A JPH02276269A JP1098110A JP9811089A JPH02276269A JP H02276269 A JPH02276269 A JP H02276269A JP 1098110 A JP1098110 A JP 1098110A JP 9811089 A JP9811089 A JP 9811089A JP H02276269 A JPH02276269 A JP H02276269A
- Authority
- JP
- Japan
- Prior art keywords
- capacitor
- substrate
- lower electrode
- dielectric film
- via hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/4501—Shape
- H01L2224/45012—Cross-sectional shape
- H01L2224/45014—Ribbon connectors, e.g. rectangular cross-section
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/4847—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
- H01L2224/48472—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
- H01L2224/491—Disposition
- H01L2224/4911—Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
- H01L2224/49111—Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
Landscapes
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
(概要〕
半導体装置内のキャパシタの接地構造、特にMMIC(
Monolithic Microwave IC)の
MIM (MetalInsulator Metal
)構造キャパシタの接地構造に関し。[Detailed Description of the Invention] (Summary) The grounding structure of a capacitor in a semiconductor device, especially an MMIC (
Monolithic Microwave IC) MIM (Metal Insulator Metal
) Concerning the grounding structure of structural capacitors.
低接地インダクタンス、小占有面積の特徴を有するバイ
ア孔方式によって機械的なストレスフリーのキャパシタ
接地構造を得ることを目的とし。The purpose of this project is to obtain a mechanically stress-free capacitor grounding structure using the via hole method, which has the characteristics of low grounding inductance and small footprint.
基板上に、順に積層された下部電極、誘電体膜。A lower electrode and a dielectric film are laminated in this order on a substrate.
上部電極で構成されるキャパシタと、該基板の下側に接
地電位に接続される接地導電層とを有し。It has a capacitor constituted by an upper electrode, and a ground conductive layer connected to a ground potential below the substrate.
該基板は該キャパシタの下側に貫通孔が形成され。The substrate has a through hole formed under the capacitor.
該下部電極は該貫通孔を通じて該接地導電層と電気的に
接続され、該誘電体膜及び該上部電極は該貫通孔に対応
する部分が欠如されたパターンに形成されているように
構成する。The lower electrode is electrically connected to the ground conductive layer through the through hole, and the dielectric film and the upper electrode are formed in a pattern in which a portion corresponding to the through hole is omitted.
本発明は半導体装置内のキャパシタの接地構造。 The present invention relates to a grounding structure for a capacitor in a semiconductor device.
特に11CのMIM構造キャパシタの接地構造に関する
。In particular, it relates to the grounding structure of a 11C MIM structure capacitor.
半絶縁性(Sl−)GaAs基板を用いたMMICには
MIM構造の平行平板型キャパシタが多く用いられてい
る。Parallel plate capacitors with an MIM structure are often used in MMICs using semi-insulating (Sl-) GaAs substrates.
本発明は、 MIM構造のキャパシタの低インダクタン
スの高周波接地構造として使用できる。The present invention can be used as a low inductance, high frequency grounding structure for capacitors of MIM structure.
基板として1例えば5r−GaAs基板を用いたMMI
Cにおいては、 MIM構造のキャパシタが随所に用い
られている。MMI using a 1, for example, 5r-GaAs substrate as a substrate
In C, MIM structure capacitors are used everywhere.
このキャパシタは1回路によりキャパシタの片側を接地
するものも多数ある。Many of these capacitors have one side grounded by one circuit.
この場合の高周波接地構造としては1次のものがある。In this case, the high frequency grounding structure may be a primary one.
■ 極細ワイヤボンディング方式
(又はリボンボンディング方式)
第2図は極細ワイヤボンディングによる接地構造を説明
する平面図である。(2) Ultra-fine wire bonding method (or ribbon bonding method) FIG. 2 is a plan view illustrating a grounding structure using ultra-fine wire bonding.
図において、絶縁性基板1上に順次キャパシタ下部電極
2.誘電体嗅3.キャパシタ上部電極4が形成され、基
板下に形成されている接地(GND)面と下部電極2と
を極細ワイヤ7でボンディングした構造である。In the figure, capacitor lower electrodes 2. Dielectric smell 3. In this structure, a capacitor upper electrode 4 is formed, and a ground (GND) plane formed under the substrate and the lower electrode 2 are bonded with a very thin wire 7.
■ バイア(Via)孔方式
5r−GaAs基板を貫通するバイア孔を開け、この孔
を通じて導通をとり接地する方式である。(2) Via Hole Method This is a method in which a via hole is formed through the 5r-GaAs substrate, and conduction is established through this hole to provide grounding.
第3図はバイア孔方式の接地構造を説明する断面図であ
る。FIG. 3 is a sectional view illustrating a via hole type grounding structure.
図において、 5r−GaAs基板1上に順次キャパシ
タ下部電極2.誘電体膜3.キャパシタ上部電極4が形
成され、下部電極2はキャパシタ部より延長した部分で
、バイア孔5内及び基板裏面に形成された接地導電層(
接地面)6に接続される。In the figure, capacitor lower electrodes 2. Dielectric film 3. A capacitor upper electrode 4 is formed, and the lower electrode 2 is a part extending from the capacitor part, and is connected to a ground conductive layer (
(ground plane) 6.
μ波帯、或いは111111波帯においては、キャパシ
タと接地電位間に直列に入る接地インダクタンスL(i
NDは回路の安定性や高利得を得るためにできるだけ小
さいことが望ましい。例えば、 2 GHz帯ではし。In the μ wave band or 111111 wave band, the ground inductance L(i
It is desirable that ND be as small as possible in order to obtain circuit stability and high gain. For example, in the 2 GHz band.
。< 1 nHが必要となる。. <1 nH is required.
そのためと、配置の自由度の点からバイア孔方式がよく
使われる。For this reason and because of the flexibility of placement, the via hole method is often used.
バイア孔方式ではLGND < 0.1 nHの低接地
インダクタンスが得られる。The via hole method provides a low ground inductance of LGND < 0.1 nH.
ところが、 10 Gllz以上の周波数帯ではもっと
小さい接地インダクタンスが要求されることと、キャパ
シタの占有面積を小さくするために第3図を変形して第
4図の構造のものが用いられるようになった。However, in the frequency band above 10 Gllz, a smaller grounding inductance was required, and in order to reduce the area occupied by the capacitor, the structure shown in Fig. 4 was modified from Fig. 3 and began to be used. .
第4図は従来例の図で、改良型のバイア孔方式の接地構
造を説明する断面図である。FIG. 4 is a diagram of a conventional example, and is a sectional view illustrating an improved via hole type grounding structure.
第3図においてはバイア孔をキャパシタの外に設けたの
に対して、第4図の構造はキャパシタの真下に設けて、
キャパシタ配置の占有面積を小さくしている。In Fig. 3, the via hole is provided outside the capacitor, whereas in the structure shown in Fig. 4, the via hole is provided directly below the capacitor.
The area occupied by the capacitor arrangement is reduced.
しかしながら、このような構造を持ったチップを、 A
uSn又はAuGe等のろう材を用いてステージにボン
ディングする際に、バイア孔内の接地導電層(金あるい
は銀メツキ[)6がろう材と溶融し。However, a chip with such a structure, A
When bonding to the stage using a brazing material such as uSn or AuGe, the ground conductive layer (gold or silver plating) 6 in the via hole melts with the brazing material.
凝固する際に機械的なストレスが発生し、キャパシタ部
を膨らませたり凹ませたりして変形させ。Mechanical stress is generated during solidification, causing the capacitor to bulge or dent, deforming it.
誘電体(si3N4.又は5i(h)層にクラックを発
生させ、そのクシツクに金属が侵入してキャパシタを短
絡させ、或いは動作中に短絡させたりする事故が生ずる
ことがわかった。It has been found that cracks occur in the dielectric (si3N4. or 5i(h) layer) and metal penetrates into the cracks, causing a short circuit in the capacitor or a short circuit during operation.
本発明は低接地インダクタンス、小占有面積の特徴を有
するバイア孔方式によって機械的なストレスフリーのキ
ャパシタ接地構造を得ることを目的とする。An object of the present invention is to obtain a mechanically stress-free capacitor grounding structure using a via hole method, which has the characteristics of low grounding inductance and small occupied area.
(課題を解決するための手段)
上記課題の解決は、基板上に順に積層された下部電極、
誘電体膜、上部電極で構成されるキャパシタと、慢基板
の下側に接地電位に接続される接地導電層とを有し、該
基板は該キャパシタの下側に貫通孔が形成され、該下部
電極は該貫通孔を通じて該接地導電層と電気的に接続さ
れ、該誘電体膜及び該上部電極は該貫通孔に対応する部
分が欠如されたパターンに形成されている半導体装置に
より達成される。(Means for solving the problem) The solution to the above problem is to
It has a capacitor composed of a dielectric film and an upper electrode, and a ground conductive layer connected to a ground potential on the lower side of the substrate, and the substrate has a through hole formed on the lower side of the capacitor and The electrode is electrically connected to the ground conductive layer through the through hole, and the dielectric film and the upper electrode are realized by a semiconductor device formed in a pattern in which a portion corresponding to the through hole is omitted.
本発明は、ストレスが発生するバイア孔上部にはキャパ
シタ構造を形成しないで下部電極のみを残して接地接続
を可能にすることにより、チップのろう付けの際のスト
レスを緩和して、製造歩留の低下と素子の信頼性の低下
を防止するようにしたものである。The present invention does not form a capacitor structure in the upper part of the via hole where stress occurs, leaving only the lower electrode to enable ground connection, thereby alleviating stress during chip brazing and improving manufacturing yield. This is to prevent a decrease in the reliability of the device and a decrease in the reliability of the device.
(実施例〕
第1図(1)、 ’(2)は本発明の一実施例によるバ
イア孔方式の接地構造を説明する断面図と平面図である
。(Embodiment) FIGS. 1(1) and 1(2) are a sectional view and a plan view illustrating a via hole type grounding structure according to an embodiment of the present invention.
図において、厚さ75μmの5l−GaAs基板1上に
!lli次キャパシタ下部電極2.誘電体膜3.キャパ
シタ上部電極4が形成され、下部電極2はキャパシタ部
分でバイア孔5内及び基板裏面に形成された接地導電層
6に接続される。In the figure, on a 5l-GaAs substrate 1 with a thickness of 75 μm! lli order capacitor lower electrode 2. Dielectric film 3. A capacitor upper electrode 4 is formed, and the lower electrode 2 is connected at the capacitor portion to a ground conductive layer 6 formed within the via hole 5 and on the back surface of the substrate.
誘電体膜3.キャパシタ上部電極4はバイア孔5の上部
で欠如したパターンに形成する。Dielectric film 3. The capacitor upper electrode 4 is formed in a hollow pattern above the via hole 5 .
ここで、キャパシタは 下部電極2が厚さ0.3μmのAuGeNiAu膜。Here, the capacitor is The lower electrode 2 is an AuGeNiAu film with a thickness of 0.3 μm.
誘電体膜3が厚さ0.2μmのSi3N4膜5上部電極
4が厚さ2μmのAuメツキ膜で構成される。The dielectric film 3 is composed of a Si3N4 film 5 with a thickness of 0.2 μm, and the upper electrode 4 is composed of an Au plating film with a thickness of 2 μm.
又、接地導電層6は厚さ15μmのAuメツキ膜で形成
される。Further, the ground conductive layer 6 is formed of an Au plating film with a thickness of 15 μm.
前記したように、キャパシタ接地構造において考慮しな
ければならない点は次のように要約することができる。As mentioned above, the points that must be considered in the capacitor grounding structure can be summarized as follows.
■ キャパシタは低接地インダクタンス、低直列抵抗で
あること。■ Capacitors should have low ground inductance and low series resistance.
■ チップ上のキャパシタ配置に自由度があること。■ Flexibility in placement of capacitors on the chip.
■ キャパシタ配置の占有面積が小さいこと。■ The area occupied by the capacitor arrangement is small.
この例においては、上記の考慮点■および■は第3図と
第4図の構造の中間位の値となるが、キャパシタを短絡
させる致命的な欠陥を生じることはない。In this example, the above-mentioned considerations (1) and (2) have values intermediate between those of the structures of FIGS. 3 and 4, but will not cause a fatal defect that short-circuits the capacitor.
ろう材にAuSnを用いてチップのろう付けを行ったと
ころ、多数試料についてキャパシタの短絡は全熱発生し
なかった。従って、製造歩留の向上と素子の信頬性向上
に有効であることが確かめられた。又、接地インダクタ
ンスは0.05 nllと低い値が得られた。When the chips were brazed using AuSn as the brazing material, no total heat was generated due to capacitor short circuits in many samples. Therefore, it was confirmed that this method is effective in improving the manufacturing yield and the reliability of the device. Furthermore, the ground inductance was as low as 0.05 nll.
第5図(1)、 (2)は本発明を適用したM旧Cの一
例を示す平面図と回路図である。FIGS. 5(1) and 5(2) are a plan view and a circuit diagram showing an example of an M old C to which the present invention is applied.
このMMICは1〜8 GHz広帯広帯域2輻増(利得
# 8 dll )で、チップサイズ1.3 mmX1
.7 mmの5r−GaAs基板に形成され、キャパシ
タC2+ C4に本発明が適用されている。This MMIC has a 1-8 GHz wide band with 2 additional frequencies (gain #8 dll) and a chip size of 1.3 mm x 1.
.. The present invention is applied to capacitors C2+C4, which are formed on a 7 mm 5R-GaAs substrate.
GaAs MES FET nll q、はイオン注入
によりチャネル領域を形成し、抵抗Rも54−GaAs
基板にイオン注入して抵抗体としている。回路図の矩形
はマイクロストリップ線路を表している。GaAs MES FET nll q, the channel region is formed by ion implantation, and the resistance R is also 54-GaAs
Ions are implanted into the substrate to form a resistor. The rectangle in the circuit diagram represents a microstrip line.
キャパシタC2は1個のバイア孔、キャパシタC4は2
個のバイア孔5を経由して、接地端子VCCに接続され
ている。Capacitor C2 has one via hole, capacitor C4 has two
It is connected to the ground terminal VCC via the via holes 5.
以上説明したように本発明によれば、低接地インダクタ
ンス、小占有面積の特徴を有するバイア孔方式によって
機械的なストレスフリーのキャパシタ接地構造を得るこ
とができる。As described above, according to the present invention, a mechanically stress-free capacitor grounding structure can be obtained using the via hole method, which is characterized by low grounding inductance and small occupied area.
従って、 MMICの製造歩留と信頼性を向上すること
ができる。Therefore, the manufacturing yield and reliability of MMIC can be improved.
第1図(1)、 (2)は本発明の一実施例によるバイ
ア孔方式の接地構造を説明する断面図と平面図化第2図
は極細ワイヤボンディングによる接地構造を説明する平
面図。
第3図はバイア孔方式の接地構造を説明する断面図。
第4図は従来例の図で、改良型のバイア孔方式の接地構
造を説明する断面図。
第5図(1)、 (2)は本発明を適用したMMICの
一例を示す平面図と回路図である。
図において。
lは基板で5I−GaAs基板。
2はキャパシタ下部電極。
3は誘電体膜。
4はキャパシタ上部電極。
5はバイア孔。
6は接地溝を層
ワイヤ1ζJる才表地1都し呻1Tv平障uz卒2図
バイアーJL方戊の接地構造−
箒3 図FIGS. 1 (1) and (2) are a sectional view and a plan view illustrating a via hole type grounding structure according to an embodiment of the present invention. FIG. 2 is a plan view illustrating a grounding structure using ultrafine wire bonding. FIG. 3 is a sectional view illustrating a via hole type grounding structure. FIG. 4 is a diagram of a conventional example, and is a sectional view illustrating an improved via hole type grounding structure. FIGS. 5(1) and 5(2) are a plan view and a circuit diagram showing an example of an MMIC to which the present invention is applied. In fig. l is the substrate, which is a 5I-GaAs substrate. 2 is the capacitor lower electrode. 3 is a dielectric film. 4 is the upper electrode of the capacitor. 5 is a via hole. 6 is the grounding structure where the grounding groove is layered with the wire 1ζJ.
Claims (1)
で構成されるキャパシタと、 該基板の下側に接地電位に接続される接地導電層とを有
し、 該基板は該キャパシタの下側に貫通孔が形成され、 該下部電極は該貫通孔を通じて該接地導電層と電気的に
接続され、 該誘電体膜及び該上部電極は該貫通孔に対応する部分が
欠如されたパターンに形成されていることを特徴とする
半導体装置。[Claims] A capacitor comprising a lower electrode, a dielectric film, and an upper electrode stacked in order on a substrate, and a ground conductive layer connected to a ground potential below the substrate, A through hole is formed in the substrate below the capacitor, the lower electrode is electrically connected to the ground conductive layer through the through hole, and a portion of the dielectric film and the upper electrode corresponds to the through hole. A semiconductor device characterized in that it is formed in a missing pattern.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1098110A JP2513835B2 (en) | 1989-04-18 | 1989-04-18 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1098110A JP2513835B2 (en) | 1989-04-18 | 1989-04-18 | Semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02276269A true JPH02276269A (en) | 1990-11-13 |
JP2513835B2 JP2513835B2 (en) | 1996-07-03 |
Family
ID=14211189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1098110A Expired - Lifetime JP2513835B2 (en) | 1989-04-18 | 1989-04-18 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2513835B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993020590A1 (en) * | 1992-04-03 | 1993-10-14 | Teledyne Monolithic Microwave | Metal-insulator-metal capacitor around via structure |
JP2006173595A (en) * | 2004-11-22 | 2006-06-29 | Matsushita Electric Ind Co Ltd | Semiconductor integrated circuit device and on-board radar system using the same |
CN105280727A (en) * | 2015-11-06 | 2016-01-27 | 中国电子科技集团公司第十三研究所 | Microwave internal matching power transistor matching capacitor and manufacturing method thereof |
-
1989
- 1989-04-18 JP JP1098110A patent/JP2513835B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993020590A1 (en) * | 1992-04-03 | 1993-10-14 | Teledyne Monolithic Microwave | Metal-insulator-metal capacitor around via structure |
JP2006173595A (en) * | 2004-11-22 | 2006-06-29 | Matsushita Electric Ind Co Ltd | Semiconductor integrated circuit device and on-board radar system using the same |
CN105280727A (en) * | 2015-11-06 | 2016-01-27 | 中国电子科技集团公司第十三研究所 | Microwave internal matching power transistor matching capacitor and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2513835B2 (en) | 1996-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5796165A (en) | High-frequency integrated circuit device having a multilayer structure | |
US5629241A (en) | Microwave/millimeter wave circuit structure with discrete flip-chip mounted elements, and method of fabricating the same | |
US5752182A (en) | Hybrid IC | |
JP3036233B2 (en) | Semiconductor device and manufacturing method thereof | |
US5158911A (en) | Method for interconnection between an integrated circuit and a support circuit, and integrated circuit adapted to this method | |
EP1094538A2 (en) | Multilayered ceramic RF device | |
DE19941872A1 (en) | Electronic components e.g. surface acoustic wave device, has bump electrode to which pressure is applied for contacting with input-output electrode of surface acoustic wave element | |
US4246697A (en) | Method of manufacturing RF power semiconductor package | |
US6507110B1 (en) | Microwave device and method for making same | |
EP0015709B1 (en) | Constructional arrangement for semiconductor devices | |
US6046501A (en) | RF-driven semiconductor device | |
US20170141093A1 (en) | Semiconductor apparatus installing passive device | |
JP2513835B2 (en) | Semiconductor device | |
JP2574510B2 (en) | High frequency semiconductor device | |
JP2650871B2 (en) | Hybrid IC | |
US6706967B2 (en) | Lead-less semiconductor device with improved electrode pattern structure | |
JPH05206286A (en) | Semiconductor integrated circuit | |
US12183669B2 (en) | Configurable metal—insulator—metal capacitor and devices | |
US20230290752A1 (en) | Semiconductor device and method of manufacturing the same | |
JPH06169064A (en) | Semiconductor device | |
JPH02140969A (en) | Semiconductor integrated circuit device | |
JP3762367B2 (en) | High frequency integrated circuit device | |
JP2773685B2 (en) | Semiconductor device | |
JPH02288252A (en) | Semiconductor device | |
JPS5910075B2 (en) | field effect transistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080430 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090430 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term |