JPH02272288A - Argon recovery method - Google Patents
Argon recovery methodInfo
- Publication number
- JPH02272288A JPH02272288A JP1092082A JP9208289A JPH02272288A JP H02272288 A JPH02272288 A JP H02272288A JP 1092082 A JP1092082 A JP 1092082A JP 9208289 A JP9208289 A JP 9208289A JP H02272288 A JPH02272288 A JP H02272288A
- Authority
- JP
- Japan
- Prior art keywords
- argon
- exhaust gas
- gas
- nitrogen
- crude
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B23/00—Noble gases; Compounds thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04721—Producing pure argon, e.g. recovered from a crude argon column
- F25J3/04733—Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04721—Producing pure argon, e.g. recovered from a crude argon column
- F25J3/04733—Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction
- F25J3/04739—Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction in combination with an auxiliary pure argon column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/60—Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/60—Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
- F25J2205/64—Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end by pressure-swing adsorption [PSA] at the hot end
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/02—Multiple feed streams, e.g. originating from different sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/70—Flue or combustion exhaust gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/42—Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/58—Processes or apparatus involving steps for recycling of process streams the recycled stream being argon or crude argon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Separation Of Gases By Adsorption (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
本発明は、アルゴン使用設備、例えばアルゴン酸素吹錬
炉やRH真空脱ガス処理設備等におけるアルゴン含有排
ガスからアルゴンガスを回収する方法に関する。DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a method for recovering argon gas from argon-containing exhaust gas in argon-using equipment, such as argon oxygen blowing furnaces and RH vacuum degassing equipment.
(ロ)従来技術
最近、製鋼工程中の精錬過程でアルゴンガスを使用する
ことが盛んに行われている0例えば、アルゴン−酸素吹
疎性は、酸素と共にアルゴンを溶鋼中へ吹き込むことに
より、高価なりロムを酸化することなく脱炭を可能とし
たものであり、かつ良好な品質が得られるので、高クロ
ム鋼の新しい溶鋼法として注目を浴び精錬に採用されて
いる。(b) Prior art Recently, argon gas has been widely used in the refining process of steel manufacturing. Because it enables decarburization without oxidizing chromium chromium and also provides good quality, it has attracted attention as a new method for molten high-chromium steel and has been adopted for refining.
同じく、製鋼工程中の精錬過程で脱ガスを目的に行われ
る溶鋼脱ガス法は、t9mを真空にさらすことにより溶
m+の不純物として有害な水素、窒素、酸素ガスを減少
させる処理を行う際、溶鋼中に環流ガスおよび羽口冷却
ガスとして不活性ガスを流しているが、特に低窒素鋼の
溶製時には不活性ガスとしてアルゴンが用いられる。Similarly, the molten steel degassing method, which is carried out for the purpose of degassing during the refining process during the steelmaking process, involves exposing t9m to a vacuum to reduce harmful hydrogen, nitrogen, and oxygen gases as impurities in the molten m+. An inert gas is passed through the molten steel as a reflux gas and a tuyere cooling gas, and argon is especially used as the inert gas when producing low nitrogen steel.
また、前記クロム含有鋼に限らず普通の精錬においても
、脱炭効率を向上させる目的で、アルゴンで溶鋼を撹拌
しながら酸素精錬する方法が採用されるようになってき
た。また、その使用量も増加する傾向にある。In addition, not only for the above-mentioned chromium-containing steel but also for ordinary refining, a method of oxygen refining while stirring molten steel with argon has been adopted for the purpose of improving decarburization efficiency. Moreover, the amount used is also on the rise.
このような用途に使用されるアルゴンガスは、工業的に
は空気深冷分離装置から得られるアルゴン含有ガスをア
ルゴン回収方法でさらに濃縮して製造している。アルゴ
ンガスは空気中に0.93%程度しか含まれていないた
め、今後前記需要に見合う供給の不足も予想される。ま
た、非常に高価でもある。Argon gas used for such purposes is industrially produced by further concentrating argon-containing gas obtained from an air cryogenic separation device using an argon recovery method. Since argon gas is contained in the air at only about 0.93%, it is expected that there will be a shortage of supply to meet the demand in the future. It is also very expensive.
そこで、このアルゴン使用量を低減するため、使用済み
含有排ガスからアルゴンを分離回収して再利用する方法
が試みられている。Therefore, in order to reduce the amount of argon used, attempts have been made to separate and recover argon from the used exhaust gas and reuse it.
例えば、特公昭50−6999号公報は当該排ガスを外
気と遮断して捕集し、−酸化炭素の選択的吸収液(純ア
ンモニア溶液など)と接触させ、−酸化炭素を除去して
アルゴンを回収する方法を開示している。また、特公昭
52−28750号公報は外気と遮断して捕集した当該
排ガスに酸素を添加し、−酸化炭素を燃焼させ二酸化炭
素に変換させた後、二酸化炭素を一100°C程度で液
化凝縮させて除去し、アルゴンを回収する方法を開示し
ている。For example, Japanese Patent Publication No. 50-6999 discloses that the exhaust gas is isolated from the outside air and collected, - brought into contact with a carbon oxide selective absorption liquid (such as pure ammonia solution), - carbon oxide removed and argon recovered. discloses a method to do so. In addition, Japanese Patent Publication No. 52-28750 discloses that oxygen is added to the collected exhaust gas isolated from the outside air, carbon oxide is burned and converted to carbon dioxide, and then the carbon dioxide is liquefied at about -100°C. A method for condensing, removing, and recovering argon is disclosed.
しかし、これらのプロセスは設備構成が複雑である上に
、運動コストの大きい吸収液の再生を含むので、経済的
にアルゴンを回収することが困難なために実用化されて
いない。However, these processes have not been put into practical use because they have complicated equipment configurations and involve regeneration of the absorption liquid, which requires high movement costs, making it difficult to recover argon economically.
そこで、現在では圧力変動吸着法を用いたアルゴン回収
方法が主流となっている。圧力変動吸着法を用いた回収
方法では、排ガス中に窒素が存在する場合、この窒素を
完全に吸着除去することは不可能である。Therefore, argon recovery methods using pressure fluctuation adsorption methods are currently the mainstream. In the recovery method using the pressure fluctuation adsorption method, if nitrogen is present in the exhaust gas, it is impossible to completely adsorb and remove this nitrogen.
回収アルゴンをアルゴン−酸素、吹錬炉で再利用する場
合、窒素濃度が高いと鋼中の窒素濃度が上がり、規格は
ずれとなるため、回収アルゴン中の窒素濃度は0.2x
以下にする必要がある。When recovering argon is reused in an argon-oxygen blowing furnace, if the nitrogen concentration is high, the nitrogen concentration in the steel will rise and the specification will be exceeded, so the nitrogen concentration in the recovered argon should be 0.2x.
It is necessary to do the following.
一方、圧力変動吸着法で窒素を除去する場合、アルゴン
濃縮ガス中の窒素濃度と、下記の式で表されるアルゴン
収率との間には、第2図に示す関係があり、アルゴン収
率(%)は回収アルゴン中の窒素濃度を小さくするほど
、低下するという欠点がある。On the other hand, when nitrogen is removed by pressure fluctuation adsorption, there is a relationship shown in Figure 2 between the nitrogen concentration in the argon-enriched gas and the argon yield expressed by the following formula. (%) has the disadvantage that it decreases as the nitrogen concentration in the recovered argon decreases.
(ハ)発明が解決しようとした課題
本発明が解決しようとす名課題は、アルゴン令有排ガス
からアルゴンを分離回収するさいに、高収率で窒素濃度
の低いアルゴン回収方法を得ることにある。(c) Problems to be Solved by the Invention The problem to be solved by the present invention is to obtain an argon recovery method with high yield and low nitrogen concentration when separating and recovering argon from argon-containing exhaust gas. .
(ニ)課題を解決するための手段
本発明のアルゴンの回収方法は、アルゴンを使用する設
備から排出されるアルゴン含有排ガスからアルゴンを回
収する方法において、該排ガスを圧力変動吸着法により
吸着処理してアルゴン含有ガスとした後、該アルゴン濃
縮ガスを空気深冷分離法における粗アルゴン塔に導入し
てアルゴンを回収することからなる手段によって、上記
課題を解決している。(d) Means for Solving the Problems The argon recovery method of the present invention is a method for recovering argon from argon-containing exhaust gas discharged from equipment using argon, in which the exhaust gas is adsorbed by a pressure fluctuation adsorption method. The above-mentioned problem has been solved by a means that consists of converting the argon-containing gas into an argon-containing gas, and then introducing the argon-enriched gas into a crude argon column in an air cryogenic separation method to recover argon.
前記アルゴン含有排ガス中に水素を含んでいる場合に、
水素を除去した後に前記アルゴンFa1i!ガスを空気
深冷分離法における粗アルゴン塔に導入してアルゴンを
回収することが好ましい。When the argon-containing exhaust gas contains hydrogen,
After removing hydrogen, the argon Fa1i! Preferably, the gas is introduced into a crude argon column in the air cryogenic separation process to recover argon.
前記空気深冷分離法における粗アルゴン塔トップブロー
・ガスを前記圧力変動吸着法により吸着処理してアルゴ
ンを再回収することが好ましい。It is preferable that the crude argon column top blow gas in the air cryogenic separation method is subjected to adsorption treatment by the pressure fluctuation adsorption method to recover argon again.
(ホ)実施例
次に、本発明の方法の実施例につい・て、第1図を参照
して、以下に説明する。図において、(1)はアルゴン
−酸素吹錬炉やRH真空脱ガス設備等のアルゴン使用設
備である。該設備(1)より発生するアルゴン含有排ガ
スは、誘引送風機(2)により吸引され、除塵器(3)
に送入されてダストが除かれた後、排ガスホルダー(4
)に貯められる。その後、排ガスは圧縮機(5)によっ
て5〜10気圧程度に加圧されて、圧力変動吸着法”(
以下PSA法という。)による吸着装置(6)に供給さ
れる。(E) Example Next, an example of the method of the present invention will be described below with reference to FIG. In the figure, (1) is equipment using argon, such as an argon-oxygen blowing furnace and RH vacuum degassing equipment. The argon-containing exhaust gas generated from the equipment (1) is sucked in by the induced blower (2), and then passed through the dust remover (3).
After the dust is removed, the exhaust gas holder (4
). After that, the exhaust gas is pressurized to about 5 to 10 atmospheres by the compressor (5), and the exhaust gas is pressurized by the pressure fluctuation adsorption method (
Hereinafter referred to as the PSA method. ) is supplied to the adsorption device (6).
PSA法による吸着装置(6)は、−酸化炭素、二酸化
炭素および窒素に対し選択的に吸着するゼオライト系(
、シリカ、アルミナ混合)の吸着剤が充填された吸着塔
(7a)〜(7c)と、真空ポンプ(8)および一連の
自動切換弁(9)群により構成される。各吸着塔(7a
)〜(7c)では自動切換弁(9)群の作動により、例
えば、均圧、加圧、吸着、脱着およびパージ等からなる
吸着処理サイクルが繰返されることにより、−酸化炭素
、二酸化炭素、および窒素が吸着除去されて*mされた
アルゴンガスが取り出される。The adsorption device (6) based on the PSA method uses a zeolite system (which selectively adsorbs carbon oxide, carbon dioxide and nitrogen).
It consists of adsorption towers (7a) to (7c) filled with adsorbents (mixtures of silica, silica, and alumina), a vacuum pump (8), and a series of automatic switching valves (9). Each adsorption tower (7a
) to (7c), by the operation of the automatic switching valve (9) group, an adsorption treatment cycle consisting of, for example, pressure equalization, pressurization, adsorption, desorption, and purge is repeated, whereby - carbon oxide, carbon dioxide, and Nitrogen is adsorbed and removed, and argon gas is taken out.
ここで、前記排ガス中の一酸化炭素、二酸化炭素、およ
び窒素は、できるだけ吸着除去する方がより高純度なア
ルゴン濃縮ガスが得られるのであるが、窒素については
その除去の程度が大きいほど前述したアルゴン収率が低
下するという欠点がある。Here, it is better to adsorb and remove carbon monoxide, carbon dioxide, and nitrogen in the exhaust gas as much as possible to obtain a highly purified argon enriched gas, but as for nitrogen, the greater the degree of removal, the more The disadvantage is that the argon yield is reduced.
第2図は、吸着装置(6)により吸着処理してアルゴン
濃縮ガスとした後の、アルゴン濃縮ガス中の窒素濃度(
%)と前記アルゴン収率(%)との関係を示したグラフ
である。アルゴン収率(%)は吸着除去される窒素が多
いほど〔アルゴン濃縮ガス中の窒素濃度が小さくなるほ
ど)アルゴン収率(%)は低くなる(悪くなる)ことが
わかる。Figure 2 shows the nitrogen concentration (
%) and the argon yield (%). It can be seen that the argon yield (%) decreases (deteriorates) as more nitrogen is adsorbed and removed (as the nitrogen concentration in the argon concentrated gas decreases).
そこで、本発明においては、窒素をできるだけ多く残存
させるように前記吸着処理を行い、この残存窒素は後述
する空気深冷分離法における粗アルゴン塔に導入するこ
とによって前記吸着処理工程におけるアルゴン収率を向
上させるものである。Therefore, in the present invention, the adsorption treatment is performed so that as much nitrogen as possible remains, and this residual nitrogen is introduced into the crude argon column in the air cryogenic separation method described later, thereby increasing the argon yield in the adsorption treatment step. It is something that improves.
このようにして濃縮されたアルゴンガスは、排ガス中に
水素が存在する場合には、水素除去装置12で排ガス中
の酸素と酸化反応させて水分とし、脱湿除去する。水素
除去装置としては、一般的にpb触媒塔が用いられる。If hydrogen is present in the exhaust gas, the argon gas thus concentrated is subjected to an oxidation reaction with oxygen in the exhaust gas in the hydrogen removal device 12 to form water, and is dehumidified and removed. A pb catalyst tower is generally used as a hydrogen removal device.
この水素の除去されたアルゴン濃縮ガスは、後述する空
気深冷分離法における粗アルゴン塔18に導入される。This argon enriched gas from which hydrogen has been removed is introduced into a crude argon column 18 in the air cryogenic separation method described later.
次に、空気深冷分離法による空気分離装置について説明
する。Next, an air separation apparatus using the air cryogenic separation method will be explained.
0@は空気深冷分離法による空気分離装置を示し、この
空気深冷分離法における純アルゴンの製造は下記に示す
(A)〜(1)の工程部分からなる。0@ indicates an air separation device using an air cryogenic separation method, and the production of pure argon in this air cryogenic separation method consists of the following steps (A) to (1).
(A) 空°気を吸入し、バグフィルタ−〇りにより
、空気中の粉塵等を除去する。(A) Inhale air and use a bag filter to remove dust, etc. from the air.
(B) 原料空気を原料空気圧縮機14により、5k
g/cdに圧縮する。必要により原料空気を水洗塔(図
示せず)において水洗冷却する。(B) The raw air is compressed to 5k by the raw air compressor 14.
Compress to g/cd. If necessary, the raw air is washed and cooled in a water washing tower (not shown).
(C) 熱交換器15で原料空気と不純窒素、純窒素
、酸素を熱交換し、原料空気を低温としたことで、−酸
化炭素等を固体として分離する。(C) By exchanging heat between the raw air and impure nitrogen, pure nitrogen, and oxygen in the heat exchanger 15 to lower the temperature of the raw air, carbon oxide and the like are separated as solids.
(D) 圧縮した原料空気の一部を膨張タービン16
により膨張させ、寒冷源とした。(D) Part of the compressed raw air is sent to the expansion turbine 16.
It was expanded and used as a cold source.
(E) 空気分離塔17の下塔下部より原料空気を入
れ、沸点(液化点)の違いを利用して、空気中の酸素、
窒素、アルゴンに分離する。一方、原料空気に含まれる
炭化水素は炭化水素吸着器(図示せず)によって、液体
酸素中に含まれるアセチレンは、アセチレン吸着器(図
示せず)によって吸着される。(E) Feedstock air is introduced from the lower part of the air separation column 17, and by utilizing the difference in boiling point (liquefaction point), oxygen in the air,
Separate into nitrogen and argon. On the other hand, hydrocarbons contained in the feed air are adsorbed by a hydrocarbon adsorption device (not shown), and acetylene contained in liquid oxygen is adsorbed by an acetylene adsorption device (not shown).
(F) 製品窒素は、空気分離塔17の上塔上部より
引き抜かれ、製品酸素は、上塔下部から引き抜かれる。(F) Product nitrogen is extracted from the upper part of the upper column of the air separation column 17, and product oxygen is extracted from the lower part of the upper column.
上塔中部からは、フィードガスとして、アルゴンの純度
が12%程度で、窒素をほとんど含まないガスを引き抜
く。From the middle of the upper tower, a gas with an argon purity of about 12% and almost no nitrogen is extracted as a feed gas.
(G) フィードガスを粗アルゴン塔18で、前記空
気分離塔17同様の原理で分離し、96%程度の粗アル
ゴンを分離する。(G) The feed gas is separated in the crude argon column 18 using the same principle as the air separation column 17, and about 96% of the crude argon is separated.
以上、(A)〜(G)の工程によって空気がら粗アルゴ
ンを連続的に取り出すことができる。この粗アルゴンは
アルゴン−酸素吹錬炉にて、晴錬ガスとして使用される
。As described above, crude argon can be continuously extracted from air through the steps (A) to (G). This crude argon is used as a refining gas in an argon-oxygen blowing furnace.
ところで、前述の圧力変動吸着法(PSA法)でアルゴ
ン含有排ガスを吸着処理して得られるアルゴン濃縮ガス
中の窒素濃度を0.2%以下まで除去すると、収率が低
下する。By the way, if the nitrogen concentration in the argon-concentrated gas obtained by adsorbing argon-containing exhaust gas by the above-mentioned pressure fluctuation adsorption method (PSA method) is removed to 0.2% or less, the yield decreases.
そこで、本発明は、psA法での窒素除去を2%程度ま
でとし、残存窒素は、前記(G)の空気深冷分離法にお
ける粗アルゴン塔18に導入して除去することによって
高収率でアルゴンを回収する。粗アルゴン18では、前
記工程(G)に示したように、沸点(液化点)の違いを
利用して窒素が0.1χ、o2が4χ程度まで除去され
、粗アルゴンが分離される。Therefore, in the present invention, the nitrogen removal in the psA method is limited to about 2%, and the remaining nitrogen is removed by introducing it into the crude argon column 18 in the air cryogenic separation method (G), thereby achieving a high yield. Collect argon. As shown in step (G) above, in the crude argon 18, nitrogen is removed to about 0.1x and o2 to about 4x by utilizing the difference in boiling point (liquefaction point), and the crude argon is separated.
ここで、粗アルゴン塔18に導入されるPSA法による
アルゴン濃縮ガス中の窒素は2χ程度が適当であり、こ
れ以上になると粗アルゴン中の窒素濃度が上昇する。そ
こで、PSA法による吸着処理は窒素が2χ程度となる
ように、例えば、アルゴン濃縮ガス流量を調節弁23に
て調節して吸着処理を行い、しかる後に、粗アルゴン塔
18に導入する。これにより、前記吸着処理工程におけ
るアルゴン収率を上げて、しかも窒素濃度の低いアルゴ
ンを採取することができる。Here, the appropriate amount of nitrogen in the argon enriched gas by the PSA method introduced into the crude argon column 18 is about 2χ, and if it exceeds this value, the nitrogen concentration in the crude argon will increase. Therefore, in the adsorption treatment by the PSA method, the flow rate of the argon condensed gas is adjusted, for example, by the control valve 23 so that the amount of nitrogen is about 2χ, and then the gas is introduced into the crude argon column 18. Thereby, the argon yield in the adsorption treatment process can be increased, and argon with a low nitrogen concentration can be collected.
また、粗アルゴン塔18では塔上部にfa縮した窒素を
吹き込んでいるが、このトップブロー・ガス19を吸着
装置6に再回収することにより、さらにアルゴン収率は
向上する。Further, in the crude argon column 18, fa-condensed nitrogen is blown into the upper part of the column, and by recovering this top-blown gas 19 to the adsorption device 6, the argon yield is further improved.
本発明のアルゴン回収法の具体的実施例を以下に説明す
る。Specific examples of the argon recovery method of the present invention will be described below.
RH真空脱ガス設備により第1表に示す操業条件山肌ガ
ス処理し、その時排気された第2表に示すアルゴン含有
排ガスを排ガスホルダに貯えた後、PSA法による吸着
装置にてアルゴン回収した。Mountain slope gas treatment was carried out using the RH vacuum degassing equipment under the operating conditions shown in Table 1, and the argon-containing exhaust gas shown in Table 2 that was exhausted at that time was stored in an exhaust gas holder, and then argon was recovered using an adsorption device using the PSA method.
その結果、第3表に示す組成のアルゴン濃縮ガス収率約
75%で得られた。As a result, an argon-enriched gas having the composition shown in Table 3 was obtained with a yield of about 75%.
第 1 表
次に、このアルゴン濃縮ガス100Nrd/Hを、Pb
触媒塔で水素除去後、脱湿して、粗アルゴン塔に導入し
た。その結果、N! 0.1χ、ox 4mの粗アルゴ
ンが安定して得られ、PSA法でのアルゴン収率はps
^で窒素0.1χまで吸着除去した場合の67%にくら
べ、本発明方法では75%まで向上した。Table 1 Next, this argon concentrated gas 100Nrd/H was mixed with Pb
After removing hydrogen in the catalyst tower, it was dehumidified and introduced into a crude argon tower. As a result, N! Crude argon of 0.1χ, ox 4m was stably obtained, and the argon yield by the PSA method was ps
Compared to 67% when nitrogen was adsorbed and removed up to 0.1χ, the method of the present invention improved it to 75%.
第4表の組成の粗アルゴン塔からのトップブロー・ガス
をPSA再回収することにより、さらに1%収率が向上
した。An additional 1% yield improvement was achieved by PSA re-recovery of the top blow gas from the crude argon column with the composition shown in Table 4.
(へ)効果
本発明の方法によれば、アルゴン含有排ガス中の窒素を
圧力変動吸着法による吸着処理工程と空気深冷法におけ
る粗アルゴン分離工程との2つの工程で分離除去するよ
うに構成したことにより、回収効率の高いしかも窒素濃
度の低いアルゴンを分離回収することができる。(f) Effects According to the method of the present invention, nitrogen in the argon-containing exhaust gas is separated and removed in two steps: an adsorption treatment step using a pressure fluctuation adsorption method and a crude argon separation step using an air cryogenic method. This makes it possible to separate and recover argon with high recovery efficiency and low nitrogen concentration.
第1図は本発明の方法の一実施例を示す概略説明図、第
2図は圧力変動吸着法におけるアルゴンI縮ガス中の窒
素濃度とアルゴン回収率との関係を示すグラフ。
1・・・アルゴン便用設備。
3・・・除塵機
5・・・圧縮機。
7a〜7c・−・吸着塔。
9・・・自動切換弁。
12・・・水素除去装置。
14・・・原料空気圧縮機
16−膨張タービン
18・・・粗アルゴン塔。
19・・〜粗アルゴン塔トッププローガス2・−誘引送
風機
4−・排ガスホルダ。
6−・−吸着装置
8−真空ポンプ
1〇−空気分離装置
13・・・フィルタ
15・・熱交換器。
17・・・空気分離塔
特許出願人 住友金属工業株式会社
同 共同酸素株式会社FIG. 1 is a schematic explanatory diagram showing one embodiment of the method of the present invention, and FIG. 2 is a graph showing the relationship between the nitrogen concentration in the argon I condensed gas and the argon recovery rate in the pressure fluctuation adsorption method. 1...Argon toilet equipment. 3... Dust remover 5... Compressor. 7a to 7c --- adsorption tower. 9...Automatic switching valve. 12...Hydrogen removal device. 14... Raw air compressor 16-expansion turbine 18... Crude argon column. 19...-crude argon tower top blower gas 2--induced blower 4--exhaust gas holder. 6--Adsorption device 8-Vacuum pump 10-Air separation device 13...Filter 15...Heat exchanger. 17...Air separation tower patent applicant: Sumitomo Metal Industries, Ltd. Kyodo Oxygen Co., Ltd.
Claims (1)
有排ガスからアルゴンを回収する方法において、該排ガ
スを圧力変動吸着法により吸着処理してアルゴン濃縮ガ
スとした後、該アルゴン濃縮ガスを空気深冷分離法にお
ける粗アルゴン塔に導入してアルゴンを回収することを
特徴としたアルゴンの回収方法。 2、前記アルゴン含有排ガス中に水素を含んでいる場合
に、水素を除去した後に、前記アルゴン濃縮ガスを空気
深冷分離法における粗アルゴン塔に導入してアルゴンを
回収することを特徴とした請求項1記載のアルゴンの回
収方法。 3、前記空気深冷分離法における粗アルゴン塔トップブ
ロー・ガスを前記圧力変動吸着法により吸着処理してア
ルゴンを再回収することを特徴とした請求項1記載のア
ルゴンの回収方法。[Claims] 1. In a method for recovering argon from argon-containing exhaust gas discharged from equipment using argon, the exhaust gas is subjected to adsorption treatment by a pressure fluctuation adsorption method to form an argon-concentrated gas, and then the argon concentration is performed. An argon recovery method characterized by introducing gas into a crude argon column in an air cryogenic separation method to recover argon. 2. A claim characterized in that when the argon-containing exhaust gas contains hydrogen, after removing hydrogen, the argon concentrated gas is introduced into a crude argon column in an air cryogenic separation method to recover argon. Item 1. Argon recovery method. 3. The argon recovery method according to claim 1, wherein the crude argon column top blow gas in the air cryogenic separation method is adsorbed by the pressure fluctuation adsorption method to recover argon again.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1092082A JPH02272288A (en) | 1989-04-12 | 1989-04-12 | Argon recovery method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1092082A JPH02272288A (en) | 1989-04-12 | 1989-04-12 | Argon recovery method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02272288A true JPH02272288A (en) | 1990-11-07 |
Family
ID=14044523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1092082A Pending JPH02272288A (en) | 1989-04-12 | 1989-04-12 | Argon recovery method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02272288A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5547492A (en) * | 1994-04-12 | 1996-08-20 | Korea Institute Of Energy Research | Method for adsorbing and separating argon and hydrogen gases in high concentration from waste ammonia purge gas, and apparatus therefor |
EP0761596A1 (en) * | 1995-09-05 | 1997-03-12 | Teisan Kabushiki Kaisha | Argon purification process and unit |
WO1999011437A1 (en) | 1997-09-04 | 1999-03-11 | Air Liquide Japan, Ltd. | Method and apparatus for purification of argon |
CN104406364A (en) * | 2014-11-06 | 2015-03-11 | 杭州杭氧股份有限公司 | Double-tower coupling type argon recovery and purifying equipment and argon recovery and purifying method |
-
1989
- 1989-04-12 JP JP1092082A patent/JPH02272288A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5547492A (en) * | 1994-04-12 | 1996-08-20 | Korea Institute Of Energy Research | Method for adsorbing and separating argon and hydrogen gases in high concentration from waste ammonia purge gas, and apparatus therefor |
EP0761596A1 (en) * | 1995-09-05 | 1997-03-12 | Teisan Kabushiki Kaisha | Argon purification process and unit |
EP0761596B1 (en) * | 1995-09-05 | 2001-03-21 | AIR LIQUIDE Japan, Ltd. | Argon purification process and unit |
WO1999011437A1 (en) | 1997-09-04 | 1999-03-11 | Air Liquide Japan, Ltd. | Method and apparatus for purification of argon |
US6123909A (en) * | 1997-09-04 | 2000-09-26 | Air Liquide Japan, Ltd. | Method and apparatus for purification of argon |
CN104406364A (en) * | 2014-11-06 | 2015-03-11 | 杭州杭氧股份有限公司 | Double-tower coupling type argon recovery and purifying equipment and argon recovery and purifying method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4861351A (en) | Production of hydrogen and carbon monoxide | |
EP0583981B1 (en) | Hydrogen and carbon monoxide production by partial oxidation of hydrocarbon feed | |
JP3279585B2 (en) | Method for producing purified air | |
US4869894A (en) | Hydrogen generation and recovery | |
RU2166546C1 (en) | Method of combination of blast furnace and direct reduction reactor with use of cryogenic rectification | |
EP0489555B1 (en) | Hydrogen and carbon monoxide production by pressure swing adsorption purification | |
US6685903B2 (en) | Method of purifying and recycling argon | |
JPH1183309A (en) | Argon refining method and argon refining device | |
JP3092101B2 (en) | Recovery and purification of impure argon | |
CA1238868A (en) | Method for obtaining high-purity carbon monoxide | |
JP3020842B2 (en) | Argon purification method and apparatus | |
US4816237A (en) | Process for purifying argon gas and apparatus used therefor | |
JPS6272504A (en) | Method for producing high purity nitrogen | |
JPH0624962B2 (en) | Method for recovering high-purity argon from exhaust gas from a single crystal manufacturing furnace | |
US6190632B1 (en) | Method and apparatus for the production of ammonia utilizing cryogenic rectification | |
JPH02272288A (en) | Argon recovery method | |
KR940004626B1 (en) | Process for helium purification | |
JPH03242302A (en) | Production of hydrogen and carbon monoxide | |
JP3256811B2 (en) | Method for purifying krypton and xenon | |
JPH0243684B2 (en) | ||
JPS605012A (en) | Purification of carbon monoxide from mixed gas containing carbon monoxide by using adsorption | |
JP3191113B2 (en) | Argon recovery method | |
JPH0339886A (en) | Recovery of argon | |
JPS62136513A (en) | Converter top and bottom blowing refining method | |
JPH01230975A (en) | Ar gas recovery method |