JPH0227125B2 - - Google Patents
Info
- Publication number
- JPH0227125B2 JPH0227125B2 JP2969180A JP2969180A JPH0227125B2 JP H0227125 B2 JPH0227125 B2 JP H0227125B2 JP 2969180 A JP2969180 A JP 2969180A JP 2969180 A JP2969180 A JP 2969180A JP H0227125 B2 JPH0227125 B2 JP H0227125B2
- Authority
- JP
- Japan
- Prior art keywords
- valve
- pressure
- control valve
- oil chamber
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/64—Mould opening, closing or clamping devices
- B29C45/67—Mould opening, closing or clamping devices hydraulic
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Fluid-Pressure Circuits (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Description
【発明の詳細な説明】
この発明は合成樹脂の成形機に用いられる直圧
式型締シリンダーの型開閉油圧装置に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mold opening/closing hydraulic system for a direct pressure mold clamping cylinder used in a synthetic resin molding machine.
合成樹脂の成形機では、サイクルアツプによる
生産性向上のため高速型開閉が要求され、同時に
作動安定による精密成形や型構造上の問題または
自動インサート、取出機等との組合せ動作の上な
どから、スローダウンの動作のより安定化が望ま
れている。 Synthetic resin molding machines require high-speed mold opening/closing to improve productivity through cycle-up, and at the same time, due to precision molding due to stable operation, problems with mold structure, and operation in combination with automatic insert and take-out machines, etc. More stable slowdown operation is desired.
また成形に要するエネルギーの節減も要求され
るようになつて来ているが、従来の圧力マツチ型
やパワーマツチ型と称される省エネルギー型の油
圧回路では、負荷が必要とする圧力にマツチング
した圧力だけを供給するシステムであつたため、
メーターイン制御を行うと低速への切り換え時に
慣性により負荷側が負圧となり、圧油がほとんど
供給されなくなつてアクチユエータが停止してし
まい、動作が安定しない問題があり、メーターア
ウト制御を行うと上記の様な問題は解決される
が、出力側と制動側の面積差からメーターアウト
側の圧力が上昇し、それに伴つて消費エネルギー
が増大する問題があつた。 There is also a growing need to reduce the energy required for forming, but conventional energy-saving hydraulic circuits called pressure match and power match types only provide pressure that matches the pressure required by the load. Because it was a system that supplied
If meter-in control is used, the load side will become negative pressure due to inertia when switching to low speed, and almost no pressure oil will be supplied, causing the actuator to stop, resulting in unstable operation. Although this problem was solved, the pressure on the meter-out side increased due to the difference in area between the output side and the braking side, resulting in an increase in energy consumption.
この発明は上記要望を満し、型開閉動作の安定
と使用エネルギーの効率化を可能とする新たな構
成の型開閉油圧装置を提供するものである。 The present invention satisfies the above-mentioned needs and provides a mold opening/closing hydraulic system with a new configuration that enables stable mold opening/closing operations and efficient use of energy.
上記目的によるこの発明の特徴は、型締ラムの
内部にブースターラムを備えた型開閉装置におい
て、型締シリンダーのA油室側油圧路とB油室側
油圧路に、両油圧路の通過流量を同一比率で増減
制御する電気比例流量制御弁を設けるとともに、
油圧源側に上記電気比例流量制御弁の出力側と協
動して電気比例流量制御弁前後の差圧を型締シリ
ンダーの負荷にかかわらず常に一定化する制御手
段を施し、かつ上記電気比例流量制御弁の制動側
と協動し低速型閉時と差動型開時と低速型開時の
制動側流量制御を行なう減圧型プレツシヤーコン
ペンセータ弁を、出力側油圧路の電磁切換弁と上
記電気比例流量制御弁との間のリターン回路に配
設してなることにある。 The feature of the present invention for the above-mentioned purpose is that in a mold opening/closing device equipped with a booster ram inside the mold clamping ram, a hydraulic passage on the A oil chamber side and a hydraulic passage on the B oil chamber side of the mold clamping cylinder are provided with a flow rate passing through both hydraulic passages. In addition to installing an electric proportional flow control valve that increases and decreases the amount at the same ratio,
A control means is provided on the hydraulic power source side in cooperation with the output side of the electric proportional flow control valve to always keep the differential pressure before and after the electric proportional flow control valve constant regardless of the load on the mold clamping cylinder. A pressure-reducing pressure compensator valve that cooperates with the braking side of the control valve to control the braking side flow rate during low-speed mold closing, differential mold opening, and low-speed mold opening is combined with the solenoid switching valve on the output side hydraulic path and the above-mentioned pressure reducing pressure compensator valve. It is arranged in the return circuit between the electric proportional flow control valve.
以下この発明を図示の例により詳細に説明す
る。 The present invention will be explained in detail below using illustrated examples.
1は直圧式の型締シリンダーで、型締ラム2の
内部にブースターラム3を備えている。このブー
スターラム3と上記型締ラム2とによつて形成さ
れた油室Aと油圧源回路DとにわたるA油室側油
圧路aに4ポートの電気比例流量制御弁4と4ポ
ートの電磁切換弁5とが設けてある。 Reference numeral 1 denotes a direct pressure type mold clamping cylinder, which includes a mold clamping ram 2 and a booster ram 3 inside thereof. A 4-port electric proportional flow control valve 4 and a 4-port electromagnetic switching valve are connected to the A oil chamber side hydraulic path a extending between the oil chamber A and the hydraulic power source circuit D formed by the booster ram 3 and the mold clamping ram 2. A valve 5 is provided.
なお、電気比例流量制御弁は、出力側と制動側
との通過流量が等しくなるように開度調整されて
いる。 Note that the opening degree of the electric proportional flow control valve is adjusted so that the flow rate passing through the output side and the braking side are equal.
また型締シリンダー1の油室Bと上記電気比例
流量制御弁4とにわたるB油室側油圧路bには、
タンク6の油圧回路に圧油を排出する4ポートの
電磁切換弁7が設けられ、かつ油圧路の一部は分
岐b1されて、上記電気比例流量制御弁4とにわた
るA油室側油圧路aのリターン回路a1に電磁切換
弁5を介して接続してある。 In addition, a hydraulic path b on the B oil chamber side that extends between the oil chamber B of the mold clamping cylinder 1 and the electric proportional flow control valve 4 includes:
A 4-port electromagnetic switching valve 7 for discharging pressure oil is provided in the hydraulic circuit of the tank 6, and a part of the hydraulic path is branched off to form an A oil chamber side hydraulic path that extends to the electric proportional flow control valve 4. It is connected to the return circuit a1 of a through an electromagnetic switching valve 5.
上記リターン回路a1には、電気比例流量制御弁
4と協動して、低速型閉時の制動側定流量制御と
差動型開時及び低速型開時の出力側及び制動側定
流量制御とを行う減圧型プレツシヤーコンペンセ
ータ弁8が配設してあり、そのメータイン、メー
タアウトの流量比率はフイードインまたは定差圧
スプリングの強さを変化させる等により変化でき
る。 The above return circuit a1 cooperates with the electric proportional flow control valve 4 to control a constant flow rate on the braking side when closing the mold at low speed, and controlling a constant flow rate on the output side and the brake side when opening the differential mold and when opening the low speed mold. A pressure reducing type pressure compensator valve 8 is provided, and the meter-in/meter-out flow rate ratio can be changed by changing the feed-in or the strength of a constant differential pressure spring.
9はA油室側油圧路aとB油室側油圧路bの分
岐路b1とにわたり配したシヤツトル弁で、このシ
ヤツトル弁9と型締シリンダー1の油室Cとにわ
たるC油室側油圧路cに4ポートの電磁切換弁1
0とチエツク弁11が設けられ、かつ電磁切換弁
10によりタンク回路のプリフイル弁12が型締
ラム2の型閉方向移動時に作動して、圧油を油室
Cに補償するようになつている。 Reference numeral 9 denotes a shuttle valve disposed across a branch path b1 of the A oil chamber side hydraulic path a and the B oil chamber side hydraulic path b. 4-port solenoid switching valve 1 on path c
0 and a check valve 11 are provided, and a prefill valve 12 of the tank circuit is operated by an electromagnetic switching valve 10 when the mold clamping ram 2 moves in the mold closing direction, so that pressure oil is compensated for in the oil chamber C. .
次に型閉作用について説明すると、まず油圧源
回路Dより吐出された圧油は、電気比例流量制御
弁4と油圧源回路Dにおいて出力側定流量制御さ
れる。 Next, the mold closing action will be explained. First, the pressure oil discharged from the hydraulic power source circuit D is subjected to constant flow rate control on the output side by the electric proportional flow control valve 4 and the hydraulic power source circuit D.
なお油圧源回路Dとしては、例えば第2図に示
す定吐出ポンプ13による圧力マツチング回路や
第3図に示す可変吐出ポンプ14によるパワーマ
ツチング回路のいずれをも採用することができ
る。 As the hydraulic pressure source circuit D, for example, either a pressure matching circuit using a constant discharge pump 13 shown in FIG. 2 or a power matching circuit using a variable discharge pump 14 shown in FIG. 3 can be adopted.
第2図に示す圧力マツチング回路では、流量制
御時にリリーフ弁15により電磁比例流量制御弁
4の前後の差圧を一定にすべく圧力制御される。 In the pressure matching circuit shown in FIG. 2, pressure is controlled by the relief valve 15 in order to keep the differential pressure across the electromagnetic proportional flow control valve 4 constant during flow rate control.
つまり、
ポンプの吐出圧=負荷圧+√差圧
となる。なお、差圧はリリーフ弁15のスプリン
グ力により設定される。 In other words, pump discharge pressure = load pressure + √ differential pressure. Note that the differential pressure is set by the spring force of the relief valve 15.
また第3図に示すパワーマツチング回路では、
流量制御時に制御弁16により、電磁比例流量制
御弁4の前後の差圧を一定にすべくポンプ14の
吐出量が制御される。 In addition, in the power matching circuit shown in Fig. 3,
During flow control, the control valve 16 controls the discharge amount of the pump 14 to keep the differential pressure across the electromagnetic proportional flow control valve 4 constant.
このような回路では、電磁比例流量制御弁4か
らの吐出量を見ると、
吐出量∝電磁比例流量制御弁の開弁度×√差圧
の関係にあり、ここで開弁度と差圧が一定である
ため、吐出量も一定となる所謂定流量制御がなさ
れるのである。これが上記した出力側定流量制御
である。 In such a circuit, when looking at the discharge amount from the electromagnetic proportional flow control valve 4, there is a relationship of discharge amount ∝ opening degree of the electromagnetic proportional flow control valve x √ differential pressure, where the opening degree and the differential pressure are Since it is constant, so-called constant flow rate control is performed in which the discharge amount is also constant. This is the output side constant flow control described above.
また上記リターン回路a1は減圧型プレツシヤコ
ンペセータ弁8と電磁比例流量制御弁4を介して
形成されており、電磁比例流量制御弁4から排出
される油量は、
油量∝電磁比例流量制御弁の開弁度×√差圧
の関係において、開弁度一定、差圧一定であるこ
とから、排出油量が一定となる。これが制動側定
流量制御である。 Further, the return circuit a1 is formed via a pressure reducing type pressure compensator valve 8 and an electromagnetic proportional flow control valve 4, and the amount of oil discharged from the electromagnetic proportional flow control valve 4 is calculated as follows: oil amount ∝ electromagnetic proportional In the relationship of the opening degree of the flow control valve x √ differential pressure, since the opening degree is constant and the differential pressure is constant, the amount of discharged oil is constant. This is braking-side constant flow control.
第1図の状態において、上記電磁切換弁5を左
側に、また電磁切換弁7を右側に切換えると、出
力側となる油室Aに圧油が流れて高速型閉が開始
される。このとき制動側となる油室Bの圧油はB
油室側油圧路bをリターンするのであるが、分岐
路b1によつて電磁切換弁7からタンク6への排出
されるものと、電磁切換弁5を経て減圧型プレツ
シヤコンペセータ弁8へ流れるものとに別れる。
このとき油室Aの面積SAと油室Bの面積SBの比
率を1:2とし、A油室側流量をQaとすると、
油室Bからのリターン油QRDは
SB/SAQa=QRD=2Qa
となるが、電磁切換弁7よりタンク6へのバイパ
ス流れがあるため油室Bは無背圧のまま高速型閉
が進行する。 In the state shown in FIG. 1, when the electromagnetic switching valve 5 is switched to the left side and the electromagnetic switching valve 7 is switched to the right side, pressure oil flows into the oil chamber A on the output side and high-speed mold closing is started. At this time, the pressure oil in oil chamber B, which is on the braking side, is B
The oil chamber side hydraulic path b is returned, and the one that is discharged from the electromagnetic switching valve 7 to the tank 6 through the branch path b 1 and the one that is discharged from the electromagnetic switching valve 5 to the pressure reducing type pressure compensator valve 8 Separate from what flows to.
At this time, if the ratio of the area S A of oil chamber A and the area S B of oil chamber B is 1:2, and the flow rate on the A oil chamber side is Q a , then
Return oil Q RD from oil chamber B becomes S B /S A Q a = Q RD = 2Q a , but since there is a bypass flow from solenoid switching valve 7 to tank 6, oil chamber B remains without back pressure. Rapid mold closing progresses.
また低速型閉時(型閉スローダウン時)には電
気比例流量制御弁4への電気指令を下げるととも
に、電磁切換弁7を中立に戻す。これによりリタ
ーン油は全量が減圧型プレツシヤコンペンセータ
弁8と電気比例流量制御弁4の流量制御部を通過
することにより制動側定流量制御されて急速に低
速型閉へと移行する。電気比例流量制御弁4の流
量制御部を通過することにより制動側定流量制御
されて急速に低速型閉へと移行する。 Further, during low-speed mold closing (mold closing slowdown), the electric command to the electric proportional flow control valve 4 is lowered, and the electromagnetic switching valve 7 is returned to neutral. As a result, the entire amount of return oil passes through the pressure reducing type pressure compensator valve 8 and the flow rate control section of the electric proportional flow rate control valve 4, thereby being controlled at a constant flow rate on the braking side, and rapidly transitioning to low speed mold closing. By passing through the flow rate control section of the electric proportional flow control valve 4, the braking side constant flow rate is controlled and the flow rapidly shifts to low speed mold closing.
この際、B油室側油圧路bは減圧型プレツシヤ
コンペンセータ弁8と電気比例流量制御弁4によ
りメーターアウト制御がなされるため、慣性によ
り型締ラム2が所定の速度以上で動くのが防止さ
れる。 At this time, the pressure-reducing pressure compensator valve 8 and the electric proportional flow control valve 4 perform meter-out control on the B oil chamber side hydraulic path b, so that the mold clamping ram 2 does not move at a predetermined speed or higher due to inertia. Prevented.
そして型閉じが完了したら電磁切換弁7を右側
に切り換えると共に電磁切換弁10を右側に切り
換えて強力型締めを行う。この場合、油室Bは電
磁切換弁7を介してタンク6に連通するので背圧
が生じない。電磁切換弁10は強力型締め後左側
に戻す。 When mold closing is completed, the electromagnetic switching valve 7 is switched to the right side, and the electromagnetic switching valve 10 is switched to the right side to perform strong mold clamping. In this case, the oil chamber B communicates with the tank 6 via the electromagnetic switching valve 7, so no back pressure is generated. The electromagnetic switching valve 10 is returned to the left side after strong mold clamping.
次に型開の作動について説明すると、電気比例
流量制御弁4により出力側定流量制御された圧油
Qaは、電磁切換弁5の右側への切換えと電磁切
換弁7の中立への切り換えによつて、出力側とな
つた油室Bに流入し強力型開を行う。このとき制
御側に変つた油室Aからのリターン油QRCは、減
圧型プレツシヤコンペンセータ弁8と電気比例流
量制御弁4、電磁切換弁7を通過してタンク6へ
と通ずる。この時、電気比例流量制御弁4におけ
る出力側と制御側の弁開度を1:1としておく
と、
SA/SBQa=QRC=1/2Qa
となり、油室Bからの戻り量は油室Aへの供給量
Qaの半分しかないため、減圧型プレツシヤコン
ペンセータ弁8の制御差圧は発生せず、従つてメ
ーターアウト制御されずにメーターイン制御によ
り油室Aは無背圧のまま強力型開ができる。 Next, to explain the mold opening operation, the pressure oil is controlled at a constant flow rate on the output side by the electric proportional flow control valve 4.
By switching the electromagnetic switching valve 5 to the right side and switching the electromagnetic switching valve 7 to the neutral position, Q a flows into the oil chamber B, which is on the output side , and performs a strong mold opening. At this time, the return oil QRC from the oil chamber A, which has changed to the control side, passes through the pressure reducing type pressure compensator valve 8, the electric proportional flow control valve 4, and the electromagnetic switching valve 7, and then flows into the tank 6. At this time, if the valve opening on the output side and the control side of the electric proportional flow control valve 4 is set to 1:1, S A /S B Q a = Q RC = 1/2Q a , and the return from the oil chamber B The amount is the amount supplied to oil chamber A.
Since there is only half of Q a , the control differential pressure of the pressure reducing type pressure compensator valve 8 is not generated, and therefore the oil chamber A is powerfully opened with no back pressure due to meter-in control instead of meter-out control. can.
また高速型開においては、電気比例流量制御弁
4への電気指令を増大させ、同時に電磁切換弁7
を左側に切換える。これにより差動の高速型開へ
と移行し、リターン油は減圧型プレツシヤコンペ
ンセータ弁8、電気比例流量制御弁4により定流
量制御され、その油室Aからのリターン油流量
QR2が電磁切換弁5、減圧型プレツシヤーコンペ
セータ弁8、電気比例流量制御弁4、電磁切換弁
7を通過して分岐路b1からの圧油と合流し、2倍
の流量(Qaの2倍と等しい流量)となるため型
締ラム2は高速(高速型閉と同速)で後退する。 In addition, in high-speed mold opening, the electric command to the electric proportional flow control valve 4 is increased, and at the same time the electric command to the electromagnetic switching valve 7 is increased.
switch to the left. This shifts to the differential high-speed mold opening, and the return oil is controlled at a constant flow rate by the pressure reducing type pressure compensator valve 8 and the electric proportional flow control valve 4, and the return oil flow rate from the oil chamber A is controlled.
Q R2 passes through the electromagnetic switching valve 5, the pressure reducing type pressure compensator valve 8, the electric proportional flow control valve 4, and the electromagnetic switching valve 7, merges with the pressure oil from the branch path b1 , and doubles the flow rate ( Since the flow rate is equal to twice Q a ), the mold clamping ram 2 retreats at high speed (same speed as high-speed mold closing).
そして負荷変動により上記以上の流量QRCが流
れようとする減圧型プレツシヤーコンペセータ弁
8と電気比例流量制御弁4によりメーターアウト
制御が働く。 Then, meter-out control is activated by the pressure-reducing pressure compensator valve 8 and the electric proportional flow control valve 4, which attempt to flow a flow rate QRC higher than the above due to load fluctuations.
しかし、実際にはこの場合はメーターアウト制
御を作動させる要因が無いためメーターアウト制
御は働かず、メーターインにより制御される。 However, in reality, in this case, there is no factor that activates the meter-out control, so the meter-out control does not work, and the meter-in control is performed.
また低速型開においては、電気指令を下げるこ
とによりQa及びQR2は減少し、慣性によつて型締
ラム2がメーターイン流量で決められた速度以上
で働くとQRC>QaとなるがQRCは減圧型プレツシ
ヤーコンペセータ弁8電気比例制御弁4によりメ
ーターアウト制御されるため強力に作動ブレーキ
がかかる。これにより型締ラム2は流れることな
く急速に減速される。 In addition, in low-speed mold opening, Qa and Q R2 decrease by lowering the electrical command, and if the mold clamping ram 2 works at a speed higher than the meter-in flow rate due to inertia, Q RC > Q a . Since the Q RC is meter-out controlled by the pressure reducing type pressure compensator valve 8 and the electric proportional control valve 4, a strong operational brake is applied. As a result, the mold clamping ram 2 is rapidly decelerated without flowing.
上記のように本発明では加速時及び定常状態で
はメーターイン制御として無駄なエネルギー消費
を防ぎ、減速時にはメーターアウト制御として作
動を安定させる。 As described above, the present invention performs meter-in control during acceleration and steady state to prevent wasteful energy consumption, and performs meter-out control during deceleration to stabilize operation.
上記例では、油室Aの面積を1、油室Bの面積
を2とした場合について説明したので、電気比例
流量制御弁の出力側と制御側の比率が1:1とな
つたが、これは両油室A,Bの面積に応じて調整
される。即ち、差動時の電気比例流量弁出力側の
許容流量をC1、制御側許容流量をC2、型締ラム
2の移動速度をVとすると、
SA×V+C1=SB×V
となり、
これより、
V=C1/SB−SA
となる。従つて、C1=V(SB−SA)の関係が成立
する。 In the above example, we have explained the case where the area of oil chamber A is 1 and the area of oil chamber B is 2, so the ratio of the output side and control side of the electric proportional flow control valve is 1:1. is adjusted according to the area of both oil chambers A and B. That is, when the allowable flow rate on the output side of the electric proportional flow valve during differential operation is C 1 , the allowable flow rate on the control side is C 2 , and the moving speed of the mold clamping ram 2 is V, then S A ×V + C 1 = S B ×V. , From this, V=C 1 /S B −S A. Therefore, the relationship C 1 =V(S B −S A ) holds true.
一方、C2=SA×Vであることから、
C1:C2=V(SB−SA):V×SA
となり、V=1ならC1==SB−SAとなり、その
開度は設定速度に応じて相対的に変化するも、比
率としては常にC1:C2=SB−SA:SAの関係とな
る。 On the other hand, since C 2 = S A × V, C 1 : C 2 = V (S B − S A ): V × S A , and if V = 1, C 1 == S B − S A , Although the degree of opening changes relatively depending on the set speed, the ratio is always C 1 :C 2 =S B −S A :S A.
例えば油室Aの面積が1、油室Bの面積が3で
ある場合、電気比例流量制御弁4の出力側と制御
側の開度比率は2:1となり、常にその比率で開
度調整される。 For example, if the area of oil chamber A is 1 and the area of oil chamber B is 3, the opening ratio of the output side and control side of the electric proportional flow control valve 4 will be 2:1, and the opening will always be adjusted at that ratio. Ru.
この発明は上述のように構成してなることから
下記のごとき作用効果を奏する。 Since the present invention is configured as described above, it has the following effects.
(1) 使用圧油の効率化が図れ、従来装置に比べて
消費電力が著しく節減される。(1) The efficiency of pressure oil used is improved, and power consumption is significantly reduced compared to conventional equipment.
(2) スローダウンが安定し正確になるので、より
高速化が図れるとともに、低速型締ストローク
を最少限にすることができるので、サイクルア
ツプが図れ、また型開閉の停止位置が正確とな
り自動取出・インサート機とのセツテイングが
容易となる。(2) Since the slowdown is stable and accurate, it is possible to achieve higher speeds, and the low-speed mold clamping stroke can be minimized, increasing the cycle time, and the mold opening/closing stop position is accurate, allowing automatic ejection.・Easy to set up with insert machine.
(3) スローダウン切換時のシヨツクが少なくなり
騒音が減少する。(3) Shock during slowdown switching is reduced and noise is reduced.
(4) スローダウン停止が安定かつ正確となるの
で、金型等に対する安全性が向上する。(4) Since the slowdown stop is stable and accurate, safety for molds, etc. is improved.
図面はこの発明に係る成形機の型開閉油圧装置
を例示するもので、第1図は装置の略示図、第2
図及び第3図は油圧源回路図である。
1……型締シリンダー、2……型締ラム、3…
…ブースターラム、4……電気比例流量制御弁、
5,7……電磁切換弁、8……減圧型プレツシヤ
コンペンセータ弁。A,B,C……油室、a……
A油室側油圧路、a1……リターン回路、b……B
油室側油圧路、b1……分岐路、D……油圧源回
路。
The drawings illustrate a mold opening/closing hydraulic device for a molding machine according to the present invention, and FIG. 1 is a schematic diagram of the device, and FIG.
3 and 3 are hydraulic power source circuit diagrams. 1...mold clamping cylinder, 2...mold clamping ram, 3...
...Booster ram, 4...Electric proportional flow control valve,
5, 7... Solenoid switching valve, 8... Pressure reducing type pressure compensator valve. A, B, C... oil chamber, a...
A oil chamber side hydraulic path, a 1 ...Return circuit, b...B
Oil chamber side hydraulic path, b 1 ...branch path, D...hydraulic source circuit.
Claims (1)
開閉装置において、型締シリンダーのA油室側油
圧路とB油室側油圧路に、両油圧路の通過流量を
同一比率で増減制御する電気比例流量制御弁を設
けるとともに、油圧源側に上記電気比例流量制御
弁の出力側と協動して電気比例流量制御弁前後の
差圧を型締シリンダーの負荷にかかわらず常に一
定化する制御手段を施し、かつ上記電気比例流量
制御弁の制動側と協動して低速型閉時と差動型開
時と低速型開時の制動側流量制御を行なう減圧型
プレツシヤーコンペンセータ弁を、A油室側油圧
路の電磁切換弁と上記電気比例流量制御弁との間
のリターン回路に配設してなることを特徴とする
成形機の型開閉油圧装置。1 In a mold opening/closing device equipped with a booster ram inside the mold clamping ram, electricity is installed in the A oil chamber side hydraulic path and the B oil chamber side hydraulic path of the mold clamping cylinder to increase or decrease the flow rate of both hydraulic paths at the same ratio. A control means is provided with a proportional flow control valve, and cooperates with the output side of the electric proportional flow control valve on the hydraulic power source side to always keep the differential pressure before and after the electric proportional flow control valve constant regardless of the load on the mold clamping cylinder. A pressure-reducing pressure compensator valve is provided with a pressure reduction type pressure compensator valve, which cooperates with the braking side of the electric proportional flow control valve to control the braking side flow rate during low-speed mold closing, differential mold opening, and low-speed mold opening. A mold opening/closing hydraulic system for a molding machine, characterized in that it is disposed in a return circuit between an electromagnetic switching valve of an oil chamber side hydraulic path and the electric proportional flow rate control valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2969180A JPS56126140A (en) | 1980-03-07 | 1980-03-07 | Hydraulic mold clamping device for molding machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2969180A JPS56126140A (en) | 1980-03-07 | 1980-03-07 | Hydraulic mold clamping device for molding machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56126140A JPS56126140A (en) | 1981-10-02 |
JPH0227125B2 true JPH0227125B2 (en) | 1990-06-14 |
Family
ID=12283124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2969180A Granted JPS56126140A (en) | 1980-03-07 | 1980-03-07 | Hydraulic mold clamping device for molding machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS56126140A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9789639B2 (en) | 2012-10-17 | 2017-10-17 | Mitsubishi Heav Industries Plastic Technology Co., Ltd. | Mold-clamping device, injection-molding device, and method for opening and closing mold |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60142919U (en) * | 1984-03-05 | 1985-09-21 | 株式会社日本製鋼所 | Hydraulic control device for injection molding machine mold clamping device |
JPH0528027Y2 (en) * | 1988-02-23 | 1993-07-19 |
-
1980
- 1980-03-07 JP JP2969180A patent/JPS56126140A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9789639B2 (en) | 2012-10-17 | 2017-10-17 | Mitsubishi Heav Industries Plastic Technology Co., Ltd. | Mold-clamping device, injection-molding device, and method for opening and closing mold |
Also Published As
Publication number | Publication date |
---|---|
JPS56126140A (en) | 1981-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8720196B2 (en) | Controller of hybrid construction machine | |
US5048292A (en) | Dual pump traverse and feed system | |
JPS59103734A (en) | Hydraulic device for mold clamping unit of synthetic-resin injection molding machine | |
US2768500A (en) | Hydraulic drive | |
US6499296B1 (en) | Hydraulic circuit | |
CN110131230A (en) | A kind of load-sensitive pile-up valve of digital control state no interference signal and anti-saturation flow | |
JPH0227125B2 (en) | ||
CN107850093B (en) | Hydraulic unit and method for operating the same | |
JPH11182676A (en) | Driving unit for travel of hydraulically driven working vehicle and method for controlling the same | |
JP3065460B2 (en) | Hydraulic circuit for cylinder operation | |
CN113494488B (en) | Hydraulic control valve group and servo valve control cylinder system | |
JP3377564B2 (en) | Mold opening / closing speed control method | |
CN216278724U (en) | Closed pump control system capable of quickly releasing hydraulic energy | |
JPH021647B2 (en) | ||
JPH0347717A (en) | Hydraulic circuit in mold clamping device | |
JP3240265B2 (en) | Hydraulic control method of mold clamping device | |
JPS62177303A (en) | Method of controlling hydraulic actuator | |
JP2524531Y2 (en) | Mold opening and closing circuit of injection molding machine | |
JPH0433618B2 (en) | ||
JPH066901Y2 (en) | Clamping device for injection molding machine | |
JP2887399B2 (en) | Hydraulic control circuit for die casting machine | |
JPH0528027Y2 (en) | ||
JP3089383B2 (en) | Mold clamping device of injection molding machine | |
JPH0351523Y2 (en) | ||
JP2593415Y2 (en) | Mold clamping hydraulic circuit of injection molding machine |