[go: up one dir, main page]

JPH02275381A - Radar apparatus airborne - Google Patents

Radar apparatus airborne

Info

Publication number
JPH02275381A
JPH02275381A JP1098042A JP9804289A JPH02275381A JP H02275381 A JPH02275381 A JP H02275381A JP 1098042 A JP1098042 A JP 1098042A JP 9804289 A JP9804289 A JP 9804289A JP H02275381 A JPH02275381 A JP H02275381A
Authority
JP
Japan
Prior art keywords
pulse
ratio
receiver
pulse width
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1098042A
Other languages
Japanese (ja)
Inventor
Chiaki Uji
宇治 千明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1098042A priority Critical patent/JPH02275381A/en
Publication of JPH02275381A publication Critical patent/JPH02275381A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To improve a detection capacity aimed to coexist with a clutter by varying a transmission pulse width on the basis of an airplane's own height signal and by obtaining a prescribed S/C ratio at all times. CONSTITUTION:In an exciter, a pulse width and a pulse repetition frequency are varied in proportion to an airplane's own height signal 13. On the occasion, a ratio between an echo and a reception power of a clutter, i.e. S/C, turns to be a prescribed value by varying the pulse width corresponding to a change in the height. On the other side, the alteration of the pulse width necessitates an alteration of a band width of a receiver, and this alteration causes a change in the noise of the receiver and further deterioration in an S/N ratio and lowering of reception sensitivity. In order to prevent this lowering, the pulse repetition frequency is varied to change a pulse integration frequency in a signal processing system, and thereby the S/N ratio can be improved by an integration effect.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この考案は航空機に搭載される捜索及び追尾用のレーダ
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a search and tracking radar device mounted on an aircraft.

〔従来の技術〕[Conventional technology]

第2図は従来のパルスレーダ装置の一部を示した構成図
であシ1図において、(1)は送信機、(2)は励振器
、(3)は空中線、(4)は受信機、傾はレーダ制御器
、συはレーダの表示装置である。
Figure 2 is a block diagram showing part of a conventional pulse radar device. In Figure 1, (1) is a transmitter, (2) is an exciter, (3) is an antenna, and (4) is a receiver. , tilt is the radar controller, and συ is the radar display.

従来はパルス巾及び受信機の帯域中の設定及び繰り返し
周波数は固定若しくは0の表示装置で表示されるレーダ
受信ビデオの画像を見ながら操作する人間の判断によシ
a0の制御器からの切替え信号(13によシ(2)の励
振器内のパルス巾及びPRFの発生回路及び(4)の受
信機の受信帯域巾を決めるフィルタ回路を切替えて変化
させていた。
Conventionally, the pulse width, settings in the receiver band, and repetition frequency are either fixed or determined by a human operator while viewing the image of the radar reception video displayed on a 0 display device using a switching signal from the controller at 0. (13) The pulse width and PRF generation circuit in the exciter (2) and the filter circuit that determines the receiving bandwidth of the receiver (4) were changed by switching.

〔考案が解決しようとする課題〕[The problem that the idea attempts to solve]

航空機に搭載されるレーダにおいて社、地上又は海上の
目標の反射波を受信する以外に地面又は海面の反射(ク
ラッタ)も同時に受信する。受信するクラッタ電力は自
機の高度、送信パルス巾。
A radar mounted on an aircraft not only receives reflected waves from targets on the ground or on the sea, but also receives reflections (clutter) from the ground or sea surface. The received clutter power depends on the altitude of the own aircraft and the width of the transmitted pulse.

空中線のビーム巾及び地面又は海面の反射系数等に関連
しているため航空機の状況(高度等)に応じて受信する
信号対クラッタの比を改善するため送信パルス巾及びパ
ルス繰り返し周波数を変更させる必要があシ、従来は固
定のまま若しくは手動による切替えにより実施していた
Since it is related to the beam width of the antenna and the number of reflections on the ground or sea surface, it is necessary to change the transmission pulse width and pulse repetition frequency to improve the received signal to clutter ratio depending on the aircraft situation (altitude, etc.) However, in the past, this was done by leaving it fixed or switching it manually.

この考案は上記のような手動による変更を航空機の高度
信号を利用して自動的に行ない、目標の検出を容易にす
るために常に最適な検出確率となる様にパルス巾、パル
ス繰り返し周波数、受信帯域巾及びパルス積分数を変更
するレーダ装置となる事を目的としている。
This device automatically performs the manual changes described above using the aircraft's altitude signal, and adjusts the pulse width, pulse repetition frequency, and reception so that the probability of detection is always optimal in order to facilitate target detection. It is intended to be a radar device that changes the bandwidth and the number of pulse integrals.

〔課題を解決するための手段〕[Means to solve the problem]

この考案に係る機上用レーダ装置は、航空機の高度信号
によってその高度で最適な信号対クラッタ比及び目標の
探知可能距離から定められるパルス巾を求め、励振回路
を制御してパルス巾を変更すると共に受信機の受信機帯
域中を決めるフィルタを制御し帯域中を変更し、さらに
送信管のデユーティ比の制限を守るためにパルス繰り返
し周波数も変化させるものである。
The airborne radar device according to this invention uses the altitude signal of the aircraft to determine the pulse width determined from the optimum signal-to-clutter ratio at that altitude and the detectable range of the target, and changes the pulse width by controlling the excitation circuit. At the same time, the filter that determines the receiver band of the receiver is controlled to change the band, and the pulse repetition frequency is also changed in order to comply with the duty ratio limit of the transmitting tube.

〔作用〕[Effect]

この考案は航空機搭載レーダの対地(海面)からの目標
及びクラッタの受信電力の比(S/C比)が自機の高度
に反比例しパルス巾に比例する特性を利用する。高度の
上昇を例として説明する。高度の上昇に伴ないS/C比
の劣化する分をパルス巾を狭めることによシその劣化を
防ぐことができる。
This idea utilizes the characteristic that the ratio (S/C ratio) of the received power of the target and clutter from the ground (sea surface) of the aircraft-mounted radar is inversely proportional to the altitude of the aircraft and proportional to the pulse width. An example of an increase in altitude will be explained. By narrowing the pulse width, it is possible to prevent the S/C ratio from deteriorating as the altitude increases.

一方、パルス巾を狭める事によシ受信信号の通過損失を
防ぐため受信機の受信帯域巾を広げる必要があシ、同時
に受信機の帯域中を広げる。受信機帯域中の拡大は受信
機ノイズの電力が増加し信号対信号機ノイズの電力比(
S/N比)が劣化するが、送信管のデユーティ比を一定
に保つものとすればパルス巾を狭めた分だけパルス繰り
返し周波数を増やす事が可能であシパルス繰り返し周波
数を変化(増加)させる。パルス繰り返し周波数の変更
は目標からのパルスヒツト数を増加させるため受信信号
の積分回数を増加させる事ができ。
On the other hand, by narrowing the pulse width, it is necessary to widen the receiving bandwidth of the receiver in order to prevent the passing loss of the received signal, and at the same time widen the receiver's bandwidth. Expansion in the receiver band increases the power of the receiver noise and increases the signal-to-signal noise power ratio (
However, if the duty ratio of the transmitting tube is kept constant, it is possible to increase the pulse repetition frequency by the amount by narrowing the pulse width, and the pulse repetition frequency is changed (increased). Changing the pulse repetition frequency can increase the number of integrations of the received signal because it increases the number of pulse hits from the target.

積分効果によシS/N比の改善が出来、受信機の帯域中
の増加に伴なうS/’N の劣化分を補なうことが出来
る。
The S/N ratio can be improved by the integral effect, and it is possible to compensate for the deterioration in S/'N caused by the increase in the receiver band.

以上からS/N 比の劣化を最少限にしながら。From the above, while minimizing the deterioration of the S/N ratio.

自機の高度に従がってパルス巾を変化させることによっ
てS/C比を改善することが出来、クラッタと共存する
目標の探知能力を向上させることが出来る。
By changing the pulse width according to the altitude of the aircraft, the S/C ratio can be improved, and the ability to detect targets coexisting with clutter can be improved.

〔実施例〕〔Example〕

第1図はこの考案の一実施例を示すレーダ装置を示し念
構成図である。
FIG. 1 is a conceptual configuration diagram of a radar device showing an embodiment of this invention.

図において(1)は送信機、(2)は励振器、(3)は
空中線、(4)は受信機、(5)はレーダ信号処理器、
(6)は航空機の自機高度を測定する高度計である。
In the figure, (1) is a transmitter, (2) is an exciter, (3) is an antenna, (4) is a receiver, (5) is a radar signal processor,
(6) is an altimeter that measures the aircraft's own altitude.

(2)の励振器は送信する高周波信号発生回路(7)と
パルス変調するための変調器(8)及びパルス発生回路
(9)(パルス巾及びパルス繰り返し周波数を決めてい
る。)を含んでいる。
The exciter (2) includes a high-frequency signal generation circuit (7) for transmission, a modulator (8) for pulse modulation, and a pulse generation circuit (9) (determining the pulse width and pulse repetition frequency). There is.

第1図において高度計(6)からの自機高度信号a3を
(2)の励振器に入力し、励振器においては自機高度信
号0に比例してパルス発生回路(9)において。
In FIG. 1, the own aircraft altitude signal a3 from the altimeter (6) is input to the exciter (2), and in the exciter, the own aircraft altitude signal a3 is input in proportion to the own aircraft altitude signal 0 to the pulse generating circuit (9).

パルス巾及びパルス繰り返し周波数を変化させている。The pulse width and pulse repetition frequency are varied.

又同時K(4)の受信機にも自機高度信号a3を入力し
、受信帯域巾を決めるフィルタ巾を変化させる。レーダ
信号処理器(5)においても同様に自機高度信号αりを
入力しパルスの積分回数を変化させている。
Simultaneously, the aircraft altitude signal a3 is also input to the receiver of K(4), and the filter width that determines the reception band width is changed. Similarly, the radar signal processor (5) receives the aircraft altitude signal α and changes the number of pulse integrations.

一般的なパルスレーダにおける目標からの受信電力P8
及び機上レーダ装置の対地(又は対海面)からのクラッ
タ受信電力Paは1次の(11式及び(2)式で示され
る。
Received power P8 from target in general pulse radar
And the clutter reception power Pa of the airborne radar device from the ground (or from the sea surface) is expressed by the first-order equations (11 and (2)).

ここで、p=送信電力、a=空中線利得、λ=波長、R
=目標までの距離、σT=目標の有効反射面積、C=光
速、τ=パルス巾、θ=ビーム巾、φ=対地照射角、σ
0=地面又は海面の反射系数である。
Here, p=transmission power, a=antenna gain, λ=wavelength, R
= distance to target, σT = effective reflection area of target, C = speed of light, τ = pulse width, θ = beam width, φ = ground illumination angle, σ
0=reflection coefficient of ground or sea surface.

(2)式のσ0 (反射系数)は照射角φの関数であシ
、σO=γOstnφで近似出来る。ここでrOは反射
率でありAφ=H/Rである。照射角が小さい時86e
φはほぼ1となり、(21式は次の(3)式に近似出来
る。
σ0 (reflection coefficient) in equation (2) is a function of the illumination angle φ, and can be approximated by σO=γOstnφ. Here, rO is the reflectance and Aφ=H/R. 86e when the beam angle is small
φ becomes approximately 1, and the equation (21) can be approximated to the following equation (3).

以上よ、? (1)式と(3)式の比が目標からの信号
とクラッタの受信電力の比、即ちS/C比で699次の
(4)式となる。
That’s it, huh? The ratio between Equation (1) and Equation (3) is the ratio of the received power of the signal from the target and the clutter, that is, the S/C ratio, and becomes Equation (4) of order 699.

(3)式よシH1τ φが可変パラメータであシ。According to equation (3), H1τ φ is a variable parameter.

それ以外は定数となってお、9s/c比は高度H及びパ
ルス巾τに反比例の関係にある。
The other values are constants, and the 9s/c ratio is inversely proportional to the altitude H and the pulse width τ.

このため、高度の変化に対応してパルス巾を変化させて
やることによシ、高度に関係なく一定のS/C比を得る
事が出来る。
Therefore, by changing the pulse width in response to changes in altitude, a constant S/C ratio can be obtained regardless of the altitude.

一方、受信機の発生する受信機ノイズは受信機帯域中に
比例し、受信機帯域中は受信するパルス巾に最適な値に
させている。このため、パルス巾の変更は受信機帯域中
の変更を必要とし、この変更は受信機ノイズが変化し、
S/N比の劣化、受信感度の低下をまねく。この低下を
防ぐためパルス巾変更に伴ない送信系の最大デユーティ
此の許容範囲内でパルス積分数し周波数を変化させ信号
処理系におけるパルス積分数を変えて積分効果によるS
/N比の改善を画ることを実施する。
On the other hand, the receiver noise generated by the receiver is proportional to the receiver band, and the receiver noise is set to an optimal value for the received pulse width in the receiver band. Therefore, changes in pulse width require changes in the receiver band, and this change changes the receiver noise and
This leads to deterioration of the S/N ratio and reception sensitivity. In order to prevent this decrease, the maximum duty of the transmitting system is adjusted within this allowable range as the pulse width is changed, the frequency is changed, and the number of pulse integrations in the signal processing system is changed to reduce the S
Implement measures to improve the /N ratio.

以上の作用によって高度変化に伴なうS/Cの劣化を防
ぐことが出来る。
The above actions can prevent deterioration of the S/C due to changes in altitude.

〔考案の効果〕[Effect of idea]

以上のようにこの考案は、航空機の自機高度に応じて送
信パルス巾を変化させることによって常に一定のS/C
比が得られる効果があシ、自機高度の上昇に伴なうS/
C比の劣化を防ぐことが出来る。
As described above, this invention maintains a constant S/C by changing the transmission pulse width according to the aircraft's own altitude.
There is no effect of obtaining the ratio, and S/ as the own aircraft altitude increases.
Deterioration of the C ratio can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの考案の一実施例を示すレーダ装置のブロッ
ク図、第2図は従来のレーダ装置の一部を示すブロック
図である。図において(1)は送信機。 (2)は励振器、(3)は空中線、(4)は受信機、(
5)はレーダ信号処理器、(6)は高度計、(7)は高
周波信号発生回路、(8)は変調器、(9)はパルス発
生回路、収1は制御器、+lυは表示装置、c12はパ
ルス巾、PRF切替え信号、 amは自機高度信号であ
る。 なお、各図中同一符号は同−又は相当部分を示す。 第 1 図
FIG. 1 is a block diagram of a radar device showing an embodiment of this invention, and FIG. 2 is a block diagram showing a part of a conventional radar device. In the figure, (1) is a transmitter. (2) is the exciter, (3) is the antenna, (4) is the receiver, (
5) is a radar signal processor, (6) is an altimeter, (7) is a high frequency signal generation circuit, (8) is a modulator, (9) is a pulse generation circuit, 1 is a controller, +lυ is a display device, c12 is the pulse width, PRF switching signal, and am is the own aircraft altitude signal. Note that the same reference numerals in each figure indicate the same or corresponding parts. Figure 1

Claims (1)

【特許請求の範囲】[Claims] パルスレーダを構成する、高周波パルス信号を増巾する
送信機と、増巾された高周波パルス信号を空間に放射す
るための空中線と、増巾される前の高周波パルス信号を
発生する励振器と、空中線で受信した反射パルス信号を
増巾・検波する受信機と、受信機で得られた反射パルス
信号を目標の追尾又は表示のための処理を実施する信号
処理器と、得られた目標のビデオ信号を表示するための
表示装置とを備えた航空機搭載のレーダ装置において、
航空機の自機高度信号によつて励振器におけるパルス巾
、パルス繰り返し周波数、受信機における受信帯域巾、
信号処理器におけるパルス積分数を変化させる事を特徴
とする機上用レーダ装置。
A transmitter that amplifies a high-frequency pulse signal that constitutes a pulse radar, an antenna that radiates the amplified high-frequency pulse signal into space, and an exciter that generates the high-frequency pulse signal before being amplified. A receiver that amplifies and detects the reflected pulse signal received by the antenna, a signal processor that processes the reflected pulse signal obtained by the receiver for tracking or displaying the target, and a video of the obtained target. In an aircraft-mounted radar device equipped with a display device for displaying a signal,
The pulse width in the exciter, pulse repetition frequency, reception bandwidth in the receiver, and
An airborne radar device characterized by changing the number of pulse integrals in a signal processor.
JP1098042A 1989-04-18 1989-04-18 Radar apparatus airborne Pending JPH02275381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1098042A JPH02275381A (en) 1989-04-18 1989-04-18 Radar apparatus airborne

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1098042A JPH02275381A (en) 1989-04-18 1989-04-18 Radar apparatus airborne

Publications (1)

Publication Number Publication Date
JPH02275381A true JPH02275381A (en) 1990-11-09

Family

ID=14209056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1098042A Pending JPH02275381A (en) 1989-04-18 1989-04-18 Radar apparatus airborne

Country Status (1)

Country Link
JP (1) JPH02275381A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223919A (en) * 1991-12-17 1993-09-03 Mitsubishi Electric Corp Signal processor
US7800528B2 (en) 2007-07-31 2010-09-21 Rosemount Tank Radar Ab Radar level gauge with variable pulse parameters

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223919A (en) * 1991-12-17 1993-09-03 Mitsubishi Electric Corp Signal processor
US7800528B2 (en) 2007-07-31 2010-09-21 Rosemount Tank Radar Ab Radar level gauge with variable pulse parameters

Similar Documents

Publication Publication Date Title
JPH1114749A (en) Radar device
EP2342581B1 (en) Clutter reduction in detection systems
JPH07244158A (en) Evaluation method of image quality of synthetic aperture radar image
US6897803B2 (en) Radar altimeter with forward ranging capabilities
US4041489A (en) Sea clutter reduction technique
US5173701A (en) Radar apparatus with jamming indicator and receiver device with jamming indicator
EP1533627B1 (en) Radar
US20140240166A1 (en) Device for clutter-resistant target detection
JPH02275381A (en) Radar apparatus airborne
JP3477133B2 (en) Radar equipment
RU2510685C2 (en) Synthetic-aperture and quasicontinuous radiation radar station
KR101912519B1 (en) Hybrid microwave imaging system and operating method thereof
KR20200027597A (en) Method for controlling sensitivity in ultra wideband radar or sensor system and apparatus therefor
JPH0569473B2 (en)
JP2951135B2 (en) Pulse radar clutter remover
JP2605957B2 (en) Airborne radar equipment
GB2333198A (en) Threat detection radar
JP7270060B2 (en) Solid-state radar device
JPS6375686A (en) Spotlight mapping radar device
JPH05312939A (en) Radar apparatus
JP3002738B2 (en) Multiband radar signal processing method
RU2083996C1 (en) Method of selection of surface targets
JP2581770B2 (en) Radar equipment
WO2025062597A1 (en) Radar control device, radar control method, and radar device
JPH0142392B2 (en)