JPH02264131A - Control method for vehicle having automatic speed change gear - Google Patents
Control method for vehicle having automatic speed change gearInfo
- Publication number
- JPH02264131A JPH02264131A JP1086189A JP8618989A JPH02264131A JP H02264131 A JPH02264131 A JP H02264131A JP 1086189 A JP1086189 A JP 1086189A JP 8618989 A JP8618989 A JP 8618989A JP H02264131 A JPH02264131 A JP H02264131A
- Authority
- JP
- Japan
- Prior art keywords
- gear shifting
- shift
- rotation speed
- gear
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/10—Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
- B60W10/11—Stepped gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/1819—Propulsion control with control means using analogue circuits, relays or mechanical links
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H59/00—Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
- F16H59/68—Inputs being a function of gearing status
- F16H2059/6807—Status of gear-change operation, e.g. clutch fully engaged
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H2061/0075—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method
- F16H2061/0087—Adaptive control, e.g. the control parameters adapted by learning
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H63/00—Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
- F16H63/40—Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
- F16H63/50—Signals to an engine or motor
- F16H63/502—Signals to an engine or motor for smoothing gear shifts
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Automation & Control Theory (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Electrical Control Of Ignition Timing (AREA)
- Control Of Transmission Device (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、車両に備えられた自動変速機における変速動
作に伴って発生する変速ショックをエンジン出力の変更
によって低減するようにした自動変速機を備えた車両の
制御方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an automatic transmission that reduces the shift shock that occurs during a shift operation in an automatic transmission installed in a vehicle by changing the engine output. The present invention relates to a method of controlling a vehicle equipped with a vehicle.
(従来の技術)
従来より、自動変速機を備えた車両において、変速動作
の開始もしくは終了時期を判定することは、自動変速機
の制御、エンジン出力制御等の各種制御を実行する上に
おいて重要であり、この変速状態の開始、終了を変速動
作に伴ってエンジン回転数等が所定の特性で変化するの
に基づいて、このエンジン回転数によって設定するよう
にした技術が、例えば特開昭55−69738号公報に
見られるように公知である。(Prior Art) Conventionally, in vehicles equipped with automatic transmissions, determining when to start or end a gear shifting operation has been important in performing various controls such as automatic transmission control and engine output control. There is a technique in which the start and end of this shift state are set based on the engine speed, etc., which change according to a predetermined characteristic with the speed change operation, as disclosed in, for example, Japanese Patent Application Laid-Open No. 1983-1999. This is known as seen in Japanese Patent No. 69738.
ところで、自動変速機における変速動作が行われるとき
には、車両の慣性により車速は殆ど変化しないにもかか
わらず、自動変速機における変速比の変化に応じてエン
ジン回転数が変化し、それに伴って自動変速機の出力軸
にトルク変動が生じ、その出力軸のトルク変動により車
体の加速度か変化して、いわゆる変速ショックが発生す
る。このような変速ショックを低減するだめの対策とし
て、変速機構における摩擦係合要素の解放および締結が
滑らかに行われるように、摩擦係合要素に供給される作
動油圧を制御することが考えられるが、そのようにされ
た場合には、摩擦係合要素が滑り状態に置かれる期間が
長くなり、摩擦係合要素が焼き付いたり、摩耗か激しく
なるなどの恐れがある。By the way, when a gear change operation is performed in an automatic transmission, although the vehicle speed hardly changes due to the inertia of the vehicle, the engine speed changes depending on the change in the gear ratio in the automatic transmission, and accordingly, the automatic gear change occurs. Torque fluctuations occur on the output shaft of the machine, and the acceleration of the vehicle body changes due to the torque fluctuations on the output shaft, causing a so-called shift shock. As a possible measure to reduce such shift shock, it may be possible to control the hydraulic pressure supplied to the frictional engagement elements so that the frictional engagement elements in the transmission mechanism are smoothly released and engaged. If this is done, the period during which the frictional engagement elements are kept in a sliding state becomes longer, and there is a risk that the frictional engagement elements may seize or become severely worn.
そこで、自動変速機における変速動作が行われるときに
、エンジンの点火時期制御等で一時的にエンジン出力を
変更させることによって変速ショックを低減すると共に
、前記摩擦係合要素の耐久性を改善することも知られて
いる。Therefore, when a gear shift operation is performed in an automatic transmission, the engine output is temporarily changed by engine ignition timing control, etc., thereby reducing the gear shift shock and improving the durability of the frictional engagement element. is also known.
(発明が解決しようとする課題)
しかして、前記のような自動変速機の変速動作に伴って
エンジン出力を変更し変速ショックを低減するようにし
た場合に、その変速動作の開始および終了時期に正確に
対応して出力変更制御を行うことか重要であるか、変速
動作における回転変動は各種条件によって変化し、これ
らの変化に対応して正確に判定することは困難である。(Problem to be Solved by the Invention) However, when the engine output is changed in accordance with the shift operation of an automatic transmission as described above to reduce shift shock, there is a problem in the start and end timing of the shift operation. It is important to perform output change control in an accurate manner. Rotational fluctuations during a gear shifting operation change depending on various conditions, and it is difficult to accurately determine the output change in response to these changes.
すなわち、変速動作に対して出力変更制御のタイミング
がずれると、例えば、加速中の変速動作において、変速
が終了しているのにエンジン出力を低下させるような制
御が継続していると加速性能を阻害することになり、逆
に、変速が終了する前に変更制御を終了してエンジン出
力を増大すると自動変速機の摩擦係合要素の係合におけ
る負荷を増大して耐久性を損なうなどの問題を生じる。In other words, if the timing of the output change control is out of sync with the gear shift operation, for example, in a gear shift operation during acceleration, if the control that reduces the engine output continues even after the gear shift has finished, acceleration performance may be affected. On the other hand, if the change control is terminated before the shift is completed and the engine output is increased, the load on the engagement of the frictional engagement elements of the automatic transmission will increase, leading to problems such as impairing durability. occurs.
また、変速動作に伴うエンジン回転数もしくはタービン
回転数の変化においては、変速動作の開始時および終了
時には変曲点が生じることから、上記回転数の変化を検
出して変曲点を求めてエンジン出力制御を行うようにし
た場合に、変速時の各種運転状態によって回転数の変化
に明確な変曲点が生じない時があり、このようなときに
はその判定は困難である。この点に対し、変速指令かな
されたときの回転数から所定量変動した回転数を変速開
始時に設定し、この開始回転数に変速ギヤ比を掛けて変
速終了後の回転数を求め、この終了回転数に所定範囲を
設けて変速終了判定回転数を設定することが考えられて
いる。In addition, when the engine speed or turbine speed changes due to a gear shift operation, an inflection point occurs at the start and end of the gear shift operation, so the change in the engine speed is detected and the inflection point is determined. When output control is performed, there are times when a clear inflection point does not occur in the change in rotational speed depending on various operating conditions during gear shifting, and in such cases, it is difficult to determine. In this regard, a rotation speed that fluctuates by a predetermined amount from the rotation speed when the shift command is issued is set at the start of the shift, and this starting rotation speed is multiplied by the gear ratio to determine the rotation speed after the shift ends. It has been considered to provide a predetermined range for the rotation speed and set the speed change end determination rotation speed.
しかして、自動変速機の摩擦係合要素の個体差、経時変
化、変速機内のオイルの粘性状態の変化などかあると、
実際の摩擦係合要素が係合完了する時期が回転数に対し
てずれるものであり、例えば、エンジンから伝達される
トルク状態によっても係合点が変化し、低トルク状態で
は早期に係合完了し、高トルクでは係合完了が遅れる傾
向にあり、これに応じて変速完了回転数が変化するもの
であり、−律に判定回転数を設定しても実際の変速状態
と異なって変速判定精度が低下し、運転性能、耐久性等
において所期の特性が得られず、しかも、適確な変速シ
ョックの緩和を行うことができない恐れがある。However, if there are individual differences in the frictional engagement elements of automatic transmissions, changes over time, or changes in the viscosity of the oil in the transmission,
The actual timing at which the frictional engagement elements complete engagement deviates from the rotational speed. For example, the engagement point changes depending on the state of the torque transmitted from the engine, and engagement may be completed early in low torque states. At high torques, the completion of engagement tends to be delayed, and the shift completion rotation speed changes accordingly. As a result, the desired characteristics in terms of driving performance, durability, etc., may not be obtained, and there is a possibility that the gear shift shock may not be appropriately alleviated.
そこで、本発明は上記事情に鑑み、自動変速機の個体差
、経時変化等の変化に対しても適切な変速終了時期の設
定を行って適確な変速ショックの低減を行うようにした
自動変速機を備えた車両の制御方法を提供することを目
的とするものである。Therefore, in view of the above circumstances, the present invention provides an automatic transmission system that appropriately reduces the shift shock by setting an appropriate shift end time even in response to individual differences in automatic transmissions, changes over time, etc. The object of the present invention is to provide a method for controlling a vehicle equipped with a machine.
(課題を解決するための手段)
上記目的を達成するため本発明の制御方法は、変速信号
に対応して所定変速段に変速動作を行う自動変速機に対
し、その変速時にエンジン出力を変更して変速動作に伴
う変速ショックを低減するものであって、変速に対応し
てエンジン回転数またはタービン回転数等の回転数が所
定の特性で変化するのに基づき、変速ショック低減用の
出力変更制御の終了時期を判定回転数によって設定し、
検出回転数か上記判定回転数に達した際に出力変更制御
を終了するについて、前回の変速に伴う回転数変化から
実際の変速終了時期に対応する変速終了回転数を求め、
この変速終了回転数に基づく学習制御によって前記判定
回転数を設定するようにしたものである。(Means for Solving the Problems) In order to achieve the above object, the control method of the present invention changes the engine output at the time of gear shifting for an automatic transmission that shifts to a predetermined gear in response to a gear shift signal. This is to reduce the shift shock associated with shift operation, and the output change control for reducing shift shock is based on the fact that the rotation speed such as the engine rotation speed or turbine rotation speed changes according to a predetermined characteristic in response to the shift. The end time is set by the judgment rotation speed,
To end the output change control when the detected rotation speed reaches the above-mentioned judgment rotation speed, calculate the shift end rotation speed corresponding to the actual shift end time from the rotation speed change due to the previous shift,
The determination rotation speed is set by learning control based on the speed change end rotation speed.
(作用)
上記のような自動変速機を備えた車両の制御方法では、
出力変更制御の終了時期を判定回転数によって設定する
について、前回の変速に伴う回転数変化から実際の変速
終了時期に対応する変速終了回転数を求め、この変速終
了回転数に基づく学習制御によって前記判定回転数を設
定して、この判定回転数を実際の変速終了回転数に近付
くように変更するものであって、変速機の個体差、経時
変化などの変動に対しても変速動作の終了に対応して精
度よくエンジン出力変更制御を終了するようにして良好
な運転性能、摩擦係合要素の耐久性などを確保しつつ適
確に変速ショックを低減するようにしている。(Function) In the method of controlling a vehicle equipped with an automatic transmission as described above,
To set the end time of output change control using the determination rotation speed, the shift end rotation speed corresponding to the actual shift end time is determined from the change in the rotation speed due to the previous shift, and the learning control based on this shift end rotation speed is performed. This method sets a judgment rotation speed and changes this judgment rotation speed so that it approaches the actual speed at which the gear shift ends, and even when variations such as individual differences in transmissions or changes over time occur, the speed at which the gear shift operation ends can be adjusted. Correspondingly, the engine output change control is accurately terminated to ensure good driving performance, durability of the frictional engagement elements, etc., and to appropriately reduce shift shock.
(実施例) 以下、図面に沿って本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to the drawings.
第1図は自動変速機を備えた車両のパワートレイン部分
の概略構成を示す。FIG. 1 shows a schematic configuration of a power train portion of a vehicle equipped with an automatic transmission.
エンジン1の出力はトルクコンバータ2を介して自動変
速機3に入力され、自動変速機3のソレノイドバルブ4
,5の駆動制御によって変速し、プロペラシャフト6を
経て駆動輪7に出力されるものである。上記自動変速機
3のソレノイドバルブ4,5は例えば変速用に3個、ロ
ックアツプ用に1個設置され、それぞれの作動の組み合
わせによって変速機内部のクラッチもしくはブレーキに
よる摩擦係合要素を操作し、変速歯車機構の動力伝達経
路を切換え、第1〜4速等の変速段に変速操作すると共
に、ロックアツプクラッチの締結・解除を操作するもの
である。なお、上記自動変速機3の内部構造の詳細につ
いては公知の事項であり、その説明は省略する。The output of the engine 1 is input to the automatic transmission 3 via the torque converter 2, and the solenoid valve 4 of the automatic transmission 3
, 5, and is output to drive wheels 7 via a propeller shaft 6. The solenoid valves 4 and 5 of the automatic transmission 3 are installed, for example, three for shifting and one for locking up, and the combination of their respective operations operates the frictional engagement element of the clutch or brake inside the transmission, thereby changing the gear. It switches the power transmission path of the gear mechanism, performs a gear shift operation such as 1st to 4th speed, and engages/disengages a lock-up clutch. It should be noted that the details of the internal structure of the automatic transmission 3 are well known, and their explanation will be omitted.
一方、前記エンジン1においては、ディストリビュータ
8、イグナイタ9なとで構成される点火装置10が設置
され、この点火装置]0によって各気筒に対する点火時
期を調整してエンジン出力の変更を行うように構成され
ている。On the other hand, the engine 1 is equipped with an ignition system 10 that includes a distributor 8, an igniter 9, etc., and is configured to adjust the ignition timing for each cylinder using the ignition system 0 to change the engine output. has been done.
そして、上記のようなエンジン]の出力制御および自動
変速機3の変速制御を行うべく、エンジン制御ユニット
1]および変速制御ユニット12か備えられている。An engine control unit 1 and a shift control unit 12 are provided to control the output of the engine and control the speed change of the automatic transmission 3 as described above.
エンジン制御ユニット11には、クランク角センザ15
からのクランク角信号(エンジン回転数信号)、水温セ
ンサ16からの水温信号、ノッキングセンサ17からの
ノック信号、スロットル開度センサ18から得られるス
ロットル信号等が入力される。このエンジン制御ユニッ
ト11は、これら各種の検出信号および変速機制御ユニ
ット12から供給される変速遅角パルス信号に基づき、
点火信号を演算によって求めた所定時期にイグナイタ9
に出力して、通常の運転状態での点火時期制御を行うと
共に、変速時に変速ショックを低減するための出力変更
制御を行う。The engine control unit 11 includes a crank angle sensor 15.
A crank angle signal (engine speed signal) from the engine, a water temperature signal from the water temperature sensor 16, a knock signal from the knocking sensor 17, a throttle signal obtained from the throttle opening sensor 18, and the like are input. Based on these various detection signals and the shift retard pulse signal supplied from the transmission control unit 12, the engine control unit 11
The igniter 9 is activated at a predetermined time when the ignition signal is calculated.
In addition to controlling the ignition timing under normal operating conditions, the output is also controlled to change the output to reduce shift shock during gear shifting.
変速機制御ユニット12には、スロットル開度センサ1
8から得られるスロットル信号、車速センサ19から得
られる車速信号、水温センサ16からの水温信号、シフ
トポジションセンサ20から得られるシフトレバ−のレ
ンジ信号等がそれぞれ入力される。該変速機制御ユニッ
ト12は、これら各種の検出信号に基づく変速信号を自
動変速機3のソレノイドバルブ4,5にそれぞれ選択的
に供給することにより、変速制御およびロックアツプ制
御を行う。The transmission control unit 12 includes a throttle opening sensor 1.
A throttle signal obtained from 8, a vehicle speed signal obtained from vehicle speed sensor 19, a water temperature signal from water temperature sensor 16, a shift lever range signal obtained from shift position sensor 20, and the like are input, respectively. The transmission control unit 12 performs speed change control and lock-up control by selectively supplying speed change signals based on these various detection signals to the solenoid valves 4 and 5 of the automatic transmission 3, respectively.
上記エンジン制御ユニット]1による点火時期処理およ
び変速機制御ユニット12による変速処理を第2図ない
し第4図のフローチャートによって説明する。The ignition timing process by the engine control unit 1 and the speed change process by the transmission control unit 12 will be explained with reference to flowcharts shown in FIGS. 2 to 4.
これらのフローチャートを説明する前に、その処理に伴
う変速時のエンジン回転数変動と変速判定および点火時
期制御の基本的処理を第5図に基づくシフトアップ変速
で説明する。(A)はエンジン回転数Neの変化を示し
、(B)は点火進角θの変更状態を示すもので、エンジ
ン回転数Neが上昇して車速とスロットル開度との関係
で設定されているマツプにより求まる変速段が変速ライ
ンを越えて高速側に変化した8点で変速指令が出力され
る。この時点からソレノイドバルブ4の作動に伴う各種
摩擦係合要素の作動によって動力伝達経路が切り換わる
のに対応して、エンジン回転数Neが変曲点Neoから
低下し、上記変曲点Ne。Before explaining these flowcharts, basic processing of engine rotational speed fluctuations, shift determination, and ignition timing control during gear shifting associated with the processing will be explained using upshifting based on FIG. 5. (A) shows changes in engine speed Ne, and (B) shows changes in ignition advance angle θ, which is set in relation to vehicle speed and throttle opening as engine speed Ne increases. A shift command is output at eight points where the gear position determined by the map crosses the shift line and changes to the high speed side. From this point on, the engine speed Ne decreases from the inflection point Neo in response to the power transmission path being switched by the operation of various friction engagement elements accompanying the operation of the solenoid valve 4, and reaches the above-mentioned inflection point Ne.
から所定値α(固定値)低い回転数Nelに達したb点
で出力変更制御の開始指令が出力される。これに対応し
て点火時期を遅角して出力の低下制御を行う。続いて、
変速動作に伴ってエンジン回転数Neは低下し、変速ギ
ヤ比に相当する回転数Ne3に低下したd点で変速か終
了し、それから回転数Neが上昇するものであるが、こ
の変曲点となる下限回転数Nc3より所定値β(固定値
)高く変速終了判定の目標回転数Ne4を設定する。し
かし、学習マツプに記憶した値に基づいて設定する実際
の変速終了判定を行う判定回転数Nc2は、例えば目標
回転数Ne4より高い値に設定され、エンジン回転数N
eがこの判定回転数Nr32に達したC点で変速終了を
判定して出力変更制御の終了指令か出力される。これに
対応して点火時期の遅角を徐々に進角して通常進角に復
帰する。A start command for output change control is output at point b, at which the rotational speed Nel is lower by a predetermined value α (fixed value). In response to this, the ignition timing is retarded to control output reduction. continue,
The engine speed Ne decreases with the gear shifting operation, and the gear shift ends at point d when the engine speed Ne3 drops to the speed Ne3 corresponding to the gear ratio, and then the engine speed Ne increases. The target rotation speed Ne4 for determining the end of the shift is set higher by a predetermined value β (fixed value) than the lower limit rotation speed Nc3. However, the determination rotation speed Nc2 for determining the actual shift completion, which is set based on the value stored in the learning map, is set to a value higher than the target rotation speed Ne4, for example, and the engine rotation speed Nc2 is set to a value higher than the target rotation speed Ne4.
At point C, where e reaches this determination rotational speed Nr32, it is determined that the gear shift is completed, and an output change control termination command is output. Correspondingly, the ignition timing retard is gradually advanced to return to the normal advance.
そして、上記のような回転数変化と変速終了判定におい
て、前回の同一変速段での変速における実際の下限回転
数Ne3を検出し、この下限回転数Ne3から目標回転
数Ne4を求め、前回判定回転数Ne2との偏差ΔNe
の1/2の値で判定回転数Ne2を補正し次の判定回転
数Ne2を設定するものである。また、上記判定回転数
Ne2および目標回転数Ne4に対応する差値ΔN e
2. ΔNe4を学習マツプのスロットル開度と変速段
に対応する所定アドレスにおける値を更新する学習制御
を行うものである。Then, in the rotation speed change and shift end determination as described above, the actual lower limit rotation speed Ne3 in the previous shift at the same gear stage is detected, the target rotation speed Ne4 is determined from this lower limit rotation speed Ne3, and the previously determined rotation speed is determined. Deviation ΔNe from the number Ne2
The next judgment rotation speed Ne2 is set by correcting the judgment rotation speed Ne2 with a value of 1/2. In addition, the difference value ΔN e corresponding to the judgment rotation speed Ne2 and the target rotation speed Ne4 is
2. Learning control is performed to update ΔNe4 to a value at a predetermined address corresponding to the throttle opening degree and gear position in the learning map.
まず、第2図は変速制御にお()る変速判定のメインル
ーチンを示し、制御スタート後、ステップS1でエンジ
ン回転数Ne、スロワ)・ル開度TVO1車速V等をそ
れぞれ読み込み、ステップS2で出力変更制御条件か否
かを判定する。この条件は、例えば冷機時、低スロット
ル開度状態等でないことで、エンジンの燃焼状態が不安
定でエンジン出力の低下変更か不適当な状態でないこと
を判定する。First, Fig. 2 shows the main routine for shift determination in shift control. After the control starts, in step S1, the engine speed Ne, throttle opening, TVO, vehicle speed V, etc. are read, and in step S2, Determine whether the output change control condition is met. This condition is, for example, when the engine is cold or not in a low throttle opening state, so that it is determined that the combustion state of the engine is unstable and the engine output is not inappropriately changed.
」1記ステップS2の判定がYESの場合には、ステッ
プS3に進んで変速か否かを判定するものであり、例え
ばスロットル開度と車速によって設定されている変速マ
ツプから走行状態に対応する変速段が変化した変速時か
否かを判定する。そして、変速時には、ステップS4て
このときの変速段とスロットル開度TVOを記憶し、学
習マ・ツブの対応アドレスをアクセスする。If the determination in Step S2 of 1. is YES, the process proceeds to Step S3 to determine whether or not to shift. It is determined whether or not it is the time of gear change. When changing gears, the gear position and throttle opening TVO at the time of step S4 are stored, and the corresponding address of the learning gear is accessed.
続いてステップS5で1−2変速か否かを、ステップS
6で2−3変速か否かを判定し、]−2変速の場合には
ステップS7のザブルーチンによって、2−3変速の場
合にはステップS8のサブルーチンによって、また、3
−4変速の場合にはステップS9のサブルーチンによっ
て、それぞれエンジン回転数の変化に伴う出力変更制御
の開始と終了判定およびその指令出力と、変速終了判定
回転数の学習制御とを行う。Next, in step S5, it is determined whether or not the 1-2 gear shift is to be performed.
In step 6, it is determined whether or not it is a 2-3 gear shift.
In the case of a -4 shift, the subroutine of step S9 performs the start and end determination of output change control in response to a change in engine speed, the command output thereof, and the learning control of the speed change determination speed.
上記ステップ87〜S9のサブルーチンは第3図に示し
、変速開始後、ステップS1.して現在のエンジン回転
数Nciと変曲点の上限回転数Ncoから所定値α減算
した開始判定回転数NeLとを求め、両者を比較してス
テップSI2で開始判定回転数Nc1に達した出力変更
制御の開始状態となったか否かを判定する。そして、上
記ステップSI2の判定がYESとなると、ステップS
13で開始判定回転数Nclをメモリしてから、ステッ
プS14で出力変更制御を開始する変速遅角パルスを出
力する。The subroutine of steps 87 to S9 is shown in FIG. 3, and after the start of the shift, step S1. The current engine rotation speed Nci and the start determination rotation speed NeL are obtained by subtracting a predetermined value α from the upper limit rotation speed Nco at the inflection point, and the two are compared and the output is changed when the start determination rotation speed Nc1 is reached in step SI2. It is determined whether the control is in the start state. Then, if the determination in step SI2 is YES, step S
After the start determination rotation speed Ncl is memorized in step S13, a shift retard pulse for starting output change control is outputted in step S14.
次にステップSL5〜S2]で変速終了判定回転数Ne
2の演算設定を行う。まず、ステップS1.5で前回の
実際の下限回転数Ne3i−1に所定値βを加算し前回
の1」標回転数Ne4i−1を求め、この値を用いて前
回の開始判定回転数Nelとの差ΔNe4i−1を演算
1.(SIB)、さらに、開始判定回転数Ne11−1
と前回判定回転数Ne2+−] との差ΔNe2j−
1を求め(S17)、それぞれの差へNe4i−1およ
びΔNc2i−1の偏差ΔN ei−1を求める(S1
g)、そして、ステップSi9で前回の偏差ΔN ei
−1の】/2を今回の偏差ΔNetとし、この値ΔNe
iを前回目標差ΔNc2+−1に加算して今回目標差Δ
Na2iを演算しく520)、ステップS21で前記今
回開始判定回転数Nelと今回目標差ΔNc2iとによ
って最終的な1′11定回転数Ne2iを設定し、現在
のエンジン回転数Nciと比較する。Next, in steps SL5 to S2], the speed change end determination rotation speed Ne
Perform the calculation settings in step 2. First, in step S1.5, a predetermined value β is added to the previous actual lower limit rotation speed Ne3i-1 to obtain the previous 1'' reference rotation speed Ne4i-1, and this value is used to determine the previous start determination rotation speed Nel. The difference ΔNe4i-1 is calculated 1. (SIB), and further, the start determination rotation speed Ne11-1
and the previous determined rotation speed Ne2+-] ΔNe2j-
1 (S17), and calculate the deviation ΔN ei-1 of Ne4i-1 and ΔNc2i-1 from each difference (S1
g), and in step Si9 the previous deviation ΔN ei
−1]/2 is the current deviation ΔNet, and this value ΔNe
i is added to the previous target difference ΔNc2+-1 to obtain the current target difference Δ
Na2i is calculated (520), and in step S21, a final 1'11 constant rotational speed Ne2i is set based on the current start determination rotational speed Nel and the current target difference ΔNc2i, and is compared with the current engine rotational speed Nci.
ステップS23でエンジン回転数Neが変速終了判定を
行う判定回転数Nc2iに達した出力変更制御の終了状
態となったか否かを判定する前に、ステップS22でス
ロットル開度TVOが変化したか否かを判定する。この
ステップS22の判定がNOでスロットル開度TVOに
変化がなかった時には、ステップS23の判定により変
速終了回転数Nc2iに達した時点に、ステップS24
で出力変更制御を終了するパルスを出力する。Before it is determined in step S23 whether the engine rotational speed Ne has reached the determination rotational speed Nc2i at which a shift end determination is made and the output change control has ended, it is determined whether the throttle opening TVO has changed in step S22. Determine. When the determination in step S22 is NO and there is no change in the throttle opening degree TVO, when the determination in step S23 reaches the shift end rotation speed Nc2i, step S24
Outputs a pulse to end output change control.
一方、上記ステップS22の判定がYESでスロットル
開度TVOか変化した際には、ステップS25に進んで
回転数が判定回転数Ne2iに達する前に出力変更制御
を終了し、ステップ826で学習マツプに登録するΔN
e2およびΔNe4の値の書き換えは行わず前回値をそ
のままメモリする。On the other hand, when the determination in step S22 is YES and the throttle opening TVO has changed, the process proceeds to step S25, where the output change control is terminated before the rotational speed reaches the determined rotational speed Ne2i, and the learning map is changed to step S826. ΔN to register
The values of e2 and ΔNe4 are not rewritten and the previous values are stored as they are.
第4図は点火時期制御ルーチンを示し、ステップS31
で各種センザ信号を入力し、この信号に基づいて基本点
火時期θbを設定しく532)、ステップS33および
S34で遅角許可条件か否かを判定する。そして、ステ
ップS35で前記第3図のステップS14によって変速
遅角パルスが出力されたか否かを判定し、これか出力さ
れた時にはステップ33Gで変速遅角量θatrを設定
し、フラグFrを1にセットする。この変速遅角を実行
する時には、ステップ54fliで変速遅角量θat+
・とノッキング遅角量θnrのいずれが大きいか判定し
、ステップS48 S49で遅角捕i′E量θrを大
きい方の遅角量に設定し、ステップS49で最終的な点
火進角θを設定し出力する。FIG. 4 shows the ignition timing control routine, step S31
Various sensor signals are inputted in step 532), and the basic ignition timing θb is set based on these signals.In steps S33 and S34, it is determined whether the retardation permission condition is met. Then, in step S35, it is determined whether or not the shift retard pulse was output in step S14 of FIG. set. When executing this shift retardation, in step 54fli, the shift retardation amount θat+
・It is determined which of the knocking retardation amount θnr is larger, and in steps S48 and S49, the retardation angle acquisition amount θr is set to the larger retardation amount, and in step S49, the final ignition advance angle θ is set. and output.
前記遅角パルスが出力された後にはステップS35はN
O判定となるが、前記フラグFrのセットに応じてステ
ップ338のYES判定でステップS39に進んで前記
ステップS24で終了パルスが出力されたか否かを判定
し、出力されていない場合にはステップ846に進んて
遅角制御を継続する。また、終了パルスが入力されてス
テップS3’lの判定がYESとなるとステップS40
〜S43て変速遅角制御した点火時期を徐々に進角する
もので、変速遅角量θairを所定値Δθずつ減算しく
S 40)、0以下になったことを判定したときには
(S 41)、0にセラI−L (S42) 、フラグ
Frのリセットも行う(S 43)。なお、ステップS
33〜S35. S38の判定によってステップS4
4に進んだ時には、変速遅角制御は行わないものであっ
て、変速遅角量θatrおよびフラグF rはOにセッ
トする。After the retard pulse is output, step S35 is N.
The determination is O, but if the determination is YES in step 338 in accordance with the setting of the flag Fr, the process proceeds to step S39, where it is determined whether or not the end pulse has been outputted in the step S24, and if it has not been outputted, the process proceeds to step 846. to continue the retard control. Further, when the end pulse is input and the determination in step S3'l becomes YES, step S40
~S43, the ignition timing controlled by the shift retardation is gradually advanced, and the shift retard amount θair is subtracted by a predetermined value Δθ (S40), and when it is determined that it has become 0 or less (S41), The cell IL is set to 0 (S42), and the flag Fr is also reset (S43). In addition, step S
33-S35. Based on the determination in S38, step S4
When proceeding to step 4, the shift retard control is not performed, and the shift retard amount θatr and the flag F r are set to O.
上記のような実施例によれば、変速ショックを低減する
ための点火時期の遅角制御を行う期間を前回の回転数変
化の検出に基づいて終了判定の目標回転数を学習するこ
とによって補正し、変速機の個体差、経時変化等の各種
条件の変化があっても、それに応じて終了目標回転数を
設定して、常に最適状態にセラI−L、て精度の良い変
速終了判定に基づくエンジン出力変更制御を実行して変
速ショックの低減を得ることができ、しかも、必要最小
限の出力低下制御により加速性等の運転性能が確保でき
るものである。According to the embodiment described above, the period during which ignition timing retard control is performed to reduce shift shock is corrected by learning the target rotation speed for termination determination based on the detection of the previous rotation speed change. , Even if there are changes in various conditions such as individual differences in transmissions or changes over time, the end target rotation speed is set accordingly, and the gearshift I-L is always in the optimum state, based on accurate shift end judgment. It is possible to reduce shift shock by executing engine output change control, and to ensure driving performance such as acceleration by controlling the output reduction to the minimum necessary level.
なお、上記実施例においては、点火時期制御によってエ
ンジン出力を変更するようにしているか、その他、空燃
比制御等によって変更制御するようにしてもよい。In the above embodiments, the engine output is changed by ignition timing control, or may be changed by other means such as air-fuel ratio control.
(発明の効果)
」1記のような本発明によれば、自動変速機の変速時に
変速ショック緩和のためのエンジン出力変更制御を行い
、その終了時期を判定回転数によって設定するについて
、前回の変速に伴う回転数変化から実際の変速終了時期
に対応する変速終了回転数を求めて学習制御によって前
記判定回転数を設定するようにしたことにより、変速機
の個体差、経時変化、油温、油圧などの変動に対しても
判定回転数を実際の変速終了回転数に近付くように変更
することができ、変速動作の終了に対応して精度よくエ
ンジン出力変更制御を終了するようにして良好な運転性
能、摩擦係合要素の耐久性などを確保しつつ適確に変速
ショックを低減することかできるものである。(Effects of the Invention) According to the present invention as described in item 1, engine output change control is performed to alleviate shift shock when changing gears in an automatic transmission, and the end time is set based on the determined rotation speed. By determining the shift end rotation speed corresponding to the actual shift end time from the change in rotation speed accompanying the shift and setting the judgment rotation speed using learning control, individual differences in transmissions, changes over time, oil temperature, Even in response to fluctuations in oil pressure, etc., the engine speed to be determined can be changed to approach the actual speed at which the shift ends, and the engine output change control can be accurately completed in response to the end of the shift operation, resulting in a good engine output change control. It is possible to appropriately reduce shift shock while ensuring driving performance and durability of frictional engagement elements.
第1図は自動変速機を備えた車両のパワートレイン部分
を示す概略構成図、
第2図〜第4図は制御ユニットの処理を説明するための
フローチャート図、
第5図は変速時の回転数変化と変速判定および点火時期
制御を示す説明図である。
1・・・・・・エンジン、2・・・・・・トルクコンバ
ータ、・・・自動変速機、4・・・・・・ソレノイドバ
ルブ、1点火装置、11・・・・・・エンジン制御ユニ
ット、・・・・・・変速機制御ユニット。
3・・・
0・・・Figure 1 is a schematic configuration diagram showing the power train part of a vehicle equipped with an automatic transmission. Figures 2 to 4 are flowcharts for explaining the processing of the control unit. Figure 5 is the rotation speed during gear shifting. FIG. 3 is an explanatory diagram showing changes, gear shift determination, and ignition timing control. 1... Engine, 2... Torque converter,... Automatic transmission, 4... Solenoid valve, 1 Ignition device, 11... Engine control unit ,...Transmission control unit. 3... 0...
Claims (1)
自動変速機に対し、その変速時にエンジン出力を変更し
て変速動作に伴う変速ショックを低減するようにした自
動変速機を備えた車両において、変速に伴ってエンジン
回転数またはタービン回転数等の回転数が所定の特性で
変化するのに基づき、変速ショック低減用の出力変更制
御の終了時期を判定回転数によつて設定し、検出回転数
が上記判定回転数に達した際に出力変更制御を終了する
について、前回の変速に伴う回転数変化から実際の変速
終了時期に対応する変速終了回転数を求め、この変速終
了回転数に基づく学習制御によって前記判定回転数を設
定するようにしたことを特徴とする自動変速機を備えた
車両の制御方法。(1) An automatic transmission that shifts gears to a predetermined gear position in response to a gear shift signal is equipped with an automatic transmission that changes engine output during the gear shift to reduce shift shock caused by the gear shift operation. In a vehicle, based on the fact that the rotational speed such as engine rotational speed or turbine rotational speed changes according to a predetermined characteristic with gear shifting, the end timing of output change control for reducing gearshift shock is set based on the determined rotational speed, To end the output change control when the detected rotation speed reaches the above-mentioned judgment rotation speed, calculate the shift end rotation speed corresponding to the actual shift end time from the rotation speed change due to the previous shift, and calculate this shift end rotation speed. A method for controlling a vehicle equipped with an automatic transmission, characterized in that the determined rotation speed is set by learning control based on the following.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1086189A JPH02264131A (en) | 1989-04-05 | 1989-04-05 | Control method for vehicle having automatic speed change gear |
DE4010904A DE4010904A1 (en) | 1989-04-05 | 1990-04-04 | Vehicle automatic transmission control method - performing torque control to reduce torque shocks during gearchange |
US08/044,087 US5272632A (en) | 1989-04-05 | 1993-04-06 | Method of suppressing gear-shifting shock in an automatic-transmission vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1086189A JPH02264131A (en) | 1989-04-05 | 1989-04-05 | Control method for vehicle having automatic speed change gear |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02264131A true JPH02264131A (en) | 1990-10-26 |
Family
ID=13879825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1086189A Pending JPH02264131A (en) | 1989-04-05 | 1989-04-05 | Control method for vehicle having automatic speed change gear |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH02264131A (en) |
DE (1) | DE4010904A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2262787B (en) * | 1991-12-24 | 1995-01-04 | Gen Motors France | Method and apparatus for managing engine torque |
DE4217270A1 (en) * | 1992-05-25 | 1993-12-02 | Opel Adam Ag | Procedure for correcting the shift quality of an automatic transmission |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2848624A1 (en) * | 1978-11-09 | 1980-05-22 | Bosch Gmbh Robert | METHOD FOR INFLUENCING AN INTERNAL COMBUSTION ENGINE AND DEVICE FOR IMPLEMENTING THE METHOD |
JPS5569736A (en) * | 1978-11-17 | 1980-05-26 | Nissan Motor Co Ltd | Multi-cylinder internal combustion engine |
-
1989
- 1989-04-05 JP JP1086189A patent/JPH02264131A/en active Pending
-
1990
- 1990-04-04 DE DE4010904A patent/DE4010904A1/en not_active Ceased
Also Published As
Publication number | Publication date |
---|---|
DE4010904A1 (en) | 1990-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5036728A (en) | Engine control system for vehicle with automatic transmission | |
US5047936A (en) | Gear shift control for power train | |
US5188005A (en) | Method and system for improving smoothness of shifts in an automatic transmission | |
US5941795A (en) | Control system for a single servo during multiple speed changes | |
JPH03281952A (en) | Output decrease controller of engine with automatic transmission | |
US5007308A (en) | Line pressure control for automatic transmission | |
US5816976A (en) | Driving torque control device and method for controlling driving torque | |
US5272632A (en) | Method of suppressing gear-shifting shock in an automatic-transmission vehicle | |
US5577979A (en) | Shift shock suppressing system for automotive power train | |
JPH10331963A (en) | Shift control method for automatic transmission for vehicle | |
JPS61119433A (en) | Speed change control device for automatic transmission | |
US6098003A (en) | Control apparatus and method for automatic transmission | |
JPH02264131A (en) | Control method for vehicle having automatic speed change gear | |
JP2005076593A (en) | Shifting shock reducing device for automatic transmission | |
JP3832196B2 (en) | Shift control device for automatic transmission | |
JPH0611026A (en) | Liquid pressure controller for automatic transmission | |
US5800306A (en) | Method and system for controlling automatic power transmission | |
JPH10331962A (en) | Shift control method for automatic transmission for vehicle | |
US6991583B2 (en) | System for controlling torque reduction at shifting for automatic transmission | |
US5050082A (en) | System for controlling automotive automatic transmission | |
JPH0237128A (en) | Engine control device for vehicle with automatic transmission | |
JPH02218826A (en) | Engine control device for vehicle with automatic transmission gear | |
JPH09125998A (en) | Shift shock reducing device | |
JPH02305330A (en) | Engine control device of vehicle with automatic transmission | |
JPH05203025A (en) | Speed change control device for automatic transmission |