JPH02273037A - Storage battery monitoring device - Google Patents
Storage battery monitoring deviceInfo
- Publication number
- JPH02273037A JPH02273037A JP1090861A JP9086189A JPH02273037A JP H02273037 A JPH02273037 A JP H02273037A JP 1090861 A JP1090861 A JP 1090861A JP 9086189 A JP9086189 A JP 9086189A JP H02273037 A JPH02273037 A JP H02273037A
- Authority
- JP
- Japan
- Prior art keywords
- storage battery
- amount
- electricity
- charging
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012806 monitoring device Methods 0.000 title claims abstract description 25
- 230000005611 electricity Effects 0.000 claims abstract description 80
- 238000007599 discharging Methods 0.000 claims abstract description 22
- 230000000717 retained effect Effects 0.000 claims description 10
- 238000000034 method Methods 0.000 abstract description 7
- 238000012937 correction Methods 0.000 description 9
- 230000010354 integration Effects 0.000 description 9
- 239000003792 electrolyte Substances 0.000 description 8
- 230000005484 gravity Effects 0.000 description 8
- 230000003247 decreasing effect Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000010248 power generation Methods 0.000 description 5
- 241000862969 Stella Species 0.000 description 4
- 230000001186 cumulative effect Effects 0.000 description 4
- 239000008151 electrolyte solution Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R15/00—Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
- G01R15/04—Voltage dividers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/165—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
- G01R19/16533—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
- G01R19/16538—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
- G01R19/16542—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Tests Of Electric Status Of Batteries (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、太陽電池を用いる太陽光発電装置等の蓄電
池監視装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a storage battery monitoring device for a solar power generation device or the like using a solar cell.
特に、蓄電池の保有電気量の計測誤差を自動的に補正す
ることができる蓄電池監視装置に関するものである。In particular, the present invention relates to a storage battery monitoring device that can automatically correct measurement errors in the amount of electricity held in a storage battery.
[従来の技術] 従来例の構成を第3図を参照しながら説明する。[Conventional technology] The configuration of a conventional example will be explained with reference to FIG.
第3図は、例えば特開昭82−187266号公報に示
された従来の蓄電池監視装置を示す回路図である。FIG. 3 is a circuit diagram showing a conventional storage battery monitoring device disclosed in, for example, Japanese Unexamined Patent Publication No. 82-187266.
第3図において、従来の太陽光発電装置は、太陽電池(
1)と、この太陽電池(1)の一端に接続された逆流防
止ダイオード(2)と、この逆流防止ダイオード(2)
に接続された電源開閉器(3)と、この電源開閉器(3
)と太陽電池(1)の他端に並列接続された分圧器(4
)と、この分圧器(4)の一端に一端が接続された分流
器(5)と、この分流器(5)の他端に正側が接続され
かつ太陽電池(1)の他端に負側か接続された蓄電池(
6)と、この蓄電池(6)の電解液の液中に設置された
比重センサ(7)と、電源開閉器(3)に接続された複
数の負荷開閉器(8)と、負荷開閉器(8)に一端が接
続されかつ太陽電池(1)の他端に他端が接続された負
荷(9)と、蓄電池監視装置(10)とから構成されて
いる。In Figure 3, the conventional solar power generation device consists of solar cells (
1), a backflow prevention diode (2) connected to one end of this solar cell (1), and this backflow prevention diode (2)
The power switch (3) connected to the
) and the voltage divider (4) connected in parallel to the other end of the solar cell (1).
), a shunt (5) with one end connected to one end of this voltage divider (4), a positive side connected to the other end of this shunt (5), and a negative side connected to the other end of the solar cell (1). or a connected accumulator (
6), a specific gravity sensor (7) installed in the electrolyte of this storage battery (6), a plurality of load switches (8) connected to the power switch (3), and a load switch ( 8) and a storage battery monitoring device (10).
従来の蓄電池監視装置(10)は、電源開閉器(3)、
分圧器(4)、分流器(5)、比重センサ(7)及び負
荷開閉器(8)に接続され、例えばコンピュータから構
成される装置
つぎに、上述した従来例の動作を第4図を参照しながら
説明する。The conventional storage battery monitoring device (10) includes a power switch (3),
A device connected to the voltage divider (4), flow divider (5), specific gravity sensor (7), and load switch (8) and consisting of, for example, a computer Next, the operation of the above-mentioned conventional example is shown in FIG. I will explain while doing so.
第4図は、従来の蓄電池監視装置(10)の蓄電池(6
)の保有電気量の演算動作を示すフローチャート図であ
る。Figure 4 shows a storage battery (6) of a conventional storage battery monitoring device (10).
) is a flowchart diagram showing the calculation operation of the amount of electricity possessed.
上述した太陽光発電装置は、直流電源として不安定な電
源である太陽電池(1)を用い、負荷(9)の所要電力
との差を蓄電池(6)の充放電電力によって補い、負荷
(9)に安定した電力を供給する装置である。The solar power generation device described above uses a solar cell (1), which is an unstable power source as a DC power source, and compensates for the difference in power required by the load (9) with the charging/discharging power of the storage battery (6). ) is a device that supplies stable power to the
蓄電池監視装置(10)は、蓄電池(6)の保有電気量
を演算し、保有電気量が上限値の場合は過充電を防止す
るために電源開閉器(3)を開放する。A storage battery monitoring device (10) calculates the amount of electricity held in the storage battery (6), and opens a power switch (3) to prevent overcharging when the amount of electricity held is an upper limit value.
方、保有電気量が下限値の場合は過放電を防止するため
に負荷開閉器(8)を全て開放する。On the other hand, if the amount of electricity held is at the lower limit, all load switches (8) are opened to prevent overdischarge.
また、上述した場合以外は保有電気量に応じて負荷開閉
器(8)を開放し負荷(9)の増減の制御を行う、すな
わち、蓄電池(6)の保有電気量が増加すれば負荷開閉
器(8)の閉路数を増加し、逆に保有電気量が減少すれ
ば負荷開閉器(8)の閉路数を減少することによって全
体の負荷を増減して、蓄電池(6)の保有電気量を常に
規定範囲内にあるように制御する。In addition, in cases other than those mentioned above, the load switch (8) is opened according to the amount of electricity held to control the increase or decrease of the load (9). In other words, if the amount of electricity held in the storage battery (6) increases, the load switch (8) is If the number of closed circuits (8) is increased and the amount of electricity held decreases, the number of closed circuits of the load switch (8) is decreased to increase or decrease the overall load, and the amount of electricity held in the storage battery (6) is decreased. Control so that it is always within the specified range.
上述した蓄電池(6)の保有電気量は、っぎのようにし
て求める。The amount of electricity held by the storage battery (6) mentioned above is determined as follows.
ステ、ア責40)において、蓄電池監視装置(10)は
、蓄電池(6)の充放電電流Is(充電時:正、放電時
:負)を、分流器(5)によって常時計測する。In Step 40), the storage battery monitoring device (10) constantly measures the charging/discharging current Is (positive when charging, negative when discharging) of the storage battery (6) using the shunt (5).
ステラ7” (41)において、演算周期期間tの電気
量変化分ΔAH(アンペアアワー)を次式より演算する
。Stella 7'' (41) calculates the amount of electricity change ΔAH (ampere hour) during the calculation cycle period t using the following equation.
ΔAH= I B Xt/3600
スy−t7” (42)において、蓄電池(6)が充電
かどうかを充放電電流IBの正負により判断する。充電
の場合(YES)はステ、7°(43)に進へ、充電で
ない場合(NO)はステ、ブ(44)に進む。ΔAH= I B If not charging (NO), proceed to step (44).
y、テ、ア” (43)において、充電の場合の保有電
気量A H(n)を次式より演算し、ステップ(45)
に進む。y, te, a'' (43), calculate the amount of electricity A H (n) held in case of charging from the following formula, and step (45)
Proceed to.
AH(n)−AH(n−1)+77XΔAHなお、AH
(n−1)は演算前の保有電気量であり、η(ηく1)
は充電効率である。AH(n)-AH(n-1)+77XΔAH Furthermore, AH
(n-1) is the amount of electricity held before calculation, η (η × 1)
is the charging efficiency.
蓄電池(6)は、抵抗損、ガス発生による損失等の内部
損失によって充電電気量の全てを放電電気量として取り
出せないので、保有電気量の演算においては充電効率η
を掛ける。Since the storage battery (6) cannot extract all of the charged electricity as discharged electricity due to internal losses such as resistance loss and loss due to gas generation, the charging efficiency η is used to calculate the stored electricity.
Multiply by
スL7” (44)において、放電の場合の保有電気量
AH(n)を次式より演算し、ステ、ア°(45)に進
む。At Step L7'' (44), the amount of electricity AH(n) held in case of discharge is calculated from the following equation, and the process proceeds to Step A (45).
A H(n) = A I−1(n −1)−ΔAHス
テップ(45)において、演算周期のL秒経過したらス
テップ(40)に戻る 。AH(n) = AI-1(n-1)-ΔAH In step (45), when L seconds of the calculation period have elapsed, the process returns to step (40).
しかしながら、上述した保有電気量には計測誤差等の誤
差が存在する。この誤差は、充放電電流IBの計測誤差
がわずかでも、長期間にわたると積算誤差として非常に
大きくなる。However, there are errors such as measurement errors in the above-mentioned amount of held electricity. Even if the measurement error of the charging/discharging current IB is small, this error becomes extremely large as an integrated error over a long period of time.
また、充電効率ηは、保有電気量によって変化し、特に
充電終期に近付くほどガス発生が著しくなり極端に低下
することや、充電電流の大きさ、蓄電池(6)の温度に
よっても若干変化するので、充放電電流IBの計測誤差
がなくても、長い間には蓄電池(6)の実際の保有電気
量との間の誤差は発生することになる。In addition, the charging efficiency η changes depending on the amount of electricity held, and in particular, the closer to the end of charging, the more gas is generated and it drops dramatically, and it also changes slightly depending on the size of the charging current and the temperature of the storage battery (6). Even if there is no measurement error in the charging/discharging current IB, an error will occur over a long period of time between the charging and discharging current IB and the actual amount of electricity held in the storage battery (6).
さらに、不規則な繰り返し充放電使用の場合には、充放
電効率が繰り返し毎に異なり誤差が増大する。Furthermore, in the case of irregularly repeated charging and discharging use, the charging and discharging efficiency varies with each repetition and errors increase.
そこで、保有電気量の誤差を補正する動作を第5図を参
照しながら説明する。Therefore, the operation for correcting the error in the amount of electricity held will be explained with reference to FIG. 5.
第5図は、蓄電池(6)の保有電気量と蓄電池電圧VB
との関係を示す特性図である。Figure 5 shows the amount of electricity held in the storage battery (6) and the storage battery voltage VB.
FIG.
蓄電池監視装置(10)の積算誤差が負の場合には、蓄
電池(6)の実際の保有電気量は、演算計測による保有
電気量よりも徐々に上昇方向(充電)に向がう、第5図
で示すように、蓄電池電圧vBが保有電気量の上限付近
(充電終期)において急峻に上昇する傾向があるので、
蓄電池監視装置(10)はその蓄電池電圧vBを計測す
ることができる。そして、蓄電池電圧vBが上限電圧E
cに達したときに、演算計測による保有電気量を上限電
圧Ecに対応した上限保有電気量AH,に補正する。When the integration error of the storage battery monitoring device (10) is negative, the actual amount of electricity held in the storage battery (6) gradually increases (charging) more than the amount of electricity calculated and measured. As shown in the figure, since the storage battery voltage vB tends to rise sharply near the upper limit of the amount of electricity held (at the end of charging),
The storage battery monitoring device (10) can measure the storage battery voltage vB. Then, the storage battery voltage vB is the upper limit voltage E
c, the amount of electricity calculated and measured is corrected to the upper limit amount of electricity AH, which corresponds to the upper limit voltage Ec.
また、積算誤差が正の場合には、蓄電池(6)の実際の
保有電気量は、演算計測による保有電気量よりも徐々に
下降方向(放電)に向がう、ここで、蓄電池(6)の電
解液の比重は放電量にほぼ比例するので、放電時に限れ
ば、電解液の比重から蓄電池(6)の実際の保有電気量
を求めることができる。In addition, when the integration error is positive, the actual amount of electricity held by the storage battery (6) gradually decreases (discharges) compared to the amount of electricity held by the calculation measurement. Since the specific gravity of the electrolytic solution is approximately proportional to the amount of discharge, the actual amount of electricity held by the storage battery (6) can be determined from the specific gravity of the electrolytic solution only during discharging.
すなわち、比重センナ(7)は蓄電池(6)の電解液の
比重が規定の下限比重値に達したときに接点が閉成する
ので、演算計測による保有電気量を対応した下限保有電
気量AHLに補正する。In other words, the contact of the specific gravity sensor (7) closes when the specific gravity of the electrolyte in the storage battery (6) reaches the specified lower limit specific gravity value, so the amount of electricity held by calculation measurement is adjusted to the corresponding lower limit amount of electricity AHL. to correct.
保有電気量の誤差を補正する方法としては、上述した以
外にもある。There are other methods of correcting the error in the amount of electricity in addition to those described above.
例えば、1週問に1回程度、積算誤差の正負とは無関係
に定期的に保有電気量が120%程度になるまで過充電
を行い、その後演算計測した保有電気量を100%にリ
セットして、積算誤差を補正する方法がある。For example, once a week, irrespective of the sign or negative of the integration error, overcharging is performed until the amount of electricity stored reaches approximately 120%, and then the amount of electricity calculated and measured is reset to 100%. , there is a method to correct the integration error.
しかしながら、この方法には、保有電気量100%以上
の電気量が全て電力損失となるうえ、蓄電池(6)の寿
命を低下させ、また、過充電に伴うガス発生によって電
解液の減少が著しいという欠点がある。However, this method has the disadvantage that more than 100% of the stored electricity results in power loss, shortens the life of the storage battery (6), and significantly reduces the amount of electrolyte due to gas generation due to overcharging. There are drawbacks.
[発明が解決しようとする課B]
上述したような従来のN電池監視装置では、積算誤差が
ある程度大きくなっても、蓄電池電圧が上限値又は下限
値に到達するまで誤差補正が行なわれないので、補正量
が大きくなり、積算誤差が正又は負側の一方向の場合に
は蓄電池の保有電気量の利用範囲を狭め、かつ利用領域
が充電側又は放電側に偏りやすく蓄電池の寿命を縮める
という問題点があった。[Problem B to be Solved by the Invention] In the conventional N battery monitoring device as described above, even if the integration error becomes large to a certain extent, error correction is not performed until the storage battery voltage reaches the upper limit value or the lower limit value. If the amount of correction becomes large and the integration error is in either the positive or negative direction, the range of use of the stored electricity of the storage battery will be narrowed, and the usage range will tend to be biased toward the charging side or the discharging side, shortening the life of the storage battery. There was a problem.
また、演算計測した保有電気量に応じて負荷開閉器を開
閉して負荷量の制御を行っている場合には、誤差補正時
の保有電気量の大きな変化によって制御状態が急変する
という問題点があった。In addition, when the load is controlled by opening and closing the load switch according to the calculated and measured amount of electricity, there is a problem that the control state changes suddenly due to a large change in the amount of electricity that is stored during error correction. there were.
さらに、充電時の蓄電池電圧は、同一の保有電気量でも
充電電流又は電解液温度によって、第5図の破線で示す
ように、変化する(例えば、充電電流大→電圧高、電解
液温度高→電圧低)、このため、光電電流又は電解液温
度に応じて上限電圧Ecを可変にしなければ精度のよい
補正が行えない、その結果として、上述した同様の問題
点が発生し、上限電圧Eeを可変にする場合には装置を
複雑にしコスト高になるという問題点があった。Furthermore, the storage battery voltage during charging varies depending on the charging current or electrolyte temperature even if the amount of electricity held is the same (for example, large charging current → high voltage, high electrolyte temperature → For this reason, accurate correction cannot be made unless the upper limit voltage Ec is made variable according to the photoelectric current or electrolyte temperature.As a result, the same problem as mentioned above occurs, and the upper limit voltage Ee cannot be adjusted. In the case of making it variable, there is a problem that the device becomes complicated and the cost increases.
この発明は、上述した問題点を解決するためになされた
もので、蓄電池の実際の保有電気量と演算計測した保有
電気量との誤差を常に少なくすることができる蓄電池監
視装置を得ることを目的とする。This invention was made in order to solve the above-mentioned problems, and its purpose is to obtain a storage battery monitoring device that can always reduce the error between the actual amount of electricity held in a storage battery and the amount of electricity calculated and measured. shall be.
[課題を解決するための手段]
この発明に係る蓄電池監視装置は、以下に述べるような
手段を備えたものである。[Means for Solving the Problems] A storage battery monitoring device according to the present invention includes the following means.
(i)、蓄電池の電圧を計測しその電圧に基づいて充電
効率を変える充電効率可変手段。(i) Charging efficiency variable means that measures the voltage of the storage battery and changes the charging efficiency based on the voltage.
(ii)、上記蓄電池の充放電電流を計測しその充放電
電流及び上記充電効率に基づいて上記蓄電池の保有電気
量を演算する保有電気量演算手段。(ii) A retained electricity amount calculation means that measures the charging/discharging current of the storage battery and calculates the retained electricity amount of the storage battery based on the charging/discharging current and the charging efficiency.
[作用]
この発明においては、充電効率可変手段によって、蓄電
池の電圧が計測され、その電圧に基づいて充電効率が変
えられる。[Operation] In the present invention, the voltage of the storage battery is measured by the charging efficiency variable means, and the charging efficiency is changed based on the measured voltage.
また、保有電気量演算手段によって、上記蓄電池の充放
電電流が計測され、その充放電電流及び上記充電効率に
基づいて、上記蓄電池の保有電気量が演算される。Further, the charging/discharging current of the storage battery is measured by the stored electricity amount calculation means, and the amount of electricity held by the storage battery is calculated based on the charging/discharging current and the charging efficiency.
[実施例] 実施例の構成を第1図を参照しながら説明する。[Example] The configuration of the embodiment will be explained with reference to FIG.
第1図は、この発明の一実施例を示す回路図であり、太
陽電池(1)〜蓄電池(6)、負荷開閉器(8)及び負
荷(9)は上記従来の太陽光発電装置のものと全く同一
である。FIG. 1 is a circuit diagram showing an embodiment of the present invention, in which the solar cell (1) to storage battery (6), load switch (8) and load (9) are those of the above-mentioned conventional solar power generation device. is exactly the same.
第1図において、この発明の一実施例を使用した太陽光
発電装置は、上述した従来装置のものと全く同一のもの
と、蓄電池監視装置(10^)とから構成されている。In FIG. 1, a solar power generation device using an embodiment of the present invention is composed of the same components as the conventional device described above and a storage battery monitoring device (10^).
この発明の一実施例である蓄電池監視装置(IOA>は
、電源開閉器(3)、分圧器(4)、分流器(5)、及
び負荷開閉器(8)に接続され、例えばコンピュータ(
CPU、メモリ、インタフェイス等の付属機器を含む、
)から構成されている。A storage battery monitoring device (IOA), which is an embodiment of the present invention, is connected to a power switch (3), a voltage divider (4), a current divider (5), and a load switch (8), and is connected to, for example, a computer (
Including attached equipment such as CPU, memory, interface, etc.
).
ところで、この発明の充電効率可変手段は、上述したこ
の発明の一実施例では蓄電池電圧に応じて充電効率を変
えるプログラムステップから構成され、保有電気量演算
手段は、充放電電流及び充電効率から保有電気量を求め
るプログラムステップから構成されている。By the way, the charging efficiency variable means of the present invention, in the above-described embodiment of the present invention, is composed of program steps that change the charging efficiency according to the storage battery voltage, and the retained electricity amount calculation means calculates the retained electricity amount from the charging/discharging current and the charging efficiency. It consists of program steps to determine the quantity of electricity.
つぎに、上述した実施例の動作を第2図を参照しながら
説明する。Next, the operation of the above embodiment will be explained with reference to FIG.
第2図は、この発明の一実施例の動作を示すフローチャ
ート図である。FIG. 2 is a flowchart showing the operation of one embodiment of the present invention.
ステラ7” (20)〜(24)は、上述した従来例の
ステップ。Stella 7'' (20) to (24) are the steps of the above-mentioned conventional example.
(40)〜(44)の動作と同一である。なお、ηは9
5%前後である。The operations are the same as those in (40) to (44). Note that η is 9
It is around 5%.
ステップ(25)において、蓄電池監視装置(10八)
は、分圧器(4)によって蓄電池(6)の蓄電池電圧v
Rを計測する。In step (25), the storage battery monitoring device (108)
is the storage battery voltage v of the storage battery (6) by the voltage divider (4)
Measure R.
保有電気量の積算誤差が負の場合には、蓄電池(6)の
実際の保有電気量は演算計測した保有電気量よりも徐々
に上昇方向(充電)に向かう、蓄電池(6)の電圧vB
は、第5図で示すように、保有電気量の上限付近におい
て急峻に上昇する傾向があるので、蓄電池監視装W (
IOA)はその電圧VBを計測することができる。If the cumulative error in the amount of electricity held is negative, the actual amount of electricity held in the storage battery (6) gradually increases (charging) compared to the calculated amount of electricity held, and the voltage vB of the storage battery (6)
As shown in Fig. 5, there is a tendency for the storage battery monitoring device W (
IOA) can measure its voltage VB.
ステ、7°(26〉において、N電池電圧vBが上限電
圧Ecを越えているかどうがを判断する。越えている場
合(YES)はステップ(27)に進み、越えていない
場合(NO)はステップ(28)に進む。At step 7° (26>), it is determined whether the N battery voltage vB exceeds the upper limit voltage Ec. If it does (YES), proceed to step (27); if it does not (NO), proceed to step (27). Proceed to step (28).
ステラフ責27)において、充電効率ηがその上限ηH
より小さいときのみ(ηくηH)、し2時間毎に充電効
率ηをΔηだけ増加する。なお、tlは1.0x60秒
程度、Δηは1%程度である。In Stellaf Responsibility27), charging efficiency η is its upper limit ηH
Only when it is smaller (η × ηH), then the charging efficiency η is increased by Δη every 2 hours. Note that tl is about 1.0x60 seconds, and Δη is about 1%.
1テJ” (28)において、蓄電池電圧Veが上限電
圧Ec以下に回復した場合、充電効率ηがその平均ηに
より大きいときのみ(η〉ηK)、tz(h>1+)時
間毎に充電効率ηをΔηだけ減少する。なお、t2は3
X60X60秒程度である。1 TeJ'' (28), when the storage battery voltage Ve recovers to the upper limit voltage Ec, the charging efficiency increases every tz (h>1+) hours only when the charging efficiency η is larger than the average η (η>ηK). η is decreased by Δη. Note that t2 is 3
It is about X60X60 seconds.
したがって、充電効率η−ηにとして保有電気量を演算
計測した結果、負の積算誤差を生じ、蓄電池電圧vBが
上限電圧Ec以上となった場合には、充電効率ηをηに
からηHまで増加させることになるので、この充電効率
ηが実際の値を越え・た時点から演算計測された保有電
気量は実際に充電された保有電気量よりも多くなり、そ
の結果、積算誤差が徐々に正の方向に向がい、誤差補正
が行なわれる。Therefore, as a result of calculating and measuring the amount of electricity held as the charging efficiency η - η, if a negative integration error occurs and the storage battery voltage vB exceeds the upper limit voltage Ec, the charging efficiency η is increased from η to ηH. Therefore, from the point at which this charging efficiency η exceeds the actual value, the amount of stored electricity calculated and measured becomes greater than the amount of stored electricity that was actually charged, and as a result, the integration error gradually corrects. Error correction is performed in the direction of .
一方、保有電気量の積算誤差が正の場合には、蓄電池(
6)の実際の保有電気量は演算計測した保有電気量より
も徐々に下降方向(放電)に向かう。On the other hand, if the cumulative error of the amount of electricity held is positive, the storage battery (
6) The actual amount of electricity held is gradually decreasing (discharging) compared to the amount of electricity calculated and measured.
蓄電池(6)の電圧vBは、第5図で示すように、保有
電気量の下限付近において急峻に下降する傾向があるの
で、N電池監視袋! (10^)はその電圧vBを計測
することができる。As shown in Fig. 5, the voltage vB of the storage battery (6) tends to drop sharply near the lower limit of the amount of electricity held, so N battery monitoring bag! (10^) can measure its voltage vB.
ステラy” (29)において、蓄電池電圧vBが下限
電圧Edを下回っているがどうかを判断する。下回って
いる場合(YES)はステップ(30)に進み、下回っ
ていない場合(NO)はステ、7°(31)に進む。Stella y" (29), it is determined whether the storage battery voltage vB is below the lower limit voltage Ed. If it is below (YES), proceed to step (30); if it is not below (NO), proceed to step (30). Go to 7° (31).
ステップ(30)において、充電効率ηがその下限ηL
より大きいときのみ(η〉ηL)、L1時間毎に充電効
率ηをΔηだけ減少する。In step (30), the charging efficiency η is set to its lower limit ηL
Only when it is larger (η>ηL), the charging efficiency η is decreased by Δη every L1 hours.
ステラ7”(31)において、蓄電池電圧VBが下限電
圧Ed以上に回復した場合、充電効率ηがその平均ηに
より小さいときのみ(η〈ηK)、t2(h>b)時間
毎に充電効率ηをΔηだけ増加する。In Stella 7'' (31), when the storage battery voltage VB recovers to the lower limit voltage Ed or higher, only when the charging efficiency η is smaller than the average η (η<ηK), the charging efficiency η changes every time t2 (h>b). is increased by Δη.
したがって、充電効率η=ηにとして保有電気量を演算
計測した結果、正の積算誤差を生じ、蓄電池電圧vBが
下限電圧Ed以下となった場合には、充電効率ηをηK
からηLまで減少させることになるので、この充電効率
ηが実際の値を下回った時点から演算計測された保有電
気量は実際に充電された保有電気量よりも少なくなり、
その結果、積算誤差が徐々に負の方向に向がい、誤差補
正が行なわれる。Therefore, as a result of calculating and measuring the amount of electricity held with the charging efficiency η = η, a positive integration error occurs, and if the storage battery voltage vB becomes lower limit voltage Ed or less, the charging efficiency η becomes ηK
Since the charging efficiency η is reduced from the actual value to ηL, the amount of stored electricity that is calculated and measured becomes smaller than the amount of electricity that is actually charged.
As a result, the cumulative error gradually moves toward the negative direction, and error correction is performed.
この発明の一実施例は、上述したように保有電気量を演
算計測するために用いる充電効率ηを、蓄電池電圧が規
定値以上になれば規定時間毎に規定量づつ増加し、また
、蓄電池電圧が規定値以下になれば規定時間毎に規定量
づつ減少するようにしたものである。In one embodiment of the present invention, as described above, the charging efficiency η used for calculating and measuring the amount of electricity held is increased by a specified amount at every specified time when the storage battery voltage exceeds a specified value; When the value becomes less than a specified value, the amount decreases by a specified amount at specified time intervals.
すなわち、誤差の正負を蓄電池電圧の上昇又は下降によ
って検出し、このときに充電効率ηを徐々に増加又は減
少することによって、誤差が負又は正の場合には保有電
気量を増加又は減少して、誤差を正又は負の方向に補正
しているので、誤差補正時の保有電気量の大きな変化に
よる装置の運用上の上述した問題点を解消できるととも
に、充放電電流や電解液温度等の蓄電池の諸条件によっ
て電圧特性が変化した場合でも、条件毎に電圧特性によ
って平均的に誤差補正を行うことになるので、補正値の
精度上の上述した問題点を解消することができるという
効果を奏する。That is, the positive or negative error is detected by the rise or fall of the storage battery voltage, and at this time, by gradually increasing or decreasing the charging efficiency η, if the error is negative or positive, the amount of electricity held is increased or decreased. Since the error is corrected in the positive or negative direction, it is possible to solve the above-mentioned problems in the operation of the device due to large changes in the amount of electricity held when the error is corrected, and it is also possible to correct the storage battery such as charging/discharging current and electrolyte temperature. Even if the voltage characteristics change depending on the various conditions, the error is corrected on the average based on the voltage characteristics for each condition, so the above-mentioned problem with the accuracy of the correction value can be solved. .
また、第2図において、t、に対するし2時間(L2>
t+)を適切に選択すれば、蓄電池電圧の上限又は下限
電圧での誤差補正を電圧回復後も適度に維持することが
でき、計測誤差が正又は負側の一方向であっても、蓄電
池の利用領域の充電側又は放電側への偏りを緩和できる
。In addition, in Fig. 2, 2 hours for t (L2>
If t+) is selected appropriately, error correction at the upper or lower limit voltage of the storage battery voltage can be maintained appropriately even after voltage recovery, and even if the measurement error is in one direction, positive or negative, the storage battery The bias of the usage area toward the charging side or the discharging side can be alleviated.
さらに、定期的な過充電を実施することなく誤差補正が
行えるので、過充電に伴う電力損失、蓄電池の寿命の低
下、電解液の減少等の問題点を解消できる。Furthermore, since error correction can be performed without periodic overcharging, problems such as power loss, shortened battery life, and decrease in electrolyte caused by overcharging can be solved.
なお、上記実施例では保有電気量の積算誤差の正負とも
に、蓄電池(6)の電圧によって誤差補正を行ったが、
放電時に限れば、比重センサを用いても同様の動作を期
待できる。In addition, in the above embodiment, both the positive and negative cumulative errors of the amount of electricity held are corrected by the voltage of the storage battery (6).
As long as it is during discharge, a similar operation can be expected even if a specific gravity sensor is used.
また、上記実施例では保有電気量を求めるプログラムス
テップと充電効率を変えるプログラムステップをシリー
ズに続けているが、それぞれを別のプログラムとして並
列処理を行うようにしても所期の目的を達成し得ること
はいうまでもない。Furthermore, in the above example, the program step for calculating the amount of electricity held and the program step for changing the charging efficiency are continued in a series, but the intended purpose can also be achieved by processing each program in parallel as separate programs. Needless to say.
[発明の効果1
この発明は、以上説明したとおり、蓄電池の電圧を計測
しその電圧に基づいて充電効率を変える充電効率可変手
段と、上記蓄電池の充放電電流を計測しその充放電電流
及び上記充電効率に基づいて上記蓄電池の保有電気量を
演算する保有電気量演算手段とを備えたので、蓄電池の
実際の保有電気量と演算計測した保有電気量との誤差を
常に少なくすることができるという効果を奏する。[Effects of the Invention 1] As explained above, the present invention includes a charging efficiency variable means that measures the voltage of a storage battery and changes the charging efficiency based on the voltage; Since the storage battery is equipped with a retained electricity amount calculation means that calculates the retained electricity amount of the storage battery based on the charging efficiency, it is possible to always reduce the error between the actual retained electricity amount of the storage battery and the calculated and measured retained electricity amount. be effective.
第1図はこの発明の一実施例を示す回路図、第2図はこ
の発明の一実施例の動作を示すフローチャート図、第3
図は従来の蓄電池監視装置を示す回路図、第4図は従来
の蓄電池監視装置の動作を示すフローチャート図、第5
図は蓄電池の保有電気Iと電圧との関係を示す特性図で
ある。
図において、
(IOA> ・・・ 蓄電池監視装置、(4)・・・
分圧器、
(5)・・・ 分流器、
(6)・・・ 蓄電池である。
なお、各図中、同一符号は同一、又は相当部分を示す。FIG. 1 is a circuit diagram showing an embodiment of the present invention, FIG. 2 is a flowchart showing the operation of an embodiment of the invention, and FIG.
The figure is a circuit diagram showing a conventional storage battery monitoring device, FIG. 4 is a flowchart showing the operation of the conventional storage battery monitoring device, and FIG.
The figure is a characteristic diagram showing the relationship between the electricity I held by the storage battery and the voltage. In the figure, (IOA>... storage battery monitoring device, (4)...
Voltage divider, (5)... shunt, (6)... storage battery. In each figure, the same reference numerals indicate the same or equivalent parts.
Claims (1)
える充電効率可変手段、並びに上記蓄電池の充放電電流
を計測しその充放電電流及び上記充電効率に基づいて上
記蓄電池の保有電気量を演算する保有電気量演算手段を
備え、上記保有電気量に基づいて上記蓄電池に接続され
ている開閉器を制御することを特徴とする蓄電池監視装
置。A charging efficiency variable means that measures the voltage of the storage battery and changes the charging efficiency based on the voltage; and a charging efficiency variable means that measures the charging and discharging current of the storage battery and calculates the amount of electricity held by the storage battery based on the charging and discharging current and the charging efficiency. A storage battery monitoring device comprising a retained electricity amount calculation means and controlling a switch connected to the storage battery based on the retained electricity amount.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1090861A JP3009677B2 (en) | 1989-04-12 | 1989-04-12 | Battery monitoring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1090861A JP3009677B2 (en) | 1989-04-12 | 1989-04-12 | Battery monitoring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02273037A true JPH02273037A (en) | 1990-11-07 |
JP3009677B2 JP3009677B2 (en) | 2000-02-14 |
Family
ID=14010338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1090861A Expired - Lifetime JP3009677B2 (en) | 1989-04-12 | 1989-04-12 | Battery monitoring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3009677B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0660489A2 (en) * | 1993-12-27 | 1995-06-28 | Hitachi, Ltd. | Secondary battery power storage system |
USRE39908E1 (en) | 1993-12-27 | 2007-11-06 | Hitachi, Ltd. | Secondary battery power storage system |
CN115575824A (en) * | 2022-11-21 | 2023-01-06 | 陕西银河景天电子有限责任公司 | Battery electric quantity estimation method and device for autonomous learning |
CN118818335A (en) * | 2024-09-11 | 2024-10-22 | 河南锐远电子有限公司 | Battery online monitoring device and monitoring method thereof |
-
1989
- 1989-04-12 JP JP1090861A patent/JP3009677B2/en not_active Expired - Lifetime
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0660489A2 (en) * | 1993-12-27 | 1995-06-28 | Hitachi, Ltd. | Secondary battery power storage system |
EP0660489A3 (en) * | 1993-12-27 | 1995-08-30 | Hitachi Ltd | Secondary battery power storage system. |
US5834922A (en) * | 1993-12-27 | 1998-11-10 | Hitachi, Ltd. | Secondary battery power storage system |
EP0969580A2 (en) * | 1993-12-27 | 2000-01-05 | Hitachi, Ltd. | Secondary battery power storage system |
EP0969580A3 (en) * | 1993-12-27 | 2000-07-26 | Hitachi, Ltd. | Secondary battery power storage system |
USRE37678E1 (en) | 1993-12-27 | 2002-04-30 | Hitachi, Ltd. | Secondary battery power storage system |
USRE39749E1 (en) | 1993-12-27 | 2007-07-31 | Hitachi, Ltd. | Electric vehicle with secondary battery power storage system |
USRE39908E1 (en) | 1993-12-27 | 2007-11-06 | Hitachi, Ltd. | Secondary battery power storage system |
CN115575824A (en) * | 2022-11-21 | 2023-01-06 | 陕西银河景天电子有限责任公司 | Battery electric quantity estimation method and device for autonomous learning |
CN115575824B (en) * | 2022-11-21 | 2024-04-30 | 陕西银河景天电子有限责任公司 | Autonomous learning battery power estimation method and device |
CN118818335A (en) * | 2024-09-11 | 2024-10-22 | 河南锐远电子有限公司 | Battery online monitoring device and monitoring method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3009677B2 (en) | 2000-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6756768B2 (en) | Method and apparatus for computing remaining battery capacity utilizing battery discharge capacity | |
US7688075B2 (en) | Lithium sulfur rechargeable battery fuel gauge systems and methods | |
CN104360285B (en) | A kind of battery capacity modification method based on improved ampere-hour integration method | |
CN110061531B (en) | Energy storage battery equalization method | |
JP4759795B2 (en) | Rechargeable battery remaining capacity detection method | |
US7400149B2 (en) | Method for assessment of the state of batteries in battery-supported power supply systems | |
JP2003132960A (en) | Method for detecting charged state of storage battery used for power supply system, and method for deciding degradation of storage battery | |
CN105068011A (en) | Method for estimating and correcting SOC value of lithium manganate series battery pack | |
US20100219795A1 (en) | Pulse charge method for nonaqueous electrolyte secondary battery and pulse charge control device | |
CN107368619A (en) | EKF SOC estimation method based on battery hysteresis voltage characteristic and resilience voltage characteristic | |
JP4817647B2 (en) | Secondary battery life judgment method. | |
EP1064690B1 (en) | Method enhancing smart battery performance | |
JP2002236154A (en) | Remaining capacity correction method of battery | |
JP2001157369A (en) | Method of controlling charging and discharging of battery | |
JP4764971B2 (en) | Battery level measuring device | |
CN117250514A (en) | Correction method for full life cycle SOC of power battery system | |
JP4329543B2 (en) | Battery level measuring device | |
JP3391227B2 (en) | How to charge lead storage batteries | |
JPH02273037A (en) | Storage battery monitoring device | |
JP2001309570A (en) | How to adjust battery capacity | |
KR20170028183A (en) | System and method for estimated state of energy of battery | |
JP2000278874A (en) | Charging of storage battery | |
JP6672976B2 (en) | Charge amount calculation device, computer program, and charge amount calculation method | |
JP3133534B2 (en) | Battery overcharge / overdischarge prevention method | |
JPH07335273A (en) | Method and device for monitoring charging discharging of storage battery |