[go: up one dir, main page]

JPH02265477A - Controlling element of growing direction of nerve fiber and production thereof - Google Patents

Controlling element of growing direction of nerve fiber and production thereof

Info

Publication number
JPH02265477A
JPH02265477A JP1085135A JP8513589A JPH02265477A JP H02265477 A JPH02265477 A JP H02265477A JP 1085135 A JP1085135 A JP 1085135A JP 8513589 A JP8513589 A JP 8513589A JP H02265477 A JPH02265477 A JP H02265477A
Authority
JP
Japan
Prior art keywords
formula
expressed
following formula
tables
mathematical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1085135A
Other languages
Japanese (ja)
Inventor
Jun Fukuda
潤 福田
Shunei Morikawa
守川 俊英
Hideki Hirose
弘瀬 秀樹
Hajime Nakayama
肇 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP1085135A priority Critical patent/JPH02265477A/en
Publication of JPH02265477A publication Critical patent/JPH02265477A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To stably and readily produce nerve cell in a large amount by providing the surface comprising specific (meth)acrylate resin and having many fine undulations at touching part with nerve cell. CONSTITUTION:A controlling element of growing direction of nerve cell is obtained by notching many fine undulations at touching part with the nerve cell on the surface of a molded element (molding condition: amount of light is 10<3>-10<4>mJ for from several sec to several min/at room temperature, of one or more photo-setting (meth)acrylate resin selected from polyethylene glycol diacrylate expressed by formula I (n is 1-6), epoxy acrylate expressed by formula II, polyethylene glycol dimethacrylate expressed by formula III (m is 1-6), bisphenol-A ethylene oxide-added dimethacrylate expressed by formula IV and tricyclodecanyl dimethylol diacrylabe expressed by formula V.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、神経線維の成長方向を制御する素子及びその
製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an element for controlling the growth direction of nerve fibers and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

神経細胞を人工環境下で培養し、その成長を人為的に制
御することは、脳・神経系の機能を解明する上にも、ま
た神経細胞をコンピュータなどの情報処理素子として利
用する上にも重要なことである。
Cultivating neurons in an artificial environment and artificially controlling their growth is useful for elucidating the functions of the brain and nervous system, and for using neurons as information processing elements in computers and other devices. It's important.

神経細胞は、胎生期などの一時期を除いて増殆しないこ
と、長い軸索や複雑な樹状突起をもつ形態のため生体か
らとり出す際に損傷を受けやすいこと、また生存あるい
は神経線維の成長に微量の成長因子が必要なこと、など
の理由により試験管内で培養することが困難な細胞であ
った。
Nerve cells do not increase in number except during a certain period, such as during the embryonic period, and because they have long axons and complex dendrites, they are easily damaged when removed from a living body, and there are also problems with survival or the growth of nerve fibers. It has been difficult to culture cells in vitro for several reasons, including the need for small amounts of growth factors.

しかし、近年の解剖学や組織培養学の進歩と神経成長因
子(NGF)の発見及び利用によって、神経細胞の培養
も次第に容易になってきた。
However, with recent advances in anatomy and tissue culture and the discovery and use of nerve growth factor (NGF), culturing of nerve cells has gradually become easier.

更に最近では培養した神経細胞の成長を制御すること、
例えば神経線維の成長方向を制御することも可能となっ
てきた。
Furthermore, recently, controlling the growth of cultured nerve cells,
For example, it has become possible to control the growth direction of nerve fibers.

神経線維の成長方向を制御する方法としては、従来、フ
ィブロネクチン、ラミニン、及びコラーゲン等のタンパ
ク質やポリオルニチン及びポリリジン等のポリペプチド
をシャーレ上に帯状にプリントし、それに沿って神経線
維を成長させる方法〔エキスベリメンタル・セル・リサ
ーチ(Exptl、Ce1l  Res、)98巻。
The conventional method for controlling the growth direction of nerve fibers is to print proteins such as fibronectin, laminin, and collagen, and polypeptides such as polyornithine and polylysine in a strip shape on a petri dish, and then grow nerve fibers along the strip. [Experimental Cell Research (Exptl, Ce1l Res,) Volume 98.

159−169頁、1976年)、NGFの濃度勾配の
方向に神経線維を成長させる方法〔ジャーナル・オブ・
セル・バイオロジー(J、Ce1lBio1.)87#
!!、546−554頁。
159-169, 1976), Method for growing nerve fibers in the direction of NGF concentration gradient [Journal of
Cell Biology (J, Ce1lBio1.) 87#
! ! , pp. 546-554.

1980年〕、微弱電流の方向に成長方向を変えル方法
(ジャーナル・オブ・ニューロサイエンス・リサーチ(
J、Neurosc i、Res、)13巻、245−
256頁、1985年〕などがあった。
1980], the method of changing the growth direction to the direction of weak current (Journal of Neuroscience Research)
J, Neurosc i, Res,) vol. 13, 245-
256 pages, 1985].

またリソグラフィー法とイオンエツチング法を組み合わ
せた方法で、石英ガラスの表面に規則的な溝構造を形成
した素子をつくり、この溝の方向に沿って神経線維を伸
ばす方法も、プレイン・リサーチ(Bra in  R
es、)446巻。
In addition, a method that combines lithography and ion etching to create an element with a regular groove structure on the surface of quartz glass, and then stretches nerve fibers along the direction of the grooves, has been proposed by Brain Research. R
es,) 446 volumes.

189−194頁、1988年、及び特開昭63−11
9754号公報で提案されている。
pp. 189-194, 1988, and JP-A-63-11
This is proposed in Publication No. 9754.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、タンパク質やポリペプチドのプリントに沿って
神経線維を成長させる方法は変性しやすい高分子を用い
るため保存性に問題があり、NGFの濃度勾配による方
法は極めて高度なテクニックが必要で再現性に問題があ
り、微弱電流による方法は細胞へのt場の影響が充分に
解明されていない問題がある。また石英ガラス表面の溝
に沿って成長させる方法は、石英ガラス表面に溝を形成
させるものであり、リソグラフィー法、イオンエツチン
グ法という高度なテクニックが必要であるため、安定に
、容易に、また大量に素子を作製することが困難である
However, the method of growing nerve fibers along protein or polypeptide prints uses polymers that easily denature, which poses storage problems, and the method using NGF concentration gradients requires extremely sophisticated techniques and is not reproducible. However, the method using a weak current has a problem in that the influence of the t-field on cells has not been fully elucidated. In addition, the method of growing along grooves on the surface of quartz glass involves forming grooves on the surface of quartz glass, and requires advanced techniques such as lithography and ion etching. It is difficult to fabricate devices in this way.

本発明は、安定に、容易に、また大量に製造することが
可能な、神経線維の成長方向を制御する素子及びその製
造法を提供するものである。
The present invention provides an element for controlling the growth direction of nerve fibers that can be produced stably, easily, and in large quantities, and a method for producing the same.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の素子は第1図に示すように、生体組織ないし細
胞と接する部分に多数の微細起伏を刻設した表面を具え
てなるものである。第1図に示す素子は、微細起伏が細
条溝で、細条溝が幅0.1〜11000IJ、深さ0.
1〜1000μmの寸法を有し、細条溝が互いに平行に
構成されている。
As shown in FIG. 1, the device of the present invention has a surface in which a large number of fine undulations are carved in the portion that comes into contact with living tissue or cells. In the element shown in FIG. 1, the fine undulations are strip grooves, and the strip grooves have a width of 0.1 to 11000 IJ and a depth of 0.1 to 11,000 IJ.
It has a dimension of 1 to 1000 μm, and the grooves are arranged parallel to each other.

素子の全体形状は、第1図に示すような板状のみでなく
、皿状、球状、繊維状、筒状、粒子状でも良い、微細起
伏は細条溝ばかりでなく敷石状のものであっても良い、
細条溝は直線状、曲線、波状であっても良く、それらは
平行だけでなく、複雑な形状であっても良い、細条溝の
断面形状もU字形、7字形、ばち形等任意のもので良い
The overall shape of the element is not limited to a plate-like shape as shown in Figure 1, but may also be dish-like, spherical, fibrous, cylindrical, or granular.The fine undulations may be not only strips but also paving stones. It's okay,
The strip grooves may be linear, curved, or wavy, and they may be not only parallel but also complex in shape.The cross-sectional shape of the strip grooves may also be arbitrary, such as U-shape, 7-shape, dovetail shape, etc. Something like this is fine.

この素子は、神経線維を細条溝等に沿って配向成長させ
ることができる。
This device allows nerve fibers to grow oriented along the grooves and the like.

本発明では、この素子を次式(I) で表わされるエポキシアクリレート及び次式(I[l)
(mは1から6の整数、好ましくは4)で表わされるポ
リエチレングリコールジメタクリレート及び次式(IV
) OO (nは1から6の整数、好ましくは4)で表わされるポ
リエチレングリコールジアクリレート及び次式(I+)  Hs  Hs OCHz  CHz  OCC:CHz  (IV)で
表わされるビスフェノールAエチレンオキシド付加物ジ
メタクリレート及び次式(V)0      H Hs M          O で表わされるトリシクロデカニルジメチロールジアクリ
レートから成る群から選ばれる1種又は2種以上の光硬
化性アクリレート及び/又は光硬化性メタクリレート樹
脂で成形する。
In the present invention, this element is made of an epoxy acrylate represented by the following formula (I) and an epoxy acrylate represented by the following formula (I[l)
(m is an integer from 1 to 6, preferably 4) and the following formula (IV
) OO (n is an integer from 1 to 6, preferably 4) polyethylene glycol diacrylate and bisphenol A ethylene oxide adduct dimethacrylate represented by the following formula (I+) Hs Hs OCHz CHz OCC:CHz (IV) and the following It is molded using one or more photocurable acrylate and/or photocurable methacrylate resins selected from the group consisting of tricyclodecanyl dimethylol diacrylate represented by the formula (V) 0 H Hs M O .

これらの光硬化性樹脂アクリレート及び/又は光硬化性
メタクリレート樹脂はl−ヒドロキシシクロへキシルフ
ェニルケトン等の光重合開始剤と共に使用され、1.6
−ヘキサンジメタクリレート等の希釈剤と共に使用され
てもよい。
These photocurable acrylate resins and/or photocurable methacrylate resins are used together with a photopolymerization initiator such as l-hydroxycyclohexylphenyl ketone.
- May be used with diluents such as hexane dimethacrylate.

成形条件は、例えば室温で、光量が1,000〜10.
OOOmJ/cm”となるように数秒〜数分間光照射す
る。
The molding conditions are, for example, room temperature and light intensity of 1,000 to 10.
Light is irradiated for several seconds to several minutes so that the amount of light is 00mJ/cm.

本発明の素子の製造法を第2図により説明する。A method of manufacturing the device of the present invention will be explained with reference to FIG.

ガラス基板1にスパッタ蒸着、真空蒸着等により金属を
蒸着する(第2図(a))、1iFj、た金属膜2の上
にフォトレジスト3をスピンコードで塗布しく第2図(
b))、望みのパターンを描いたフォトマスク4をかぶ
せて露光する(第2図(c))、現像液でレジストの露
光部を洗い流してレジストパターン5を形成しく第2図
(d))、金属膜2をエツチング液で除去する(第2図
(e))、金属膜の上に残ったレジストパターン5を溶
剤で洗い流す(第2図(r))、これでフォトマスクの
パターンを写しとったスタンパー6が完成する。完成し
たスタンパー6に別のガラス板7をかぶせ、スタンパー
6とガラス7の間に合成樹脂8を流し込み、樹脂を光で
硬化させる(第2図(g))、ガラス7とスタンパー6
を除去すると、スタンパー6の表面のパターンを転写し
た合成樹脂からなる素子9(第2図(h))が完成する
A metal is deposited on the glass substrate 1 by sputter deposition, vacuum deposition, etc. (FIG. 2(a)), and a photoresist 3 is coated on the metal film 2 using a spin cord (FIG. 2(a)).
b)) Cover the photomask 4 with the desired pattern and expose it to light (Fig. 2(c)). Wash away the exposed areas of the resist with a developer to form the resist pattern 5 (Fig. 2(d)). , remove the metal film 2 with an etching solution (Fig. 2 (e)), wash away the resist pattern 5 remaining on the metal film with a solvent (Fig. 2 (r)), and copy the pattern of the photomask. The stamper 6 you took is completed. Cover the completed stamper 6 with another glass plate 7, pour the synthetic resin 8 between the stamper 6 and the glass 7, and harden the resin with light (Fig. 2 (g)).The glass 7 and the stamper 6
When this is removed, an element 9 (FIG. 2(h)) made of synthetic resin to which the pattern on the surface of the stamper 6 has been transferred is completed.

ガラス基板に蒸着する金属は、ガラス面との接着性が良
(、エツチングが容易で、かつ樹脂の硬化後、樹脂との
剥離性の良好なものがよい、銅、クロム、ニッケル等が
使用できるが、安定性の点でクロムが好ましい、フォト
マスクに描かれるパターンは、例えば1〜1000μm
の適当な間隔(顕?I1mで観察可能であればよい)、
好ましくは5〜50μmの間隔に配置した平行直線、波
形曲線、同心円又は格子状紋様、長方形又は円等を平行
直線で結んだ回路状紋様等、単純なものから複雑なもの
まで任意のパターンが可能である。
The metal to be deposited on the glass substrate should be one that has good adhesion to the glass surface (can be easily etched, and has good peelability from the resin after the resin has hardened. Copper, chromium, nickel, etc.) can be used. However, chromium is preferable from the viewpoint of stability.The pattern drawn on the photomask is, for example, 1 to 1000 μm.
Appropriate spacing (as long as it can be observed with a microscope of 1 m),
Any pattern from simple to complex is possible, preferably parallel lines arranged at intervals of 5 to 50 μm, wavy curves, concentric circles or lattice patterns, circuit patterns in which rectangles or circles are connected by parallel straight lines, etc. It is.

〔実施例〕〔Example〕

縦10cm、横10cm、厚さ1mmのガラス基板にク
ロムを膜厚が約1μmとなるようにスパッタ蒸着した。
Chromium was sputter-deposited to a film thickness of about 1 μm on a glass substrate measuring 10 cm long, 10 cm wide, and 1 mm thick.

このときのスパッタ蒸着の条件は、電流LA、電圧35
0 V、圧力5 X 10−’Torrで気体はアルゴ
ンを用い、蒸着金属量は35cm3/minで行った。
The conditions for sputter deposition at this time are current LA, voltage 35
Argon was used as the gas at 0 V and a pressure of 5 x 10-' Torr, and the amount of metal deposited was 35 cm3/min.

これに、フォトレジストAZ1350J (ヘキスト社
製商品名)とレジスト希釈液AZシンナ(ヘキスト社製
商品名)を重量比でlo:3に混合してlI製したレジ
スト液をスピンコードした0次いで、10μmの等間隔
平行直線のスリットを有すフォトマスクをかぶせ、光量
25〜35mJ/cm”で露光した後、現像液AZデベ
ロッパー(ヘキスト社製商品名)で洗浄してレジストパ
ターンを形成させた。露出したクロムをエツチング液(
硝酸第二セリウムアンモニウム165 g/l及び過塩
素酸30g/lを含む水溶液)で、液温40〜50℃で
処理して除去したのち、レジスト剥離液AZリムーバー
100(ヘキスト社製商品名)でレジストパターンを除
去し、10μmの等間隔の凹凸を有すスタンパーを作製
した。
A resist solution prepared by mixing photoresist AZ1350J (trade name manufactured by Hoechst Co., Ltd.) and resist diluent AZ Thinner (trade name manufactured by Hoechst Co., Ltd.) at a weight ratio of LO:3 was then spin-coded to form a resist solution with a thickness of 10 μm. A photomask having equally spaced parallel straight slits was placed over the photomask and exposed to light at a light intensity of 25 to 35 mJ/cm'', followed by cleaning with developer AZ Developer (trade name manufactured by Hoechst) to form a resist pattern. Exposure. Remove the chromium with an etching solution (
After removing it by treating it with an aqueous solution containing 165 g/l of ceric ammonium nitrate and 30 g/l of perchloric acid at a liquid temperature of 40 to 50°C, it was removed using a resist stripper AZ Remover 100 (trade name manufactured by Hoechst). The resist pattern was removed, and a stamper having irregularities at equal intervals of 10 μm was produced.

このようにして得られたスタンパ−に厚さ1mmのスペ
ーサをはさんで別のガラス板をかぶせその中にビスフェ
ノールAエチレンオキシド付加物ジメタクリレート(分
子量16B)を流し込み、室温で、波長300〜450
mmの光を総量3.500〜5.OOOmJ/cm”と
なるように照射して硬化・成形し、溝幅lOμm2間隔
10un、深さ1μmの微細溝構造をもつ素子を作製し
た。
The thus obtained stamper was covered with another glass plate with a 1 mm thick spacer in between, and bisphenol A ethylene oxide adduct dimethacrylate (molecular weight 16B) was poured into the stamper.
The total amount of light of mm is 3.500~5. The material was cured and molded by irradiation to give an energy density of 10 mJ/cm'', thereby producing an element having a fine groove structure with a groove width of 10 μm2 and an interval of 10 um and a depth of 1 μm.

この素子を用いて、成熟マウスから採取したを随後根神
経節細胞を培養した。培養液は、ハム(Ham)F−1
2培地とダルベツコ(Dul−becco)MEM培地
との1:1混合液にプロゲステロン(30mM)、イン
シュリン(5mg/f)、トランスフェリン(I00m
g/jり及びNGF (7S−NGF200ug/jり
を添加したものを使用し、5%CO□雰囲気下、37℃
で48時間培養した後、顕微鏡で神経線維の成長を観察
した。その結果、微細溝の方向に沿って神経線維が成長
しているのが観察された。神経線維をよく伸ばしている
5個の細胞を平均すると神経線維が溝方向へ伸びている
長さと溝方向と垂直方向へ伸びている長さの比は3゜8
で、溝のない平面で培養した場合の比1.0に比べ大き
な値であった。
Using this device, we cultured dorsal root ganglion cells collected from adult mice. The culture solution is Ham F-1
Progesterone (30mM), insulin (5mg/f), and transferrin (I00mM) were added to a 1:1 mixture of 2 medium and Dul-becco MEM medium.
g/j and NGF (7S-NGF 200 ug/j added) at 37°C in a 5% CO□ atmosphere.
After culturing for 48 hours, the growth of nerve fibers was observed under a microscope. As a result, it was observed that nerve fibers were growing along the direction of the microgrooves. If we take the average of five cells that have well-elongated nerve fibers, the ratio of the length of the nerve fibers extending in the direction of the groove to the length that extends in the direction perpendicular to the direction of the groove is 3°8.
This was a larger value than the ratio of 1.0 when cultured on a flat surface without grooves.

〔発明の効果〕〔Effect of the invention〕

本発明の素子は、従来のように高価な石英ガラスをリソ
グラフィー法、イオンエツチング法という高度のテクニ
ックを必要とする方法でつくられたものではなく、工業
製品に汎用されている光硬化性アクリレート及び/又は
光硬化性メタアクリレート樹脂を成形してつくられるの
で、安価に、かつ大量に製造することができる。また石
英ガラスと異なり加工しやすいので、神経修復材料等の
医療用具に応用できる。
The device of the present invention is not made from expensive quartz glass using lithography or ion etching methods that require advanced techniques, as in the past, but instead uses photocurable acrylate, which is commonly used in industrial products. Since it is made by molding/or photocurable methacrylate resin, it can be manufactured at low cost and in large quantities. Also, unlike quartz glass, it is easy to process, so it can be applied to medical devices such as nerve repair materials.

また、本発明の素子の製造法は、上述のとおり作製した
スタンパ−を型とするので、同一の構造・形状の素子を
何個でも安定して製造することができ、量産性に冨む。
Further, since the method for manufacturing an element of the present invention uses the stamper produced as described above as a mold, any number of elements having the same structure and shape can be stably manufactured, and mass productivity is enhanced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の素子の斜視図、第2図は本発明の素子
の製造法を示す断面図である。 符号の説明 l・・・ガラス基板 2・・・金属膜 3・・・フォトレジスト 4・・・フォトマスク 5・・・レジストパターン 6・・・スタンパー 7・・・ガラス板 8・・・合成樹脂 (a) (e) (b) (+) (c) 第 図 (d) (h) 第 図
FIG. 1 is a perspective view of the device of the present invention, and FIG. 2 is a sectional view showing a method of manufacturing the device of the present invention. Explanation of symbols l...Glass substrate 2...Metal film 3...Photoresist 4...Photomask 5...Resist pattern 6...Stamper 7...Glass plate 8...Synthetic resin (a) (e) (b) (+) (c) Figure (d) (h) Figure

Claims (1)

【特許請求の範囲】 1、次式( I ) ▲数式、化学式、表等があります▼( I ) (nは1から6の整数) で表わされるポリエチレングリコールジアクリレート及
び次式(II) ▲数式、化学式、表等があります▼(II) で表わされるエポキシアクリレート及び次式(III)▲
数式、化学式、表等があります▼(III) (mは1から6の整数) で表わされるポリエチレングリコールジメタクリレート
及び次式(IV) ▲数式、化学式、表等があります▼(IV) で表わされるビスフェノールAエチレンオキシド付加物
ジメタクリレート及び次式(V) ▲数式、化学式、表等があります▼(V) で表わされるトリシクロデカニルジメチロールジアクリ
レートから成る群から選ばれる1種又は2種以上の光硬
化性アクリレート及び/又は光硬化性メタクリレート樹
脂で成形された、神経細胞に接する部分に多数の微細起
伏を刻設した表面を具えた、神経線維の成長方向を制御
する素子。 2、ガラス基板に金属蒸着膜を形成し、その上にレジス
トパターンを形成し、そのレジストパターンをマスクと
して金属蒸着膜をエッチングした後、レジストパターン
を除去して得たスタンパーを型として、合成樹脂を成形
することを特徴とする、神経線維の成長方向を制御する
素子の製造法。
[Claims] 1. Polyethylene glycol diacrylate represented by the following formula (I) ▲Mathematical formulas, chemical formulas, tables, etc.▼(I) (n is an integer from 1 to 6) and the following formula (II) ▲Mathematical formula , chemical formulas, tables, etc. ▼ (II) Epoxy acrylate represented by and the following formula (III) ▲
There are mathematical formulas, chemical formulas, tables, etc. ▼ (III) (m is an integer from 1 to 6) Polyethylene glycol dimethacrylate and the following formula (IV) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (IV) One or more types selected from the group consisting of bisphenol A ethylene oxide adduct dimethacrylate and tricyclodecanyl dimethylol diacrylate represented by the following formula (V) ▲Mathematical formula, chemical formula, table, etc.▼(V) An element for controlling the growth direction of nerve fibers, which is molded from photocurable acrylate and/or photocurable methacrylate resin and has a surface in which many fine undulations are carved in the portion that contacts nerve cells. 2. Form a metal vapor deposited film on a glass substrate, form a resist pattern on it, use the resist pattern as a mask to etch the metal vapor deposited film, remove the resist pattern, use the obtained stamper as a mold, and use the synthetic resin as a mold. A method for manufacturing an element for controlling the growth direction of nerve fibers, characterized by molding.
JP1085135A 1989-04-04 1989-04-04 Controlling element of growing direction of nerve fiber and production thereof Pending JPH02265477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1085135A JPH02265477A (en) 1989-04-04 1989-04-04 Controlling element of growing direction of nerve fiber and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1085135A JPH02265477A (en) 1989-04-04 1989-04-04 Controlling element of growing direction of nerve fiber and production thereof

Publications (1)

Publication Number Publication Date
JPH02265477A true JPH02265477A (en) 1990-10-30

Family

ID=13850209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1085135A Pending JPH02265477A (en) 1989-04-04 1989-04-04 Controlling element of growing direction of nerve fiber and production thereof

Country Status (1)

Country Link
JP (1) JPH02265477A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043323A (en) * 1992-01-27 2000-03-28 Ciba Specialty Chemicals Corp. Diacrylates and dimethacrylates
JP2006223197A (en) * 2005-02-17 2006-08-31 Hitachi Ltd Nerve cell culture method, nerve cell culture substrate, nerve cell, nerve cell system, and method of manufacturing nerve cell system
CN110960732A (en) * 2019-11-18 2020-04-07 北京理工大学 Living nerve scaffold with central perfusion system and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043323A (en) * 1992-01-27 2000-03-28 Ciba Specialty Chemicals Corp. Diacrylates and dimethacrylates
US6316552B1 (en) 1992-01-27 2001-11-13 Vantico Inc. Diacrylates and dimethacrylates
US6783809B2 (en) 1992-01-27 2004-08-31 Huntsman Advanced Materials Americas Inc. Photosensitive diacrylate and dimethacrylate compositions
JP2006223197A (en) * 2005-02-17 2006-08-31 Hitachi Ltd Nerve cell culture method, nerve cell culture substrate, nerve cell, nerve cell system, and method of manufacturing nerve cell system
CN110960732A (en) * 2019-11-18 2020-04-07 北京理工大学 Living nerve scaffold with central perfusion system and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Clark et al. Topographical control of cell behaviour: I. Simple step cues
US4832814A (en) Electrofusion cell and method of making the same
DE69019009T2 (en) Cell culture method.
KR100832286B1 (en) Method of constructing artificial cell tissue and base material therefor
Gurney Jr Local stimulation of growth in primary cultures of chick embryo fibroblasts
Taichman et al. In-vitro cultivation of human oral keratinocytes
TW200907053A (en) Cell culture container and cell culture method
JP6202621B2 (en) Cell culture substrate and method for producing the same
US20080241926A1 (en) Cell adhesion on surfaces of varying topographies
CN102465119A (en) Substrate for cell patterned growth, preparation method and application thereof
JP4238972B2 (en) Cell culture chamber
JPH02265477A (en) Controlling element of growing direction of nerve fiber and production thereof
JP2777392B2 (en) Cell culture substrate and method for producing the same
LeDuc et al. Use of micropatterned adhesive surfaces for control of cell behavior
JPH04262780A (en) Element for controlling growing direction of nerve cell and its production
JP3126269B2 (en) Culture substrate
He et al. A novel method to fabricate thermoresponsive microstructures with improved cell attachment/detachment properties
JPS63119754A (en) Artificial element having cell growth specificity
Morikawa et al. New plastic plates which enhance neurite extension in culture: roles of bisphenol-A and tricyclodecanyl units for growth and orientation of neurites on plastic plates with microstructures
JP6399769B2 (en) Cell culture substrate and method for culturing patterned cultured cells
KR102622156B1 (en) Extracellualr matrix (ECM) micropatterns to control cell polarity
Zeng et al. Studying the formation of large cell aggregates in patterned neuronal cultures
US20190322784A1 (en) Material for cell patterning use
Kim et al. Wafer-Scale Patterning of Protein Templates for Hydrogel Fabrication. Micromachines 2021, 12, 1386
CN117567820A (en) Device containing topological appearance array surface and preparation method and application thereof