JPH02267481A - Air conditioner - Google Patents
Air conditionerInfo
- Publication number
- JPH02267481A JPH02267481A JP8639289A JP8639289A JPH02267481A JP H02267481 A JPH02267481 A JP H02267481A JP 8639289 A JP8639289 A JP 8639289A JP 8639289 A JP8639289 A JP 8639289A JP H02267481 A JPH02267481 A JP H02267481A
- Authority
- JP
- Japan
- Prior art keywords
- accumulator
- refrigerant
- valve
- heat exchanger
- during
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 claims abstract description 26
- 238000010257 thawing Methods 0.000 claims abstract description 25
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- 239000003507 refrigerant Substances 0.000 abstract description 34
- 239000007788 liquid Substances 0.000 abstract description 21
- 239000007791 liquid phase Substances 0.000 abstract description 5
- 238000002309 gasification Methods 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 2
- 238000007599 discharging Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 16
- 238000005057 refrigeration Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 238000007664 blowing Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000003415 peat Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は空気調和機、特に空気調和機の除霜時間を短
縮できる空気調和機に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an air conditioner, and particularly to an air conditioner that can shorten the defrosting time of the air conditioner.
第2図は例えば特公昭63−37656号公報(示され
た従来の空気調和機の構成の概略を示す説明図であり、
図において、201は圧縮機である。圧縮機201は、
四方弁202を介して室外熱交換器203及び室内熱交
換器208にそれぞれ接続されている。また、圧縮機2
01は、四方弁202から導出された吸入配管216に
よって閉ループを構成している。吸入配管2!6は、液
溜212内を貫挿している。液溜212には、吸入配管
216内の冷媒を加熱する加熱袋H215が取り付けら
れている。液溜212の下部は、連結管213を介して
逆止弁206,207等で接続された主冷凍サイクルに
接続されている。液溜212の上部は、連絡管214を
介して後述する室内熱交換器208の出口に接続されて
いる。この連絡管214にはバルブ209が取り付けら
れている。室外熱交換器203には、送風機210が取
り付けられている。室外熱交換器203は、冷凍膨張器
を構成する絞り機構である冷房用キャピラリチューブ2
04.逆止弁207を順次介して室内熱交換520Bに
接続されている。室内熱交換器208は、冷媒膨張器を
構成する絞り機構である暖房用キャピラリチューブ20
5.逆止弁206を順次介して室外熱交換器203に接
続されている。室内熱交換器208には、送風機211
が取り付けられている。FIG. 2 is an explanatory diagram showing an outline of the configuration of a conventional air conditioner disclosed in, for example, Japanese Patent Publication No. 63-37656.
In the figure, 201 is a compressor. The compressor 201 is
It is connected to an outdoor heat exchanger 203 and an indoor heat exchanger 208 via a four-way valve 202, respectively. In addition, compressor 2
01 constitutes a closed loop with the suction pipe 216 led out from the four-way valve 202. The suction pipe 2!6 penetrates into the liquid reservoir 212. A heating bag H215 that heats the refrigerant in the suction pipe 216 is attached to the liquid reservoir 212. The lower part of the liquid reservoir 212 is connected via a connecting pipe 213 to a main refrigeration cycle connected to check valves 206, 207 and the like. The upper part of the liquid reservoir 212 is connected to an outlet of an indoor heat exchanger 208, which will be described later, via a communication pipe 214. A valve 209 is attached to this communication pipe 214. A blower 210 is attached to the outdoor heat exchanger 203. The outdoor heat exchanger 203 includes a cooling capillary tube 2 which is a throttling mechanism that constitutes a refrigeration expander.
04. It is connected to the indoor heat exchanger 520B via the check valve 207 in sequence. The indoor heat exchanger 208 includes a heating capillary tube 20 that is a throttle mechanism that constitutes a refrigerant expander.
5. It is connected to the outdoor heat exchanger 203 via check valves 206 in turn. The indoor heat exchanger 208 includes a blower 211.
is installed.
次に動作について説明する。除霜運転時は、第2図中−
点鎖線矢印で示すように冷媒が流れ除霜サイクルが形成
される。この場合、送風機210および211は停止し
、バルブ209は開いている。冷媒は暖房運転時と同じ
ように圧縮機20!で圧縮され四方弁202を経て室内
熱交換器208に導かれ一部が凝縮して連絡管214に
配設されたバルブ209を通過して液溜212に入る。Next, the operation will be explained. During defrosting operation, - in Figure 2
The refrigerant flows as shown by the dotted chain arrow, forming a defrosting cycle. In this case, blowers 210 and 211 are stopped and valve 209 is open. The refrigerant is in the compressor 20, just like during heating operation! The liquid is compressed and introduced into the indoor heat exchanger 208 via the four-way valve 202, where it is partially condensed, passes through the valve 209 disposed in the communication pipe 214, and enters the liquid reservoir 212.
ここで加熱装置215により吸入配管216を通過する
冷媒とともに加熱され高温の冷媒となる。連絡管213
.逆止弁206を通って室外熱交換器203で付着した
霜を融かし凝縮される。凝縮された冷媒は四方弁202
を経て吸入配管216で液f!I212に配設された加
熱装置215で再度加熱され蒸発して圧縮機201に吸
入される。Here, the heating device 215 heats the refrigerant together with the refrigerant passing through the suction pipe 216, and the refrigerant becomes a high-temperature refrigerant. Connecting pipe 213
.. It passes through a check valve 206 and is condensed in an outdoor heat exchanger 203 to melt the frost that has adhered thereto. The condensed refrigerant is transferred to the four-way valve 202
The liquid f! flows through the suction pipe 216. It is heated again by the heating device 215 disposed at I212, evaporates, and is sucked into the compressor 201.
(発明が解決しようとする課題)
従来の空気調和機は以上のように構成されているので、
加熱用のヒータを設ける必要があり、しかも圧縮機から
吐出された冷媒がいったん室内熱交換器まて循環してこ
なければ除霜できず、熱損失及び圧損もあり効率が悪い
という問題点があった。(Problem to be solved by the invention) Since the conventional air conditioner is configured as described above,
It is necessary to install a heater for heating, and defrosting cannot be performed unless the refrigerant discharged from the compressor circulates through the indoor heat exchanger, which poses the problem of poor efficiency due to heat loss and pressure loss. Ta.
この発明は上記のような問題点を解消するためになされ
たもので、室外にある圧縮機から室外にある室外熱交換
器に直接高温高圧ガスを流すホットガス除霜方式をさら
に改良したものであり、アキュムレータ中に高温のガス
を吹き出して、さらに過剰の冷媒を除霜用室外熱交換器
に回して、吸入圧力を高めに保ったまま除霜できる空気
調和機を提供することを目的としている。This invention was made to solve the above-mentioned problems, and is a further improvement on the hot gas defrosting method in which high-temperature, high-pressure gas is passed directly from a compressor located outdoors to an outdoor heat exchanger located outside. The purpose is to provide an air conditioner that can defrost air while maintaining a high suction pressure by blowing out high-temperature gas into an accumulator and passing excess refrigerant to an outdoor heat exchanger for defrosting. .
この発明に係る空気調和機は、アキュムレータに、暖房
運転における絞り機構の上流側と下流側とから、それぞ
れ第1の弁と第2の弁を介して接続し、該アキュムレー
タを液溜として使うとともに、圧縮機吐出口からバイパ
ス管を第3の弁を介して、前記アキュムレータの下部液
相部に吹き込むようにしたものである。The air conditioner according to the present invention connects the accumulator from the upstream side and the downstream side of the throttling mechanism during heating operation via a first valve and a second valve, respectively, and uses the accumulator as a liquid reservoir. , the bypass pipe is blown into the lower liquid phase portion of the accumulator from the compressor discharge port via the third valve.
(作用〕
この発明における空気調和機は、暖房運転時に絞り機構
の室内熱交換器側の高圧液配管に連結する弁のみ開いて
、アキュムレータ内に余剰液冷媒を蓄えるとともに、除
霜運転時には、四方弁を切り換えることなく、高圧加熱
ガスが流れるバイパス管に設けたバイパス用の第3の弁
を開き、アキュムレータ内液相部を加熱して、アキュム
レータからは室外熱交換器に通ずる第2の弁のみ開き、
過剰冷媒を参加させることにより除霜される。(Function) The air conditioner according to the present invention opens only the valve connected to the high-pressure liquid pipe on the indoor heat exchanger side of the throttling mechanism during heating operation to store surplus liquid refrigerant in the accumulator, and during defrosting operation, it opens only the valve connected to the high-pressure liquid pipe on the indoor heat exchanger side. Without switching the valve, the third bypass valve installed in the bypass pipe through which high-pressure heated gas flows is opened, the liquid phase inside the accumulator is heated, and only the second valve is connected from the accumulator to the outdoor heat exchanger. Open,
Defrosting is achieved by introducing excess refrigerant.
(実施例〕
以下に、この発明に係る一実施例を図に基づいて説明す
る。第1図において、1は圧縮機、2は四方弁、3は室
内熱交換器、4は絞り機構である毛細管、5は室外熱交
換器、6はアキュムレータである。ヒートポンプ運転の
暖房運転において、このアキュムレータ6の上部6aに
毛細管4の室内熱交換器3側である上流側13から第1
の弁である第1の電磁開閉弁7を介して流入配管7aに
より接続され、毛細管4の室外熱交換器5側である下流
側14からも第2の弁である第2の電磁開閉弁8を介し
て流入配管8aにより接続されている。また、圧縮機1
の吐出口側15から、バイパス管である高圧ガスバイパ
ス管10を分枝し、第3の弁である第3の電磁開閉弁9
を介して、前記アキュムレータ6内下部6b液相部に吹
き出すように構成されている。(Embodiment) An embodiment of the present invention will be described below based on the drawings. In Fig. 1, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, and 4 is a throttle mechanism. A capillary tube, 5 is an outdoor heat exchanger, and 6 is an accumulator. In the heating operation of the heat pump operation, a first
The second electromagnetic on-off valve 8 is connected from the downstream side 14 of the capillary tube 4 on the outdoor heat exchanger 5 side via the first electromagnetic on-off valve 7 which is a second valve. The inlet pipe 8a is connected to the inflow pipe 8a via the inflow pipe 8a. Also, compressor 1
A high pressure gas bypass pipe 10, which is a bypass pipe, is branched from the discharge port side 15, and a third electromagnetic on-off valve 9, which is a third valve, is connected to
The liquid is blown out into the liquid phase portion of the lower part 6b of the accumulator 6 through the above.
さらに、高圧の液のサブクール度を検出できるように、
航記毛細管4の上流側に高圧圧力検知器11と温度検出
器12を設けてあり、16はカップリングである。Furthermore, it is possible to detect the subcooling degree of high-pressure liquid.
A high pressure sensor 11 and a temperature sensor 12 are provided upstream of the navigation capillary 4, and 16 is a coupling.
この一実施例において構成された冷凍サイクルにより冷
房運転、暖房運転、除霜運転をすることができるように
なっている。The refrigeration cycle configured in this embodiment allows cooling operation, heating operation, and defrosting operation.
この発明の一実施例の空気調和機は、以上のような構成
なので、暖房運転時、高圧側圧力と凝縮器出口冷媒温度
をそれぞれ圧力検知器11と温度検出器12で検出し、
それらにより凝縮器出口冷媒のサブクール環を演算し、
そのサブクール環が設定値以上のとき、第1の電磁開閉
弁7のみを開くことによってアキュムレータ6内へ、冷
凍サイクル内の余剰冷媒を高圧の状態で液として蓄えて
おくことができる。適正なサブクール環になれば前記第
1の電磁開閉弁7を閉じることによって、冷凍サイクル
は正常な暖房運転を続行することになる。Since the air conditioner according to the embodiment of the present invention has the above-described configuration, during heating operation, the high pressure side pressure and the condenser outlet refrigerant temperature are detected by the pressure detector 11 and the temperature detector 12, respectively.
Using these, calculate the subcool ring of the condenser outlet refrigerant,
When the subcool ring is above a set value, by opening only the first electromagnetic on-off valve 7, surplus refrigerant in the refrigeration cycle can be stored in the accumulator 6 as a liquid under high pressure. Once the subcooling ring is appropriate, the first electromagnetic on-off valve 7 is closed, and the refrigeration cycle continues normal heating operation.
次に、除霜運転になると、第3の電磁開閉弁9を開とし
、圧縮機1で圧縮された高温高圧のガス冷媒は四方弁2
に行く途中からの高圧ガスバイパス管10を経て、第3
の電磁開閉弁9を経由し、前記高圧液を蓄えたアキュム
レータ6内に吹き出してくる。このときさらに、室外熱
交換器5側に流入配管8aにより連結した第2の電磁開
閉弁8を開くことによって、アキュムレータ6内の液冷
媒は急激に低圧にさらされ、膨張ガス化するとともに、
前記高圧ガスバイパス管10を経由してきた高圧過熱ガ
スによって、さらに蒸発ガス化が促進され、大量のガス
が室外熱交換器5内に流入し、−気に除霜することにな
る。Next, when the defrosting operation starts, the third electromagnetic on-off valve 9 is opened, and the high temperature and high pressure gas refrigerant compressed by the compressor 1 is transferred to the four-way valve 2.
After passing through the high pressure gas bypass pipe 10 on the way to
The high-pressure liquid is blown out through the electromagnetic on-off valve 9 into the accumulator 6 that stores the high-pressure liquid. At this time, by further opening the second electromagnetic on-off valve 8 connected to the outdoor heat exchanger 5 side by the inflow pipe 8a, the liquid refrigerant in the accumulator 6 is suddenly exposed to low pressure, expands and gasifies, and
The high-pressure superheated gas that has passed through the high-pressure gas bypass pipe 10 further promotes evaporation and gasification, and a large amount of gas flows into the outdoor heat exchanger 5 to defrost the air.
以上のことにより、圧縮機吸入圧力を高く維持でき、さ
らに余剰冷媒の除霜への参加により、冷凍サイクル内が
過剰冷媒運転状態となり、除霜熱源として利用すること
により、除霜時間を短縮し、すみやかに除霜が完了され
ることが理解される。As a result of the above, the compressor suction pressure can be maintained high, and the surplus refrigerant participates in defrosting, resulting in an excess refrigerant operation state in the refrigeration cycle, which shortens the defrosting time by using it as a defrosting heat source. It is understood that defrosting will be completed promptly.
以上に説明してきたように、この発明の一実施例によれ
ば、圧縮機l、四方弁2.室内熱交換器3、毛細管4.
室外熱交換器5を順次閉ループに接続してなる空気調和
機であって、絞り機構4と並列にアキュムレータ6を設
け、このアキュムレータ6の上部6aに、暖房運転にお
ける毛細管4の上流側13側から電磁開閉弁7を介して
流入配管7aと、下流側14から電磁開閉弁8を介して
流入配管8aとを設け、アキュムレータ6の下部6bに
、圧縮機1吐出口側15から電磁開閉弁9を介して高圧
ガスバイパス管10を設け、除霜運転時には、四方弁2
を暖房運転時のまま保持し、電磁開閉弁8及び電磁開閉
弁9を開としたので、暖房運転時に余剰冷媒をアキュム
レータ6内C蓄え、除霜時に四方弁1を切り換えること
なく高温の吐出ガス冷媒を直接アキュムレータ6内の液
冷媒に吹きつけて、アキュムレータ6内を低圧にするこ
とで、さらにガス化を促進し、このガスを室外熱交換器
5の除霜に用いたことにより、除霜の時間を短縮し、す
ばやく暖房に復帰でき、快適性が良いという効果を奏す
る。As described above, according to one embodiment of the present invention, the compressor 1, the four-way valve 2. Indoor heat exchanger 3, capillary tube 4.
This is an air conditioner in which outdoor heat exchangers 5 are sequentially connected in a closed loop, and an accumulator 6 is provided in parallel with the throttling mechanism 4. An inflow pipe 7a is provided via the electromagnetic on-off valve 7, and an inflow pipe 8a is provided from the downstream side 14 via the electromagnetic on-off valve 8. An electromagnetic on-off valve 9 is provided from the discharge port side 15 of the compressor 1 to the lower part 6b of the accumulator 6. A high-pressure gas bypass pipe 10 is provided through the four-way valve 2 during defrosting operation.
is held as it is during heating operation, and the solenoid on-off valve 8 and electromagnetic on-off valve 9 are opened, so that surplus refrigerant is stored in the accumulator 6 during heating operation, and high-temperature discharge gas is discharged without switching the four-way valve 1 during defrosting. By directly spraying the refrigerant onto the liquid refrigerant in the accumulator 6 and lowering the pressure inside the accumulator 6, gasification is further promoted, and this gas is used to defrost the outdoor heat exchanger 5. This has the effect of shortening the heating time, quickly returning to heating, and improving comfort.
また、このようにこの一実施例によれば、冷媒の加熱ヒ
ータを設ける必要がなく、しかも圧縮機から吐出された
冷媒を一度室内熱交換器まで循環させることなく除霜が
できるので、循環させることによって生じる熱損失、圧
損がなく効率がよい。Further, according to this embodiment, there is no need to provide a heater for heating the refrigerant, and defrosting can be performed without first circulating the refrigerant discharged from the compressor to the indoor heat exchanger. It is highly efficient as there is no heat loss or pressure loss caused by this.
前記一実施例では、ピートポンプ運転により暖房運転し
た場合について説明したが、ヒートポンプ運転に限らず
、たとえば熱回収などによる暖房運転した場合でもよい
ことはいうまでもない。In the above-mentioned embodiment, a case has been described in which heating operation is performed by peat pump operation, but it goes without saying that the heating operation is not limited to heat pump operation and may be performed by, for example, heat recovery.
(発明の効果)
上述のような構成なので、この発明の空気調和機によれ
ば、暖房運転時に余剰冷媒をアキュムレータ内に蓄え、
除霜時に四方弁を切り換えることなく高温の吐出ガス冷
媒を直接、アキュムレータ内の液冷媒に吹きつけて、ア
キエムレータ内を低圧にすることで、さらにガス化を促
進し、これらのガスで室外熱交換器の除霜に用いること
により、除霜の時間を短縮し、すばやく暖房に復帰でき
、快適性が良い空気調和機を提供しうるという効果があ
る。(Effects of the Invention) With the above-described configuration, the air conditioner of the present invention stores excess refrigerant in the accumulator during heating operation,
During defrosting, the high-temperature discharged gas refrigerant is directly blown onto the liquid refrigerant in the accumulator without switching the four-way valve, lowering the pressure inside the accumulator to further promote gasification and use these gases for outdoor heat exchange. By using it to defrost a container, the defrosting time can be shortened, heating can be quickly returned to, and an air conditioner with good comfort can be provided.
第1図はこの発明の一実施例による空気調和機を示す構
成図、第2図は従来の空気調和機の構成の概略を示す説
明図である。
図中、1は圧縮機、2は四方弁、3は室内熱交換器、4
は毛細管、5は室外熱交換器、6はアキュムレータ、6
aは上部、6bは下部、7は第1の電磁開閉弁、
7aは流入配管、
8は第2の
第
図
電磁開閉弁、
8aは流入配管、
9は第3の電磁量
閉弁、
10は高圧ガスバイパス管、
5は吐出口
側である。FIG. 1 is a configuration diagram showing an air conditioner according to an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing an outline of the configuration of a conventional air conditioner. In the figure, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, 4
is a capillary tube, 5 is an outdoor heat exchanger, 6 is an accumulator, 6
a is the upper part, 6b is the lower part, 7 is the first electromagnetic on-off valve, 7a is the inflow pipe, 8 is the second electromagnetic on-off valve, 8a is the inflow pipe, 9 is the third electromagnetic quantity closing valve, 10 is the High pressure gas bypass pipe, 5 is the discharge port side.
Claims (1)
換器を順次閉ループに接続してなる空気調和機であって
、前記絞り機構と並列にアキュムレータを設け、暖房運
転における前記絞り機構の上流側と下流側から、それぞ
れ第1の弁と第2の弁を介し、2本の流入配管を前記ア
キュムレータの上部に接続し、前記圧縮機吐出口側から
第3の弁を介し、バイパス管を前記アキュムレータの下
部に接続し、除霜運転時には、前記四方弁を暖房運転時
のまま保持し、前記第2の弁と第3の弁を開としたこと
を特徴とする空気調和機。An air conditioner in which a compressor, a four-way valve, an indoor heat exchanger, a throttling mechanism, and an outdoor heat exchanger are sequentially connected in a closed loop, an accumulator is provided in parallel with the throttling mechanism, and the throttling mechanism during heating operation is Two inflow pipes are connected to the upper part of the accumulator from the upstream and downstream sides through a first valve and a second valve, respectively, and a bypass pipe is connected from the compressor discharge port side through a third valve. is connected to a lower part of the accumulator, and during defrosting operation, the four-way valve is held as it is during heating operation, and the second valve and third valve are opened.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8639289A JPH02267481A (en) | 1989-04-05 | 1989-04-05 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8639289A JPH02267481A (en) | 1989-04-05 | 1989-04-05 | Air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02267481A true JPH02267481A (en) | 1990-11-01 |
Family
ID=13885603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8639289A Pending JPH02267481A (en) | 1989-04-05 | 1989-04-05 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02267481A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150362199A1 (en) * | 2013-01-29 | 2015-12-17 | Daikin Industries, Ltd. | Air conditioning apparatus |
-
1989
- 1989-04-05 JP JP8639289A patent/JPH02267481A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150362199A1 (en) * | 2013-01-29 | 2015-12-17 | Daikin Industries, Ltd. | Air conditioning apparatus |
US10234151B2 (en) * | 2013-01-29 | 2019-03-19 | Daikin Industries, Ltd. | Air conditioning apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100334407C (en) | Freezer apparatus | |
JPH05223385A (en) | Accumulation system of heat-pump and hot water | |
JP2001355941A (en) | Heat pump system | |
JPH02267481A (en) | Air conditioner | |
JPH08313096A (en) | Air conditioner | |
JPH09257345A (en) | Heat pump air-conditioner | |
JPH02140572A (en) | Heat pump type refrigerating plant | |
JPH03170758A (en) | Air conditioner | |
JPH035680A (en) | Air conditioner | |
JPH11142016A (en) | Multi-chamber type air conditioning apparatus | |
JPS632859Y2 (en) | ||
JPH08291950A (en) | Air conditioner | |
JPH08320172A (en) | Air conditioner | |
JPH07332778A (en) | Method and apparatus for controlling temperature of two-stage compression refrigeration system | |
JPH06281270A (en) | Air conditioner | |
JPH0730978B2 (en) | Heat pump device | |
JPH06337172A (en) | Heat pump type air-conditioning machine | |
JPH06331226A (en) | Temperature control method and device thereof for binary refrigerating system | |
JPH01306782A (en) | Heat pump type air-conditioner | |
JPS6015084Y2 (en) | Refrigeration equipment | |
JPH02298761A (en) | Refrigerating cycle for heat pump | |
JPS608291Y2 (en) | Refrigeration cycle for air conditioners | |
JPH0331662A (en) | Space cooler/heater | |
JPS5852145B2 (en) | Refrigeration equipment | |
JPS62266358A (en) | Solar heat collecting device |