JPH02268682A - Preparation of dna specimen - Google Patents
Preparation of dna specimenInfo
- Publication number
- JPH02268682A JPH02268682A JP8680689A JP8680689A JPH02268682A JP H02268682 A JPH02268682 A JP H02268682A JP 8680689 A JP8680689 A JP 8680689A JP 8680689 A JP8680689 A JP 8680689A JP H02268682 A JPH02268682 A JP H02268682A
- Authority
- JP
- Japan
- Prior art keywords
- dna
- container
- adsorbed
- reaction
- substance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title description 2
- 238000006243 chemical reaction Methods 0.000 claims abstract description 36
- 239000000126 substance Substances 0.000 claims abstract description 16
- 229920001213 Polysorbate 20 Polymers 0.000 claims abstract description 6
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 claims abstract description 6
- 239000002736 nonionic surfactant Substances 0.000 claims abstract description 4
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 23
- 238000005464 sample preparation method Methods 0.000 claims description 7
- 239000000523 sample Substances 0.000 claims 2
- 239000003153 chemical reaction reagent Substances 0.000 claims 1
- 239000012488 sample solution Substances 0.000 claims 1
- 238000001179 sorption measurement Methods 0.000 abstract description 10
- 230000002829 reductive effect Effects 0.000 abstract description 3
- 108020004414 DNA Proteins 0.000 description 43
- 239000012634 fragment Substances 0.000 description 12
- 238000001228 spectrum Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 7
- 239000003463 adsorbent Substances 0.000 description 6
- 238000012163 sequencing technique Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- -1 polypropylene Polymers 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- XZIIFPSPUDAGJM-UHFFFAOYSA-N 6-chloro-2-n,2-n-diethylpyrimidine-2,4-diamine Chemical compound CCN(CC)C1=NC(N)=CC(Cl)=N1 XZIIFPSPUDAGJM-UHFFFAOYSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 101150000569 DNA-M gene Proteins 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000011166 aliquoting Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-M dodecanoate Chemical compound CCCCCCCCCCCC([O-])=O POULHZVOKOAJMA-UHFFFAOYSA-M 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229940070765 laurate Drugs 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229940035044 sorbitan monolaurate Drugs 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Landscapes
- Saccharide Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はDNA試料調製方法に係り、特に機敏DNAを
自動装置において効率良く反応させるのに好適な方法に
関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for preparing a DNA sample, and particularly to a method suitable for efficiently reacting sensitive DNA in an automatic device.
従来の方法は、塩基配列決定プロセスを例にとると、宝
酒造株式会社のM13シークエンスキット説明書(19
ss年)に記載されているようにピュモル(pmole
)オーダの鋳型DNA、等モル量のプライマー、バッフ
ァ、蒸留水を混合して60℃程度に加温してプライマー
アニール反応を進め、前記溶液にDNAポリメラーゼと
dNTP・ddNTPの混合液を加えて相補鎖合成反応
を行ってきた。すなわちDNA試料の吸着防止のための
工夫は特になされてなかった。Taking the base sequencing process as an example, conventional methods are based on Takara Shuzo Co., Ltd.'s M13 Sequencing Kit Instruction Manual (19
pmole (pmole) as described in
) order template DNA, equimolar amounts of primers, buffer, and distilled water are mixed and heated to approximately 60°C to proceed with the primer annealing reaction, and a mixture of DNA polymerase and dNTP/ddNTP is added to the solution to perform complementation. I have been performing chain synthesis reactions. That is, no particular measures have been taken to prevent adsorption of DNA samples.
従来法においてはDNA−Mが少なくなったときに反応
容器にDNAが吸着され反応率が低下するという問題が
あった。反応容器としては、安価軽量で取扱い易く、ま
たDNA量が充分あるときはその吸着量は無視できる程
度であるという理由からポリプロピレン等のプラスチッ
ク製のものが用いられている。しかしDNAの絶対量が
少なくなるとプラスチック壁へのDNA吸着の影響が現
れて反応率が低下する。塩基配列決定プロセスにおける
前記反応率の検討結果を次に示す。In the conventional method, there was a problem in that when the amount of DNA-M became low, the DNA was adsorbed to the reaction container and the reaction rate decreased. A reaction vessel made of plastic such as polypropylene is used because it is cheap, lightweight, and easy to handle, and the adsorption amount is negligible when there is a sufficient amount of DNA. However, when the absolute amount of DNA decreases, the reaction rate decreases due to the effect of DNA adsorption to the plastic wall. The results of the study of the reaction rate in the base sequencing process are shown below.
第3図は標準的な条件である鋳型DNA0.5PIIO
16(図b)とその半分の0 、25pmole (図
8)についての1つNA断片スペクトルの比較を示した
もので2各回の横軸は電気泳動時間、縦軸は蛍光強度の
相対値1図中の数字はl) N A断片の塩基長を示す
6鋳型DNA1を半分にするとDNA断片を示すピーク
のS/Nは平均して0.52mo1.eの鋳型を供給し
たときの20%程度にまで低下して。Figure 3 shows standard conditions for template DNA of 0.5 PIIO.
This figure shows a comparison of one NA fragment spectrum for 16 (Figure b) and its half, 0 and 25 pmole (Figure 8). 2 The horizontal axis for each run is electrophoresis time, and the vertical axis is the relative value of fluorescence intensity. The numbers in the middle indicate the base length of the N A fragment. 6 When template DNA 1 is halved, the S/N of the peak representing the DNA fragment is 0.52 mo1 on average. It has decreased to about 20% of when the mold e was supplied.
反応ピークの同定が困難になった。It became difficult to identify the reaction peak.
第4図は前記の傾向を反応率を指標にしてまとめたもの
で、図の横軸は鋳型D N A供給量、縦軸は反応率の
比(ここでは相対反応率と呼ぶ)で、鋳型D N A
0 、4 pmoleの反ノ、b率を1とした。0.4
pmoleよりも鋳型DNAffが多くなると反応率は
緩やかに上昇するが、 0 、4 pmoleよりも鋳
型1)NA量が少なくなるとDNAの吸着現象の影響が
強く現れて反応率は急激に低下する。ここでは塩基配列
決定プロセスを例に述べたが、D N A吸着は微M
D N Aを反応する場合すべてについて問題になる。Figure 4 summarizes the above-mentioned trends using the reaction rate as an indicator. DNA
The b ratio of 0 and 4 pmole was set to 1. 0.4
When the amount of template DNAff is larger than pmole, the reaction rate increases slowly, but when the amount of template 1) NA is smaller than 0,4 pmole, the effect of the DNA adsorption phenomenon becomes stronger and the reaction rate decreases rapidly. Here, we used the base sequencing process as an example, but DNA adsorption is
This is a problem when reacting with DNA.
なおりNA試料調製プロセスは操作者にとり、負担が1
(く、自動化の要望が強く、今後自動装置化が進展する
と予想される。したがって吸着防雨法においても、自動
化し易い方法を採用する必要がある。The NA sample preparation process requires only one burden on the operator.
(There is a strong demand for automation, and it is expected that automation will progress in the future. Therefore, it is necessary to adopt a method that is easy to automate in the adsorption rainproofing method as well.
本発明はDNA吸ig斌を低減して微i 1) N A
を効率良く反応させるのに最適で、かつ自動装置におい
て容易に実現できる方法を提供することにある、
〔課題を解決するための手段〕
本発明においては、上記目的を達成するために、反応系
を阻害せず容器壁に吸着する物質を注入する方法を採用
した。注入する物質としては反応系を阻害しないDNA
、あるいは非イオン性界面活性剤であるポリオキシエチ
レンソルビタンモノラウレートを採用した。The present invention reduces DNA absorption and reduces the amount of DNA absorbed. 1) NA
[Means for Solving the Problems] In order to achieve the above object, the present invention aims to provide a method that is optimal for efficiently reacting and that can be easily realized in an automatic device. We adopted a method of injecting a substance that adsorbs to the container wall without interfering with the process. The substance to be injected is DNA that does not inhibit the reaction system.
Alternatively, polyoxyethylene sorbitan monolaurate, a nonionic surfactant, was employed.
また、上記目的を達成するために、容器壁に吸着する物
質を反応前の容器に予め注入して、容器壁に前記物質を
吸着させる方法を採用した。Furthermore, in order to achieve the above object, a method was adopted in which a substance that is adsorbed on the container wall was injected into the container before reaction to cause the substance to be adsorbed on the container wall.
(作用〕
容器壁に吸着しうる分子数には上限があり、前記吸着物
質の分−r−数をDNAの分子数に対して充分太き(す
れば、容器壁には試料とするL)NA以外の物質が吸着
することになり、試料とするDNAの岑器壁への吸着量
を低減でき、反応率を向上させることができる。本発明
の方法は吸着物質を注入する操作が加わるだけであるの
で、自動化も容易である。(Function) There is an upper limit to the number of molecules that can be adsorbed on the container wall, and the number of adsorbed substances must be sufficiently large compared to the number of DNA molecules (so that the number of molecules to be sampled on the container wall is L). Since substances other than NA are adsorbed, the amount of sample DNA adsorbed on the vessel wall can be reduced, and the reaction rate can be improved.The method of the present invention only requires the addition of an operation for injecting the adsorbent. Therefore, automation is easy.
また反応前の容器に予め容器壁に吸着する物質を注入し
て、充分吸着した後に前記容器を廃棄して、反応を行う
方法については、反応^「の容器壁にDNAが吸着する
余地が残されていないので同様に反応率を向上でき、自
動化は容易である。なお本方法によると、前記溶液を充
分除去してコンタミネーションの可能性を低くしておけ
ば、容器壁に吸着する物質には反応系を阻害する性質が
あっても問題にならないという利点がある。In addition, there is a method in which a substance that will be adsorbed to the container wall is injected into the container before the reaction, and after sufficient adsorption, the container is discarded and the reaction is performed. The reaction rate can be similarly improved, and automation is easy.In addition, according to this method, if the solution is sufficiently removed to reduce the possibility of contamination, substances adsorbed on the container wall can be has the advantage that it does not pose a problem even if it has the property of inhibiting the reaction system.
本発明によるDNA試料調製方法の塩基配列決定プロセ
スにおける第一の実施例を第1図のフローチャートを用
いて説明する。本実施例の方法は、鋳型DNA、鋳型1
) N Aと等しい分子数のプライマー、バッファ、反
応液層を調整する蒸留水を注入混合する分注(操作1)
、鋳型1)NAと異なる配列で反応を阻害せず、容器4
%、fへの吸着剤として用いるDNAを注入する他種D
NA注入(操作2)、55〜60℃の温度範囲でのイン
キュベーション(操作3)、容器を室温レベルにまで冷
却する(操作4)、DNAポリメラーゼの注入(操作5
)、反応液の等分(操作6)、DNA鎖の伸長・停止剤
の注入(操作7)、室温レベルから37℃の温度範囲で
のインキュベーション(操作8)、チエイス1dJPf
1の注入(操作9)、操作8と同様のインキュベーショ
ン(操作10)、ホルムアミド等の停止剤の注入(操作
11)よりなる。A first embodiment of the base sequencing process of the DNA sample preparation method according to the present invention will be described using the flowchart of FIG. In the method of this example, template DNA, template 1
) Dispensing to mix the primer, buffer, and distilled water to adjust the reaction liquid layer with the number of molecules equal to NA (operation 1)
, template 1) does not inhibit the reaction with a sequence different from NA, and the container 4
%, other species D to inject DNA to be used as adsorbent to f
NA injection (operation 2), incubation at a temperature range of 55-60°C (operation 3), cooling of the container to room temperature level (operation 4), injection of DNA polymerase (operation 5).
), aliquoting the reaction solution (step 6), injection of DNA chain elongation/terminator (step 7), incubation at a temperature range from room temperature level to 37°C (step 8), Thiase 1dJPf
1 (operation 9), incubation similar to operation 8 (operation 10), and injection of a stop agent such as formamide (operation 11).
本方法による実験結果を第5図に示す。Experimental results using this method are shown in FIG.
本実施例ではプライマーを蛍光m識し、励起光を用いて
DNA断片を発光させ、その発光を検出した6
図(b)は鋳型D N A4#Mkを0 、25 pm
oleとWi斌にし、他種DNAを注入しないときのD
NA断片スペクトルであり、図(8)は鋳型以外のDN
Aとしてプライマーの分子数を鋳型DNAの分子数より
一桁多く注入したときのDNA断片スペクトルである。In this example, the primers were fluorescently identified, the DNA fragments were made to emit light using excitation light, and the emitted light was detected.6 Figure (b) shows template DNA4#Mk at 0 and 25 pm.
D when using ole and Wibin and not injecting other species DNA
This is an NA fragment spectrum, and Figure (8) shows DNA other than the template.
A is a DNA fragment spectrum obtained when the number of primer molecules is injected one order of magnitude larger than the number of template DNA molecules.
図の横軸は泳動時間、縦軸は蛍光強度、数字はL)NA
断片の塩基長である。過剰に注入されたDNAにより容
器壁への鋳型1) N Aの吸着量が減り、反応率が向
上していることが明白である。The horizontal axis of the figure is migration time, the vertical axis is fluorescence intensity, and the numbers are L) NA
This is the base length of the fragment. It is clear that the excess injected DNA reduces the adsorption amount of template 1) NA on the container wall and improves the reaction rate.
本発明によるDNA試料調製方法の第二の実施例を第2
図のフローチャートに示す、基本フローは第一実施例と
同様で、他種DNAを注入する操作2に換えて容器壁へ
の吸着剤として非イオン界面活性剤であるポリオキシエ
チレン(20)ソルビタンモノラウレートを注入する操
作12を採用したものである。The second embodiment of the DNA sample preparation method according to the present invention is described in the second embodiment.
The basic flow shown in the flowchart in the figure is the same as in the first embodiment, but instead of step 2 of injecting DNA of another species, polyoxyethylene (20) sorbitan monomer, which is a nonionic surfactant, is used as an adsorbent to the container wall. Operation 12 of injecting laurate is adopted.
本方法による実験結果を第6図に示す、同図(b)はポ
リオキシエチレン(20)ソルビタンモノラウレートを
注入せずに反応を行った場合のDNA断片スペクトル、
図の上側はポリオキシエチレン(20)ソルビタンモノ
ラウレートをアニール反応液中で0.1%になるよう注
入したときのDNA断片スペクトルである。なおここで
は、プライマーと鋳型DNAは等モル供給した。ポリオ
キシエチレン(20)ソルビタンモノラウレートにより
容器壁への鋳型DNAの吸着量が減り、反応率は明らか
に向上した。The experimental results using this method are shown in Figure 6. Figure 6 (b) shows the DNA fragment spectrum when the reaction was carried out without injecting polyoxyethylene (20) sorbitan monolaurate;
The upper part of the figure is a DNA fragment spectrum when polyoxyethylene (20) sorbitan monolaurate was injected into the annealing reaction solution to a concentration of 0.1%. Here, the primer and template DNA were supplied in equimolar amounts. Polyoxyethylene (20) sorbitan monolaurate reduced the amount of template DNA adsorbed onto the container wall, clearly improving the reaction rate.
第一実施例、第二実施例では反応液を調製した後に吸着
物質を混入したが、予め蒸留水やバッファ等に該吸着物
を混合しておいても同様であることは勿論である。In the first and second embodiments, the adsorbent was mixed in after preparing the reaction solution, but it goes without saying that the same effect can be obtained by mixing the adsorbent in distilled water, buffer, etc. in advance.
本発明によるDNA試料i1!iI製方法の第三の実施
例を第7図のフローチャートに示す。反応液を容器に分
注・調合する操作1の前に、芥器壁に吸着させ物質を容
器に注入する操作13、前記溶液を廃莱して乾燥させる
操作14を行うものである。DNA sample i1 according to the present invention! A third embodiment of the iI manufacturing method is shown in the flowchart of FIG. Before operation 1 of dispensing and dispensing the reaction solution into a container, operation 13 of adsorbing the substance to the container wall and injecting it into the container, and operation 14 of discarding and drying the solution are performed.
吸着物質としてPBR322二本鎖DNA並びにポリオ
キシエチレン(2o)ソルビタンモノラウレートを用い
たところ。PBR322 double-stranded DNA and polyoxyethylene (2o) sorbitan monolaurate were used as the adsorbent.
第5図、第6図の上側と同等のS/NのDNA断片スペ
クトルが得ら九た。DNA fragment spectra with S/N equivalent to those in the upper portions of FIGS. 5 and 6 were obtained.
なお以上の方法を他のDNA試料の反応1例えば制限酸
素分解反応等に適用できるのは勿論である。It goes without saying that the above method can be applied to other DNA sample reactions 1, such as limited oxygen decomposition reactions.
本発明では、DNA試料の容器壁への吸着を防ぐことが
でき、特にDNA試料量が微意になった場合の反応率を
向上させることができる。According to the present invention, adsorption of the DNA sample to the container wall can be prevented, and the reaction rate can be improved especially when the amount of DNA sample becomes insignificant.
第1図、第2図、第7図は本発明の実施例の工程フロー
チャート、第3図は従来法の塩基配列決定プロセスにお
けるI) N A断片スペクトルの変化を示す測定図、
第4図は第3図の傾向を反応率として整理したグラフ、
第5図、第6図はそれぞれ本発明の実施例および従来例
のD N A断片スペクトルの41!I定図である。
第
図
不
図
第
え
@型DNL農崖
蘭
V型り悼A量
mOe
冨
図FIGS. 1, 2, and 7 are process flowcharts of the embodiment of the present invention, and FIG. 3 is a measurement diagram showing changes in I) NA fragment spectra in the base sequencing process of the conventional method.
Figure 4 is a graph that organizes the trends in Figure 3 as reaction rates.
FIGS. 5 and 6 show 41! of DNA fragment spectra of the embodiment of the present invention and the conventional example, respectively. It is an I constant diagram. Fig. No Fig. E @ type DNL Nougai Ran V type Riso A quantity mOe Tomizu
Claims (1)
せるDNA試料調製方法において、反応系を阻害せず容
器壁に吸着する物質を注入して反応させることを特徴と
するDNA試料調製方法。 2、反応系を阻害しないDNAを注入することを特徴と
する請求項1記載のDNA試料調製方法。 3、非イオン性界面活性剤を注入することを特徴とする
請求項1記載のDNA試料調製方法。 4、ポリオキシエチレンソルビタンモノラウレートを用
いることを特徴とする請求項3記載のDNA試料調製方
法。 5、請求項1記載のDNA試料調製方法において、反応
系を阻害せず容器壁に吸着する物質を注入する替わりに
、反応に用いる前に容器に吸着する物質を注入して容器
壁に該物質を吸着させておくことを特徴とするDNA試
料調製方法。[Claims] 1. A DNA sample preparation method in which an aqueous DNA sample solution and a reagent are mixed and reacted in a container, characterized by injecting a substance that does not inhibit the reaction system and adsorbs to the container wall to cause the reaction. DNA sample preparation method. 2. The DNA sample preparation method according to claim 1, characterized in that DNA that does not inhibit the reaction system is injected. 3. The DNA sample preparation method according to claim 1, characterized in that a nonionic surfactant is injected. 4. The DNA sample preparation method according to claim 3, characterized in that polyoxyethylene sorbitan monolaurate is used. 5. In the method for preparing a DNA sample according to claim 1, instead of injecting a substance that does not inhibit the reaction system and is adsorbed to the container wall, a substance that is adsorbed to the container is injected and the substance is attached to the container wall before being used in the reaction. 1. A method for preparing a DNA sample, which comprises adsorbing .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8680689A JPH02268682A (en) | 1989-04-07 | 1989-04-07 | Preparation of dna specimen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8680689A JPH02268682A (en) | 1989-04-07 | 1989-04-07 | Preparation of dna specimen |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02268682A true JPH02268682A (en) | 1990-11-02 |
Family
ID=13897049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8680689A Pending JPH02268682A (en) | 1989-04-07 | 1989-04-07 | Preparation of dna specimen |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02268682A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6383783B1 (en) | 1999-09-21 | 2002-05-07 | 3M Innovative Properties Company | Nucleic acid isolation by adhering to hydrophobic solid phase and removing with nonionic surfactant |
-
1989
- 1989-04-07 JP JP8680689A patent/JPH02268682A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6383783B1 (en) | 1999-09-21 | 2002-05-07 | 3M Innovative Properties Company | Nucleic acid isolation by adhering to hydrophobic solid phase and removing with nonionic surfactant |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60123480T2 (en) | TREATMENT OF HYDROPHOBIC OR HYDROPHILIC SURFACES WITH POLYMERS | |
JP4732450B2 (en) | Method for stabilizing assay reagent, reagent container containing stabilized assay reagent and use thereof | |
RU2000101306A (en) | METHOD FOR QUANTITATIVE EVALUATION OF GENE EXPRESSION USING MULTIPLEX COMPETITIVE REVERSE-TRANSCRIPTASE POLYMERASE CHAIN REACTION | |
Huang et al. | A fast silver staining protocol enabling simple and efficient detection of SSR markers using a non-denaturing polyacrylamide gel | |
Marasco | Hydroxylamine hydrochloride for the quick estimation of acetone | |
KR20050008693A (en) | Device, method, and kit for gene detection | |
Ohnishi et al. | Static and kinetic studies by fluorometry on the interaction between gluconolactone and glucoamylase from Rh. niveus | |
JPH02268682A (en) | Preparation of dna specimen | |
US20140099656A1 (en) | Rapid detection of histamine in food and beverages | |
Crouse et al. | Improving Efficiency of a Small Forensic DNA Laboratory: Validation of Robotic Assays and Evaluation of Microcapillary Array Device. | |
Wallis et al. | Automated DNA sequencing | |
Cerdà et al. | Automatic pre-concentration and treatment for the analysis of environmental samples using non-chromatographic flow techniques | |
CN115786469A (en) | Reagent for LAMP amplification reaction and preparation method thereof | |
JPH05332992A (en) | Electrophoresis device | |
FLAVELL et al. | DNA‐DNA Hybridization on Nitrocellulose Filters: 2. Concatenation Effects | |
KR20020043132A (en) | COD Vials and determination methods for chemical oxygen demand analysis | |
JP2002355024A5 (en) | ||
RU2183322C1 (en) | Method of revealing ammonium ions in aqueous medium | |
SU1767436A1 (en) | Method of determining blood glucose level | |
JPH0372899A (en) | Determination of sequence of desoxyribonucleic acid | |
EP4146000B1 (en) | Colorimetric measurement of fludioxonil | |
CN118726547A (en) | A method for improving the efficiency of micro-nucleic acid amplification | |
Jelus-Tyror et al. | Simplification and improvements in laboratory methods for small wineries: methodology for volatile acidity determination | |
RU2685763C1 (en) | Method of determining concentration of molecular oxygen in an organic liquid | |
SU812719A1 (en) | Method of chemiluminescent lead determination |