[go: up one dir, main page]

JPH02271208A - Measuring apparatus of three-dimensional shape - Google Patents

Measuring apparatus of three-dimensional shape

Info

Publication number
JPH02271208A
JPH02271208A JP9408889A JP9408889A JPH02271208A JP H02271208 A JPH02271208 A JP H02271208A JP 9408889 A JP9408889 A JP 9408889A JP 9408889 A JP9408889 A JP 9408889A JP H02271208 A JPH02271208 A JP H02271208A
Authority
JP
Japan
Prior art keywords
measured
shape
phase distribution
measuring
installation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9408889A
Other languages
Japanese (ja)
Inventor
Yasuyuki Ito
靖之 伊藤
Tetsuo Adachi
哲郎 足立
Fumiaki Fujie
藤江 文明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP9408889A priority Critical patent/JPH02271208A/en
Publication of JPH02271208A publication Critical patent/JPH02271208A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To improve the measuring accuracy by providing a shape measuring means for calculating the three-dimensional shape of an object to be measured on the basis of the phase distribution data from a phase distribution detecting means and a setting parameter from a setting parameter measuring means. CONSTITUTION:For a preparatory process in measuring the shape of an unknown object M1 to be measured, setting parameters of, for example, a light projecting means M4, a pick-up means M5 etc. are measured with the use of a known object. In other words, the means M4 radiates the light passing through a slit M2 and a lens M3 to the object M1, and the means M5 picks up the reflecting light. An electric signal from the means M5 is input to a phase distribution detecting means M6, so that the distribution data of the phase is obtained. The measuring result of the distribution of the phase is input to a setting parameter measuring means M7, where the setting parameters of the means M4 and M5 are obtained based on the known shape and positional data of the object M1. The obtained setting parameters are used to measure the shape of the object M1.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明(よ スリットを通った光を照射してその反射光
に基づいて被測定物体の形状を測定する3次元形状測定
装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a three-dimensional shape measuring device that measures the shape of an object to be measured based on the reflected light by irradiating light through a slit. .

[従来の技術およびその課題] 従来、この種の3次元形状測定装置として、特公昭60
−4402号公報のものが知られている。
[Prior art and its problems] Conventionally, as this type of three-dimensional shape measuring device, the
The one published in No. 4402 is known.

すなわち、第10図に示すように、プロジェクタ1のス
リット3を通った光をレンズ5を介して3次元形状の被
測定物体7に照射し、その反射光を所定角度だけ隔てた
位置にてカメラ9の撮像面11に撮像し、この撮像した
縞状の模様を電気信号に変換し、この信号に基づいて信
号処理装置13にて被測定物体7の3次元形状を求め、
表面形状表示装置15にて表示するものである。
That is, as shown in FIG. 10, the light that has passed through the slit 3 of the projector 1 is irradiated onto the three-dimensional object to be measured 7 through the lens 5, and the reflected light is reflected by the camera at a position separated by a predetermined angle. 9, the imaged striped pattern is converted into an electrical signal, and based on this signal, the signal processing device 13 determines the three-dimensional shape of the object to be measured 7,
This is displayed on the surface shape display device 15.

この装置において、被測定物体7の形状を測定するに(
よ プロジェクタ1と被測定物体7との距離及び被測定
物体7とカメラ9との距離等の各種の設置パラメータが
予め求められていなければならない。この設置パラメー
タを求める手法として、従棗 手作業により計測するか
、あるいは予め設定した所定位置にプロジェクタ1やカ
メラ9を設置することにより行っていた そのため、作業が面倒であるだけでなく、正確な設置パ
ラメータを求めることが困難であり、被測定物体7の形
状の測定結果に誤差を生じているという問題があった 本発明は、上記従来の技術の問題を解決することを課題
とし、各光学機器の設置パラメータを測定する機能を加
えることにより、被測定物体の正確な形状測定ができる
3次元形状測定装置を提供することを目的とする。
In this device, when measuring the shape of the object to be measured 7 (
Various installation parameters such as the distance between the projector 1 and the object to be measured 7 and the distance between the object to be measured 7 and the camera 9 must be determined in advance. The methods used to determine these installation parameters include manual measurement or installation of the projector 1 and camera 9 at preset positions. The problem of the present invention is that it is difficult to determine the installation parameters, which causes errors in the measurement results of the shape of the object to be measured 7.The present invention aims to solve the problems of the conventional technology described above, and It is an object of the present invention to provide a three-dimensional shape measuring device that can accurately measure the shape of an object to be measured by adding a function to measure the installation parameters of the device.

[課題を解決するための手段] 上記課題を解決するためになされた本発明(上第1図に
示すように、 被測定物体M1に対してスリットM2を通った光をレン
ズM3を介して照射する光照射手段M4と、 被測定物体M1からの反射光を所定入射角度θをもった
位置にて撮像する撮像手段M5と、この撮像手段M5か
らの電気信号に基づいてその位相分布を検出する位相分
布検出手段M6と、既知の形状の被測定物体M1のデー
タまたは被測定物体M]の設置データと、位相分布検出
手段M6からの位相分布データに基づいて光照射手段M
4及び撮像手段M5の設置パラメータを測定する設置パ
ラメータ測定手段M7と、 上記位相分布検出手段M6からの位相分布データ及び設
置パラメータ測定手段M7からの設置パラメータに基づ
いて被測定物体の3次元形状を計算処理して求める形状
計算手段M8と、を備えたことを特徴とする。
[Means for Solving the Problems] The present invention has been made to solve the above problems (as shown in Fig. 1 above, light passing through a slit M2 is irradiated onto an object to be measured M1 through a lens M3 a light irradiation means M4 that captures an image of the reflected light from the object to be measured M1 at a position having a predetermined incident angle θ; and a phase distribution of the reflected light from the object M1 that is detected based on the electrical signal from the image capture means M5. The light irradiation means M based on the phase distribution detection means M6, the data of the object to be measured M1 having a known shape or the installation data of the object to be measured M], and the phase distribution data from the phase distribution detection means M6.
4 and an installation parameter measuring means M7 for measuring the installation parameters of the imaging means M5, and a three-dimensional shape of the object to be measured based on the phase distribution data from the phase distribution detecting means M6 and the installation parameters from the installation parameter measuring means M7. The present invention is characterized by comprising a shape calculation means M8 that calculates the shape through calculation processing.

[作用] まず、未知の被測定物体M1の形状測定にあたっての予
備処理として、既知である被測定物体M1を用いて光照
射手段M4および撮像手段M5等の設置パラメータの測
定が行われる。すなわち、光照射手段M4により、スリ
ットM2及びレンズM3を通過した光が被測定物体M1
に照射さねこの反射光が撮像手段M5により撮像される
。撮像手段M5からの電気信号(上 位相分布検出手段
M6に入力されて、その位相分布データが求められる。
[Operation] First, as a preliminary process for measuring the shape of the unknown object to be measured M1, the installation parameters of the light irradiation means M4, the imaging means M5, etc. are measured using the known object to be measured M1. That is, the light irradiation means M4 directs the light that has passed through the slit M2 and the lens M3 onto the object to be measured M1.
The reflected light from the irradiated tongue is imaged by the imaging means M5. The electrical signal from the imaging means M5 (upper) is input to the phase distribution detection means M6, and its phase distribution data is determined.

この位相分布の測定結果(よ 設置パラメータ測定手段
M7に入力されて、ここで被測定物体M1の既知形状や
その位置データ等に基づいて光照射手段M4および撮像
手段M5の設置パラメータが求められる。
The measurement results of this phase distribution are inputted to the installation parameter measuring means M7, where the installation parameters of the light irradiation means M4 and the imaging means M5 are determined based on the known shape of the object to be measured M1, its position data, etc.

このようにして求められた設置パラメータ(よ未知の被
測定物体M1の形状測定に用いられる。
The installation parameters thus determined (are used to measure the shape of the unknown object to be measured M1).

すなわち、既知の被測定物体M1と同様な処理にて未知
の被測定物体Miにより得られた位相分布検出手段M6
からの位相分布データ【上 形状計算手段M8に入力さ
札 さらに形状計算手段M8に(よ 上記設置パラメー
タ設定手段M7にて求められた設置パラメータも入力さ
れて、これらのデータにより被測定物体の3次元形状が
測定される。
That is, the phase distribution detection means M6 obtained by the unknown measured object Mi through the same process as the known measured object M1.
The phase distribution data [upper] is input to the shape calculation means M8.In addition, the installation parameters determined by the installation parameter setting means M7 are also input to the shape calculation means M8, and these data are used to determine the shape of the object to be measured. The dimensional shape is measured.

したがって、被測定物体M1の3次元形状を測定するに
あたって必要とされる設置パラメータが、位相分布検出
手段M6の信号や既知の被測定物体M1のデータに基づ
いて測定されるから、従来技術のように手作業にて測定
するより精度や作業性が向上する。
Therefore, since the installation parameters required for measuring the three-dimensional shape of the object to be measured M1 are measured based on the signal of the phase distribution detection means M6 and the data of the known object to be measured M1, unlike the conventional technology, Accuracy and workability are improved compared to manual measurement.

[実施例] 以下本発明の一実施例を図面にしたがって説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.

本実施例による3次元形状測定装置(上 第2図に示す
ように、プロジェクタ]00、カメラ20°O1信号処
理装置300、表面形状表示装置400、ステージ制御
装置600から構成されている。
The three-dimensional shape measuring device according to this embodiment (as shown in FIG. 2 above, a projector) 00, a camera 20°O1 signal processing device 300, a surface shape display device 400, and a stage control device 600 are comprised.

プロジェクタ1001上 水銀アーク灯101を備え、
その光が集光レンズ102を通り、さらにスリット10
3(第3図)を通るように構成されている。スリット1
03 +i  交互の不透明部]03aおよび透明部1
03bとからなり、所定の格子間隔に設定されている。
A mercury arc lamp 101 is provided on the projector 1001,
The light passes through the condensing lens 102 and further through the slit 10
3 (Fig. 3). slit 1
03 +i Alternating opaque parts] 03a and transparent parts 1
03b, and is set at a predetermined lattice interval.

このようにして作成された格子縞を、投影レンズ104
を通して投影して被測定物体700(第4図参照)上に
結像させる。
The lattice fringes created in this way are projected onto the projection lens 104.
The image is projected onto the object to be measured 700 (see FIG. 4).

カメラ20 ’Oi&  対物レンズ202を通して撮
像面204上に第5図のような被測定物体700の映像
702を撮像するものであり、通常の低速走査形のテレ
ビジョンカメラやCOD等により構成されている。
A camera 20' is used to capture an image 702 of an object to be measured 700 as shown in FIG. 5 on an imaging plane 204 through an objective lens 202, and is composed of an ordinary low-speed scanning television camera, COD, etc. .

信号処理装置300 +&  カメラ200からのアナ
ログ信号をディジタル信号に変換するA/D変換部3]
1と、格子縞像の信号レベルに基づいて位相を検出する
位相分布検出部3]2と、位相検出部312からの位相
分布信号等に基づいて所定の演算式を用いて被測定物体
700 (第6図参照)の表面形状を演算する形状計算
部313と、位相分布検出部312および予め設定され
たデータ等に基づいて設置パラメータを演算する設置パ
ラメータ測定部320と、この設置パラメータ測定部3
20の指令信号を受けてステージ制御装置600に対し
て駆動信号を出力するステージ制御部330等を備えて
いる。
Signal processing device 300 + & A/D converter 3 that converts analog signals from camera 200 into digital signals]
1, a phase distribution detection section 3 which detects the phase based on the signal level of the checkered image; a shape calculation section 313 that calculates the surface shape of the surface (see Figure 6); an installation parameter measurement section 320 that calculates installation parameters based on the phase distribution detection section 312 and preset data;
The stage controller 330 receives the 20 command signals and outputs a drive signal to the stage controller 600.

ステージ制御装置600 f表  基準平面601を有
するステージを移動させるステージ移動装置602と、
このステージ移動装置602を駆動するステージ駆動装
置603とから構成されており、設置パラメータ測定部
320より指示しただけステージ制御部330の指令信
号によりステージ移動装置602の基準平面601をZ
方向に移動させるものである。
Stage control device 600 Table f A stage moving device 602 that moves a stage having a reference plane 601;
The stage driving device 603 drives this stage moving device 602, and the reference plane 601 of the stage moving device 602 is moved in Z direction according to the command signal from the stage control section 330 as much as instructed by the installation parameter measuring section 320.
direction.

次に、上記実施例の動作の説明にあたって、まず、本技
術の基本的原理及び本実施例の特徴的な作用である設置
パラメータの演算処理の原理を説明した後に、上記実施
例の一連の動作について説明する。
Next, in explaining the operation of the above embodiment, we will first explain the basic principle of this technology and the principle of arithmetic processing of installation parameters, which is a characteristic effect of this embodiment, and then explain a series of operations of the above embodiment. I will explain about it.

(1) 基本的原理 第6図に示すように、プロジェクタ100の格子103
によって幾つもの規則的な縞を被測定物体700の表面
1こ格子縞像701 (第4図)として投影する。この
格子縞像701をプロジェクタ100と別の角度からカ
メラ200により撮像すると、表面の形状に応じて変形
した第5図に示すような格子縞の映像702が得られる
。この映像702 ii  信号処理装置300により
信号処理されて、最終的に被測定物体700の形状が各
点の集合(X、  Y、  Zl として求めら札 表
面形状表示装置400に表示されるのであるが、これ(
t、。
(1) Basic principle As shown in FIG. 6, the grid 103 of the projector 100
A number of regular stripes are projected onto the surface of the object to be measured 700 as a checkered pattern image 701 (FIG. 4). When this checkered image 701 is captured by the camera 200 from an angle different from that of the projector 100, a checkered image 702 as shown in FIG. 5, which is deformed according to the shape of the surface, is obtained. This image 702 ii is signal-processed by the signal processing device 300, and the shape of the object to be measured 700 is finally displayed as a set of points (X, Y, Zl) on the surface shape display device 400. ,this(
T.

以下の計算の結果に基づくものである。This is based on the results of the calculations below.

すなわち、被測定物体700の表面形状と格子縞像の映
像702との関係において、格子103の任意点P0を
(XO+  Vo ) a、lとし、これに対応する被
測定物体700上の点Pを(x、y、  z)882と
すると、格子103の任意点Po  (xol  y。
That is, in the relationship between the surface shape of the object to be measured 700 and the image 702 of the checkered image, let the arbitrary point P0 of the grid 103 be (XO+Vo) a, l, and the corresponding point P on the object to be measured 700 be ( x, y, z) 882, any point Po (xol y.

)881と被測定物体700上の点P (X、  Y、
  Z)8.2との関係(よ 次式(3)、(4)で表
される。
) 881 and point P (X, Y,
Z) 8.2 The relationship is expressed by the following equations (3) and (4).

Q、・・・格子と投影レンズとの距離 り、・・・投影レンズと座標原点までの距離θ・・・プ
ロジェクタとカメラのなす角また、被測定物体700上
の点p (x、  y、  z)1112はカメラ20
0の1最像面204上の点P0 (xol  Va)s
atに結像されるとすると、点P(X、  Y、  Z
)9112と点(Xor  ”Jo)81]3との関係
は次式(5)、  (6)で表される。
Q...distance between the grating and the projection lens...distance θ between the projection lens and the coordinate origin...angle between the projector and camera, and point p (x, y, z) 1112 is camera 20
Point P0 (xol Va)s on the most image plane 204 of 0
If the image is focused on at, the point P(X, Y, Z
)9112 and the point (Xor "Jo)81]3 is expressed by the following equations (5) and (6).

X =X0(12z)、/Q2     ・’・式(5
)Y:V、(L2  z> /a2    ・・・式(
6)Q2・・・座標原点と対物レンズとの距離L2・・
・対物レンズと撮像面との距離式(3)に式(5)を代
入して整理すると式(7)が得られる。
X = X0 (12z), /Q2 ・'・Formula (5
)Y:V, (L2 z> /a2...Formula (
6) Q2...Distance L2 between the coordinate origin and the objective lens...
- By substituting equation (5) into distance equation (3) between the objective lens and the imaging surface and rearranging, equation (7) is obtained.

したがって、式(7)から明かなように、被測定物体7
00上(7)点P (X、  Y、  Z) el12
<7)Z座標(表格子103上の点Po (xol  
y、) [1111のxoと、撮像面204上の点P0
(×。+  yo)eatの×。で表せることがわかる
Therefore, as is clear from equation (7), the object to be measured 7
00 upper (7) point P (X, Y, Z) el12
<7) Z coordinate (point Po (xol
y,) [xo of 1111 and point P0 on the imaging plane 204
(×.+ yo) eat×. It turns out that it can be expressed as

一方、格子103は第3図のように等間隔の正弦状の濃
淡をもち、そのピッチがSoであるとき、格子縞のパタ
ーンlft、  a、  bを特徴とする特許(8)で
表される。
On the other hand, the grating 103 has sinusoidal shading at equal intervals as shown in FIG. 3, and when the pitch is So, it is represented by patent (8) characterized by a checkered pattern lft, a, b.

1=a+bcos(2πxo/So)    +++式
(8)式(8)の位相項をΦとおくと式(9)となる。
1=a+bcos(2πxo/So) +++Equation (8) If the phase term in Equation (8) is set as Φ, Equation (9) is obtained.

Φ” 27r X o/ S o        ”’
式(9)ここで、式(7)に式(9)を代入して変形す
ると、式(10)が得られる。
Φ" 27r X o/S o "'
Equation (9) Here, by substituting Equation (9) into Equation (7) and transforming it, Equation (10) is obtained.

A = −Hcosθ B=Q2cosθ Cニー S i nθ D=−H122sinθ E = −HL 2cosθ F=Q2 L。A = −Hcosθ B=Q2cosθ C knee S i nθ D=-H122sinθ E = -HL 2cosθ F=Q2 L.

Gニー12sinθ H=2π12+/S。G knee 12 sin θ H=2π12+/S.

この式(10)は、 Xe+  Φの関数であり、 し
たがって撮像面204上の点P o (xc+  ya
) *azに映った格子縞像の位相Φがわかれ(戯 被
測定物体700上の点P (X、  Y、  Z) *
a□の7座標(上 式(10)より求められる。また、
このZ座標を用いて、被測定物体700の点P (X、
  Y、  Z) 9@2(7)X座標、  −Y座標
も、式(5)、式(6)より求めることができる。
This equation (10) is a function of Xe+Φ, and therefore, the point P o (xc+ ya
) *The phase Φ of the checkered image reflected in az is separated (point P (X, Y, Z) on the object to be measured 700 *
7 coordinates of a□ (obtained from the above formula (10). Also,
Using this Z coordinate, point P (X,
Y, Z) 9@2 (7) The X coordinate and -Y coordinate can also be determined from equations (5) and (6).

よって、カメラ200の撮像面204上の位相Φの分布
(xo+  Van  Φ)が求まれ)瓜 被測定物体
7000表面形状(X、  Y、  Z) を求めるこ
とができる。
Therefore, the distribution of the phase Φ (xo+Van Φ) on the imaging surface 204 of the camera 200 is determined, and the surface shape (X, Y, Z) of the measured object 7000 can be determined.

(2) 設置パラメータの演算の原理 ところが、上記式(10)および式(5)、  (6)
を用いて、被測定物体700の形状計算を行う場合、光
学系の設置パラメータ(Ll、  L2.  (11,
Q2.  θ)を予め何らかの手法により求めなければ
ならないが、本実施例で]よ 従来の手作業による測定
の代わりに、以下に説明するように、既知の表面形状と
撮像された格子縞像の位相分布から上記設置パラメータ
を求める。
(2) Principle of calculation of installation parameters However, the above formula (10), formula (5), (6)
When calculating the shape of the object to be measured 700 using , the installation parameters of the optical system (Ll, L2. (11,
Q2. θ) must be determined in advance by some method, but in this example, instead of the conventional manual measurement, it is calculated from the known surface shape and the phase distribution of the imaged lattice fringe image, as explained below. Determine the above installation parameters.

すなわち、式(10)、  式(5)1式(6)につい
て、光学系の設置パラメータ(L、、L2.Ql、Q2
.0)を変数として関数f、、  f、、、  f2で
表すと、式(II)。
That is, for equation (10), equation (5) 1 equation (6), the installation parameters of the optical system (L, , L2.Ql, Q2
.. 0) as a variable and expressed as a function f,, f,,, f2, formula (II) is obtained.

式(12)、式(13)のようになる。Equations (12) and (13) are obtained.

Z=f、(Φ、×。r ’ II ’ 2r Q II
 Q 2+θ)・・・(11)X:f2 (xc、  
Z、  L2.  (22)       =l12)
Y= f s (x、、  Z、  L2.  Q 2
)     −(13)これらの式において、表面形状
(X、  Y、  Zlが既知である被測定物体700
の表面の格子縞像を撮像し、その位相分布(Xo+  
!/a+  Φ)を検出して、表面形状(x、  y、
  z)と位相分布(xo。
Z=f, (Φ,×.r'II' 2r Q II
Q2+θ)...(11)X:f2(xc,
Z, L2. (22) =l12)
Y= f s (x,, Z, L2. Q 2
) - (13) In these equations, the measured object 700 whose surface shape (X, Y, Zl is known)
The lattice pattern image on the surface of
! /a+ Φ) is detected and the surface shape (x, y,
z) and phase distribution (xo.

yo、Φ)を式(11)、式(12)、式(13)に代
入することにより、光学系の設置パラメータ(Ll、 
 L2+Q、、  Q2.  θ)を変数とする方程式
が作成される。
By substituting yo, Φ) into Equations (11), Equations (12), and Equations (13), the installation parameters of the optical system (Ll,
L2+Q,, Q2. An equation with θ) as a variable is created.

つまり、既知表面上の点P (X、  Y、  Z)の
数点とそれらの結像点Pa(Xc、 ya)の格子縞像
の位相Φがわかれ1戯 その方程式を解くことができ、
光学系の設置パラメータ(LL、  L2.  Ql、
  Q2゜θ)を求めることができる。
In other words, the phase Φ of the lattice fringe image of several points P (X, Y, Z) on the known surface and their image formation point Pa (Xc, ya) are separated, and the equation can be solved,
Optical system installation parameters (LL, L2. Ql,
Q2°θ) can be obtained.

例え]f、、既知の表面形状として、ステージの基準平
面601を用いて、この基準平面601を2軸方向へ移
動させると、未知の位置Z0、移動量ΔZおよび位相分
布(×。、yo、Φ)の関係(上 式(11)を用いて
表した場合に(よ 式(I4)のようにな13 Z =
 f + (Φ、xc、LH,L2,12 、+Q2r
θ)−7O・・・式(14) よって、第7図に示すように基準平面601を2軸に沿
って△Zだけ数回変化させ、計6組以上の(aZ、  
Xc、  Φ)を式(14)に代入し、その連立方程式
を解くことにより、光学系の設置パラメータ(LL、 
 12. 121.  Q2.  θ)を求めることが
できる。
For example] f, If the reference plane 601 of the stage is used as a known surface shape and the reference plane 601 is moved in two axial directions, the unknown position Z0, the amount of movement ΔZ, and the phase distribution (×., yo, Φ) (When expressed using equation (11) above, the relationship (13 Z =
f + (Φ, xc, LH, L2, 12, +Q2r
θ)-7O...Equation (14) Therefore, as shown in FIG.
By substituting Xc, Φ) into equation (14) and solving the simultaneous equations, the installation parameters of the optical system (LL,
12. 121. Q2. θ) can be obtained.

そして、この設置パラメータ(Ll、  L2. 12
+。
And this installation parameter (Ll, L2.12
+.

Q2r  θ)を式(1の、(5)、(6)に代入する
とともに、未知の被測定物体700をステージ移動装置
602の基準平面601に載置して位相分布fxc+y
。、Φ)を測定すれ(二 表面形状(X、  Y、  
Z)を求めることができる。
Q2r θ) is substituted into equations (1, (5), and (6)), and the unknown measured object 700 is placed on the reference plane 601 of the stage moving device 602, and the phase distribution fxc+y
. , Φ) (2) Surface shape (X, Y,
Z) can be found.

(2) 信号処理等 次]:、このような原理を利用して被測定物体700の
表面形状を求める第2図の信号処理装置300の動作に
ついて説明する。
(2) Signal Processing]: The operation of the signal processing device 300 shown in FIG. 2, which obtains the surface shape of the object to be measured 700 using such a principle, will be described.

カメラ200からの格子縞像の映像信号はA/D変換部
311でアナログ信号からデジタル信号に変換された後
、位相分布検出部312に送ら札撮像面204上の位相
分布I X6+  You  Φ)が求められる。つま
り、位相分布検出部312で]よ第5図に示す格子縞像
の映像702をX0方向に何分側して、第8図のような
X0方向の1次元波形を得る。この1次元波形(よ 式
(8)より各々の縞のピークが2nπ(nは整数)で表
されていることから、各々のピークの位相Φとその位置
P6(XOlVo)が求められる。したがって、撮像面
204上の位相分布(Xo+  Ve+  Φ)が求ま
る。この位相分布(X6+  ’/ O+  Φ)によ
り、形状計算部3]3で式(] 0)、  式(5)1
式(6)を用いて表面形状(X、  Y。
The video signal of the checkered image from the camera 200 is converted from an analog signal to a digital signal by the A/D converter 311, and then sent to the phase distribution detector 312 to determine the phase distribution I It will be done. In other words, the phase distribution detection unit 312 rotates the image 702 of the lattice stripe image shown in FIG. 5 in the X0 direction to obtain a one-dimensional waveform in the X0 direction as shown in FIG. Since the peak of each stripe is expressed by 2nπ (n is an integer) from this one-dimensional waveform (Equation (8)), the phase Φ of each peak and its position P6 (XOlVo) can be found. Therefore, The phase distribution (Xo+Ve+Φ) on the imaging surface 204 is determined. Based on this phase distribution (X6+'/O+Φ), the shape calculation unit 3]3 calculates the following equations:
The surface shape (X, Y.

2)が計算されるのであるが、このとき、設置パラメー
タ測定部320から構成される装置パラメータ(Ll、
  L2.  Ql、  Q2.  θ)が用いられる
2) is calculated, and at this time, the device parameters (Ll,
L2. Ql, Q2. θ) is used.

形状計算部313の計算結果は表面形状表示装着400
により出力される。
The calculation result of the shape calculation unit 313 is displayed on the surface shape display mounting 400.
is output by

このような信号処理により表面形状が求められるのであ
るが、上述した設置パラメータ(L、、  L2+ (
!I+  Qfh  θ)の設定(よ 設置パラメータ
測定部320、ステージ制御部330及びステージ制御
装置600等により行われる。
The surface shape is determined by such signal processing, and the above-mentioned installation parameters (L, , L2+ (
! The setting of I+Qfh θ) is performed by the installation parameter measurement unit 320, the stage control unit 330, the stage control device 600, and the like.

まず、ステージ制御装置600の基準平面6゜1が未知
の位置Zoにあるとき、設置パラメータ測定部320よ
り指示しただけ基準平面601をステージ制御部330
とステージ駆動装置603を介してZ方向に移動させる
。その移動距離を72とする。このときの基準平面60
1上の格子縞像をカメラ200により撮像する。カメラ
200がらの映像信号をA/D変換部31]でA/D変
換した後、位相分布検出部312において撮像面204
の格子縞像の映像の位相分布(X1lll  You 
 Φ)を検出する。
First, when the reference plane 6° 1 of the stage control device 600 is at an unknown position Zo, the stage control unit 330 moves the reference plane 601 as much as instructed by the installation parameter measurement unit 320.
and move it in the Z direction via the stage drive device 603. The moving distance is assumed to be 72. Reference plane 60 at this time
A checkered pattern image on 1 is captured by a camera 200. After the video signal from the camera 200 is A/D converted by the A/D converter 31], the phase distribution detector 312
The phase distribution of the image of the checkered pattern image (X1llll You
Φ) is detected.

ここで、基準平面601の未知の位置Zoと移動量ΔZ
と位相分布(Xa、Yc、Φ)との関係1表上式(14
)にて表されるから、/Zを数回変化させ、計6組以上
の(ΔZ、  xc、  Φ)を式(14)に代入し、
その連立方程式が解かれることにより、光学系の設置パ
ラメータ(Ll、  L2.  Ql、  (!2. 
 θ)が求められる。これらの計算が設置パラメータ測
定部320により行われる。
Here, the unknown position Zo of the reference plane 601 and the amount of movement ΔZ
Relationship between and phase distribution (Xa, Yc, Φ)
), so by changing /Z several times and substituting a total of six or more sets of (ΔZ, xc, Φ) into equation (14),
By solving the simultaneous equations, the installation parameters of the optical system (Ll, L2. Ql, (!2.
θ) is calculated. These calculations are performed by the installation parameter measuring section 320.

その設置パラメータが上述したように形状計算部3]3
に与えら札 未知形状の被測定物体の測定において未知
形状の測定時に用いられるのである。
Shape calculation unit 3]3 whose installation parameters are as described above.
It is used when measuring an unknown shape when measuring an object to be measured with an unknown shape.

したがって、被測定物体700の3次元形状を測定する
ために必要とされる設置パラメータが、位相分布検出部
312の信号や既知の被測定物体700(基準平面60
])のデータに基づいて測定されるから、従来のように
手作業にて測定するより精度や作業性が向上する。
Therefore, the installation parameters required to measure the three-dimensional shape of the object to be measured 700 are determined by the signal of the phase distribution detection unit 312 and the known object to be measured 700 (reference plane 60).
]), the accuracy and workability are improved compared to conventional manual measurements.

なお、上記実施例の変形例として、以下の態様が考えら
れる。
Note that the following aspects can be considered as modifications of the above embodiment.

■ 設置パラメータを求めるに1表 上式(11)につ
いて計6組の多元連立方程式を解かなければならず、そ
の解法が複雑であるが、これを解決するために次のよう
な方法がある。まず、 x0=0の位置にピークをもつ
格子縞像がカメラ200の撮像面204上で×。=Oに
くるように基準平面601の位置を合わせる。すなわち
、基準平面607を2=0の位置に移動させる。そして
、格子縞像を撮像し、位相分布(X O+  y 01
  Φ)を検出する。このときの表面形状と格子縞像の
映像702との関数(上 式(10)にZ二〇を代入し
て式(15)で表される。
■ One table to determine installation parameters A total of six sets of simultaneous equations must be solved for the above equation (11), and the solution method is complicated, but there are the following methods to solve this problem. First, a checkered pattern image having a peak at the position x0=0 appears on the imaging surface 204 of the camera 200. Adjust the position of the reference plane 601 so that it comes to =O. That is, the reference plane 607 is moved to the position where 2=0. Then, a checkered image is captured and the phase distribution (X O+ y 01
Φ) is detected. A function between the surface shape at this time and the image 702 of the lattice fringe image (expressed by equation (15) by substituting Z20 into equation (10) above).

Ex、十FΦ十Gx0Φ=0 ・・・式(15)また、
基準平面60]をZ方向に指定した距離だけ移動させ、
 x0=Oの位置にピークをもつ格子縞像をカメラ20
0の撮像面204上でどの位置(Xo、Vo)にくるか
を検出する。このときの表面形状と格子縞像の映像70
2との関係(上 式(10)に×。二〇(Φ=0)を代
入して式(16)で表される。
Ex, 10FΦ10Gx0Φ=0...Equation (15) Also,
Move the reference plane 60 by the specified distance in the Z direction,
The camera 20 captures the lattice fringe image with a peak at the position x0=O.
The position (Xo, Vo) on the imaging surface 204 of 0 is detected. Image 70 of the surface shape and checkered pattern image at this time
2 (represented by equation (16) by substituting x.20 (Φ=0) into equation (10) above.

を連立方程式に含めることにより、解法が簡単になる。By including in the simultaneous equations, the solution method becomes simple.

■ 上記実施例で(よ ステージ制御装置600のステ
ージ駆動装置603等によりステージの基準表面601
をZ軸方向へ移動しているが、ステージ移動装置602
を手動で移動させるととも隠この移動距離/Zを設置パ
ラメータ測定部320にキーボード等により入力しても
よい。この場合、移動装置602の移動量の設定(よ 
設置パラメータの測定と異なり、比較的正確に測定する
ことができるから、精度上何ら問題がない。
■ In the above embodiment, the stage reference surface 601 is
is being moved in the Z-axis direction, but the stage moving device 602
may be moved manually, and the hidden moving distance/Z may be input into the installation parameter measuring section 320 using a keyboard or the like. In this case, setting the amount of movement of the moving device 602 (or
Unlike the measurement of installation parameters, it can be measured relatively accurately, so there is no problem with accuracy.

■ また、上記実施例で(上 移動可能なステージ制御
装置600を用いたが、設置パラメータを求めるに(よ
 移動量△2に伴う基準平面60]が測定できればよい
ことから、第9図に示すよう(:。
■ In addition, in the above embodiment, the stage control device 600 that is movable is used, but in order to determine the installation parameters, it is sufficient to measure the reference plane 60 associated with the amount of movement △2, as shown in FIG. Yo (:.

階段状の基準平面601Aを有するととも(二 移動量
△Zに相当する距離が既知の形状を用い、この値を設定
パラメータ測定部320へ入力する手段であってもよい
It is also possible to use a shape having a stepped reference plane 601A and a known distance corresponding to the movement amount ΔZ, and input this value to the setting parameter measurement unit 320.

[発明の効果] 以上説明したよう1:、本発明によれ(戴 被測定物体
の3次元形状を測定するにあたって必要とされる設置パ
ラメータが、既知の被測定物体のデータおよび撮像手段
や位相分布検出手段等に基づいたデータに基づいて測定
されるから、従来のように手作業にて測定するより精度
や作業性が向上する。
[Effects of the Invention] As explained above, 1. According to the present invention, the installation parameters required to measure the three-dimensional shape of the object to be measured can be set using known data of the object to be measured, the imaging means, and the phase distribution. Since the measurement is performed based on data based on the detection means, etc., accuracy and workability are improved compared to conventional manual measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の3次元形状装置の構成を示す構成図 
第2図は本発明の一実施例に係るプロジェクタとカメラ
等を用いた3次元形状測定装置の構成図 第3図はスリ
ットを示す説明は 第4図は被測定物体の格子縞を示す
説明は 第5図はカメラの撮像面上の格子縞を示す説明
医 第6図はプロジェクタ、カメラおよび被測定物体の
位置関係を座標系に表した説明は 第7図は被測定物体
を移動させた状態を座標系に表した説明医 第8図は格
子縞像の映像をy0方向分割したX0方向−次元のカメ
ラ信号の波形は 第9図は既知形状の被測定物体の一例
を示す斜視は 第10図は従来技術に係るプロジェクタ
とカメラを用いた3次元形状測定装置の構成図を示す。 Ml・・・被測定物体  M2・・・スリットM3・・
・レンズ  M4・・・光照射手段  M5・・・撮像
手段  M6・・・位相分布検出手段  Ml・・・設
置パラメータ測定手段  M8・・・形状計算手段10
0・・・プロジェクタ  200・・・カメラ  30
0−・・信号処理装置  400・・・表面形状表示装
置  600・・・ステージ制御装置  700・・・
被測定物体
FIG. 1 is a configuration diagram showing the configuration of the three-dimensional shape device of the present invention.
FIG. 2 is a configuration diagram of a three-dimensional shape measuring device using a projector, camera, etc. according to an embodiment of the present invention. FIG. 3 is an explanation showing a slit. FIG. Figure 5 shows the grid pattern on the imaging surface of the camera. Figure 6 shows the positional relationship between the projector, camera, and object to be measured in a coordinate system. Figure 7 shows the state of the object being measured in coordinates. Figure 8 shows the waveform of the camera signal in the X0 direction, which is obtained by dividing the checkered image image in the y0 direction, and Figure 9 shows an example of an object to be measured with a known shape. A configuration diagram of a three-dimensional shape measuring device using a projector and a camera according to the technology is shown. Ml...Object to be measured M2...Slit M3...
・Lens M4...Light irradiation means M5...Imaging means M6...Phase distribution detection means Ml...Installation parameter measurement means M8...Shape calculation means 10
0...Projector 200...Camera 30
0-...Signal processing device 400...Surface shape display device 600...Stage control device 700...
Object to be measured

Claims (1)

【特許請求の範囲】 被測定物体に対してスリットを通つた光をレンズを介し
て照射する光照射手段と、 被測定物体からの反射光を所定入射角度をもつた位置に
て撮像する撮像手段と、 この撮像手段からの電気信号の位相分布を検出する位相
分布検出手段と、 既知の形状の被測定物体のデータまたは被測定物体の設
置位置データと、位相分布検出手段からの位相分布デー
タに基づいて光照射手段及び撮像手段の設置パラメータ
を測定する設置パラメータ測定手段と、 上記位相分布検出手段からの位相分布データおよび設置
パラメータ測定手段からの設置パラメータに基づいて被
測定物体の3次元形状を計算処理して求める形状計算手
段と、 を備えたことを特徴とする3次元形状測定装置。
[Scope of Claims] Light irradiation means for irradiating the object to be measured with light that has passed through a slit through a lens, and imaging means for taking an image of the reflected light from the object to be measured at a position with a predetermined angle of incidence. , a phase distribution detection means for detecting the phase distribution of the electrical signal from the imaging means, data of the object to be measured of a known shape or installation position data of the object to be measured, and phase distribution data from the phase distribution detection means. an installation parameter measuring means for measuring installation parameters of the light irradiation means and the imaging means based on the above-mentioned phase distribution detection means, and a three-dimensional shape of the object to be measured based on the phase distribution data from the phase distribution detection means and the installation parameters from the installation parameter measuring means. A three-dimensional shape measuring device comprising: a shape calculation means for determining a shape by calculation processing; and a three-dimensional shape measuring device.
JP9408889A 1989-04-13 1989-04-13 Measuring apparatus of three-dimensional shape Pending JPH02271208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9408889A JPH02271208A (en) 1989-04-13 1989-04-13 Measuring apparatus of three-dimensional shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9408889A JPH02271208A (en) 1989-04-13 1989-04-13 Measuring apparatus of three-dimensional shape

Publications (1)

Publication Number Publication Date
JPH02271208A true JPH02271208A (en) 1990-11-06

Family

ID=14100709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9408889A Pending JPH02271208A (en) 1989-04-13 1989-04-13 Measuring apparatus of three-dimensional shape

Country Status (1)

Country Link
JP (1) JPH02271208A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0771934A (en) * 1992-01-15 1995-03-17 Euclid Medical Instr Inc Device that determines curved surface state of face
JP2005098985A (en) * 2003-08-28 2005-04-14 Fujitsu Ltd Measuring device, computer numerical control device, and program
JP2008170279A (en) * 2007-01-11 2008-07-24 Omron Corp Three-dimensional shape measuring apparatus, calibration method thereof, program, and computer-readable recording medium
CN103292686A (en) * 2012-01-06 2013-09-11 株式会社三丰 Image sensor, attitude detector, contact probe, and multi-sensing probe
CN104655050A (en) * 2013-11-18 2015-05-27 精工爱普生株式会社 Calibration method and shape measuring apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0771934A (en) * 1992-01-15 1995-03-17 Euclid Medical Instr Inc Device that determines curved surface state of face
JP2005098985A (en) * 2003-08-28 2005-04-14 Fujitsu Ltd Measuring device, computer numerical control device, and program
JP2008170279A (en) * 2007-01-11 2008-07-24 Omron Corp Three-dimensional shape measuring apparatus, calibration method thereof, program, and computer-readable recording medium
CN103292686A (en) * 2012-01-06 2013-09-11 株式会社三丰 Image sensor, attitude detector, contact probe, and multi-sensing probe
CN103292686B (en) * 2012-01-06 2017-03-01 株式会社三丰 Imageing sensor, attitude detector, contact probe head and many sensor probes
CN104655050A (en) * 2013-11-18 2015-05-27 精工爱普生株式会社 Calibration method and shape measuring apparatus
JP2015099050A (en) * 2013-11-18 2015-05-28 セイコーエプソン株式会社 Calibration method and shape measuring apparatus

Similar Documents

Publication Publication Date Title
CA1257682A (en) Method and apparatus for producing three-dimensional shape
US5135308A (en) Method and apparatus for non-contact measuring of object surfaces
US5135309A (en) Method and apparatus for non-contact measuring of object surfaces
Tajima et al. 3-D data acquisition by rainbow range finder
JP3525964B2 (en) 3D shape measurement method for objects
JPH02228511A (en) Method and apparatus for measuring surface of object using protrusion of band pattern
JP6937482B2 (en) Surface shape measuring device and its stitching measuring method
WO2007088789A1 (en) Surface shape measuring method and device using the same
JPH0616799B2 (en) Optical probe for three-dimensional survey of teeth in the oral cavity
JP2002071328A (en) Surface shape determination method
US6876458B2 (en) Method and device for determining the absolute coordinates of an object
JPH06123610A (en) Method and apparatus for optical measurement of objective
JP6293122B2 (en) How to measure dental conditions
JPH1038533A (en) Instrument and method for measuring shape of tire
JP2008145139A (en) Shape measuring device
JPH02271208A (en) Measuring apparatus of three-dimensional shape
RU2148793C1 (en) Process measuring form and spatial position of surface of object
JP2006170744A (en) Three-dimensional distance measuring instrument
JP2002081923A (en) Method and device for measuring three-dimensional shape of object by projecting moire fringe
JPH04278406A (en) Three-dimensional measuring method
JP3934530B2 (en) 3D measuring apparatus and 3D measuring method
JP2765151B2 (en) 3D shape measurement method
JPS61162706A (en) Method for measuring solid body
JPH0587541A (en) Two-dimensional information measuring device
JPH0723684Y2 (en) Range finder