JPH02263491A - Semiconductor laser device - Google Patents
Semiconductor laser deviceInfo
- Publication number
- JPH02263491A JPH02263491A JP8393089A JP8393089A JPH02263491A JP H02263491 A JPH02263491 A JP H02263491A JP 8393089 A JP8393089 A JP 8393089A JP 8393089 A JP8393089 A JP 8393089A JP H02263491 A JPH02263491 A JP H02263491A
- Authority
- JP
- Japan
- Prior art keywords
- optical waveguide
- layer
- active
- semiconductor laser
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 30
- 230000003287 optical effect Effects 0.000 claims abstract description 60
- 238000002347 injection Methods 0.000 claims abstract description 5
- 239000007924 injection Substances 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims description 19
- 238000005253 cladding Methods 0.000 claims description 16
- 239000000758 substrate Substances 0.000 claims description 7
- 238000009792 diffusion process Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 230000010354 integration Effects 0.000 abstract description 10
- 230000010355 oscillation Effects 0.000 abstract description 9
- 239000000969 carrier Substances 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 238000009826 distribution Methods 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 101150110330 CRAT gene Proteins 0.000 description 1
- 101100299650 Caenorhabditis elegans rnp-6 gene Proteins 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、光通信、光応用計測等に有用な、動的単一縦
モードで発振し、かつ集積化に適した半導体レーザ装置
に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser device that oscillates in a dynamic single longitudinal mode and is suitable for integration, useful for optical communication, optical applied measurement, etc.
[従来の技術]
光通信や光記録、光計測等の技術分野において、高速変
調が可能でかつ小型軽量な半導体レーザ装置が求められ
ている。この種の用途に用いられる半導体レーザとして
は、高速変調時にも安定に単一縦モード発掘を示す分布
帰還型半導体レーザ(DFB−1,0)、分布ブラッグ
反射型半導体レーザ(DBR−LDl等か長距離、大容
量の光ファイバ通信用光源として有望視されている。[Background Art] In technical fields such as optical communication, optical recording, and optical measurement, there is a need for a small and lightweight semiconductor laser device that is capable of high-speed modulation. Semiconductor lasers used for this type of application include distributed feedback semiconductor lasers (DFB-1,0), which stably excavate a single longitudinal mode even during high-speed modulation, and distributed Bragg reflection semiconductor lasers (DBR-LDl, etc.). It is seen as a promising light source for long-distance, large-capacity optical fiber communications.
一方、エレクトロニクスの分野と同様、光エレクトロニ
クス分野において小型軽量で高機能、高速化のため集積
化が研究されはじめており半導体レーザとFET駆動回
路だけでなく、受光素子、先導波路、光分岐路、光スイ
ツチ導波路等々高度な集積化が検討されている。東京工
業大学の末松らは“Inシegrated Twin−
Guide AlGaAs La5erWith M
ultiheterostructure E
EEE J、Quant。On the other hand, similar to the field of electronics, in the field of optoelectronics, research has begun on integration in order to achieve small size, light weight, high functionality, and high speed. Advanced integration such as switch waveguides is being considered. Suematsu et al. of Tokyo Institute of Technology are
Guide AlGaAs La5erWith M
ultimate structure E
EEE J, Quant.
Elecl、Vol、QE−11,No、7.July
、 1975においてIntegrated Twin
−Guide (ITG)構造を提案しているが、これ
は膜厚方向で方向性結合器を形成した2つの光導波層を
用いることにより、活性領域と光導波領域を分離した集
積化に通した構造である。Elecl, Vol, QE-11, No, 7. July
, Integrated Twin in 1975
-Guide (ITG) structure is proposed, which uses two optical waveguide layers that form a directional coupler in the film thickness direction, allowing for separate integration of the active region and optical waveguide region. It is a structure.
[発明が解決しようとしている課1]
しかしながら、F記動的単一モードレーザの集積化に適
した構造はあまり例がない。[Problem 1 to be Solved by the Invention] However, there are not many examples of structures suitable for integrating F-dynamic single mode lasers.
−例として1.5−1.6 am Ga1nAsP #
nPDynamic−5ingle−Mode (DS
M) La5ers withDistributed
BraggReflector ” IEEE J、
Quantt:Iect、Vol、QE−19,No、
6.JUNE 1988に記載のITG型構造のDBR
レーザかある。これは集積化に適した動的単一縦モード
発振のレーザ構造ではあるが、実際作製する上では、2
つの光導波路間の光の仏殿定数の制御は難かしく、特性
の良い半導体レーザを作製することは、困難であった。- 1.5-1.6 am Ga1nAsP # as an example
nPD Dynamic-5ingle-Mode (DS
M) La5ers with Distributed
BraggReflector” IEEE J,
Quantt: Iect, Vol, QE-19, No.
6. DBR with ITG type structure described in JUNE 1988
There's a laser. This is a dynamic single longitudinal mode oscillation laser structure suitable for integration, but in actual fabrication, two
It has been difficult to control the temple constant of light between two optical waveguides, and it has been difficult to manufacture a semiconductor laser with good characteristics.
[課題を解決するための手段]
本発明は、半導体または半絶縁性基板上に、少なくとも
第1光導波層、第1クラッド層、活性層、第2光導波層
、第2クラッド層がこの順にエピタキシャル成長され、
活性層には電流の注入が可能なように構成された半導体
レーザ装置において、第1光導波層と第2光導波層には
、活性層で発光する光に対して2次以上の高次の回折格
子が形成されており、かつ第1光導波層と第2光導波層
とは互いに光学的に結合しており、第1光導波層が光出
力用導波路であることを特徴とする半導体レーザ装置で
ある。[Means for Solving the Problems] The present invention provides at least a first optical waveguide layer, a first cladding layer, an active layer, a second optical waveguide layer, and a second cladding layer in this order on a semiconductor or semi-insulating substrate. grown epitaxially,
In a semiconductor laser device configured to allow current to be injected into the active layer, the first optical waveguide layer and the second optical waveguide layer have high-order or higher order light emitted from the active layer. A semiconductor characterized in that a diffraction grating is formed, the first optical waveguide layer and the second optical waveguide layer are optically coupled to each other, and the first optical waveguide layer is an optical output waveguide. It is a laser device.
また本発明は特には、前記活性層への電流注入は活性層
にモ行に横方向から行なわれるように、活性導波路の両
側にp壁領域およびn型領域が形成されており、各々の
領域に接続された電極が上面すなわち基板とは反対の面
に設けられていることを特徴とする前記の半導体レーザ
装置であり、さらには前記活性層は超格子構造からなり
、かつ前記p型不純物領域およびn型不純物領域作製時
の不純物拡散等の熱処理により不純物領域の超格子の無
秩序化が生じており、活性導波路の電流と光の閉じ込め
が行われていることを特徴とする前記の半導体レーザ装
置である。In particular, the present invention is characterized in that p-wall regions and n-type regions are formed on both sides of the active waveguide, so that current injection into the active layer is carried out laterally in the active layer. The semiconductor laser device described above is characterized in that the electrode connected to the region is provided on the upper surface, that is, the surface opposite to the substrate, and further, the active layer has a superlattice structure, and the p-type impurity The semiconductor described above, characterized in that the superlattice of the impurity region is disordered by heat treatment such as impurity diffusion during the fabrication of the region and the n-type impurity region, and current and light in the active waveguide are confined. It is a laser device.
本発明によれば、光の出射に用いる第1の光導波路と、
活性層と光学的に結合する第2の光導波路を少なくとも
設け、両者を2次以北の高次の回折格子を用いて光学的
に結合させることにより、安定に動的単一縦モードで発
振する集積化に適した半導体レーザを可能にしたもので
ある。According to the present invention, a first optical waveguide used for emitting light;
By providing at least a second optical waveguide that is optically coupled to the active layer and optically coupling the two using a high-order diffraction grating north of the second order, stable oscillation is achieved in a dynamic single longitudinal mode. This makes it possible to create a semiconductor laser suitable for integration.
活性層への電流注入は、膜に水平な横方向から行われる
ため活性層以外の層は不純物の添加を行わないことによ
り高抵抗にでき、またレーザに寄生する静電容量を減ら
すことができ、なおかつ、自由キャリアの減少により光
の吸収損失の少ない光導波層やクラット層が実現され、
化合物半導体からなる集積した光エレクトロニクス素子
で最大の問題点である光の損失を軽減することが可能と
なった。Current is injected into the active layer from the lateral direction horizontal to the film, so layers other than the active layer can be made high in resistance by not adding impurities, and the parasitic capacitance of the laser can be reduced. , Moreover, by reducing the number of free carriers, an optical waveguide layer and a crat layer with less light absorption loss can be realized.
It has become possible to reduce optical loss, which is the biggest problem with integrated optoelectronic devices made of compound semiconductors.
また、第1の光導波層は集積化のための主先導波路に用
いることができ、集積化した素子全体にわたって一回の
成膜により作製できるばかりでなく、前述の通り低光損
失の先導波路を実現できた。In addition, the first optical waveguide layer can be used as the main leading waveguide for integration, and can not only be formed by one film formation over the entire integrated device, but also can be used as a leading waveguide with low optical loss as described above. I was able to realize this.
さらに、活性層と第2先導波路は同一の光の電界分布内
に存在するように構成するため、誘導放出に寄与する反
射光は第1の先導波路と第2の先導波路の両方の回折格
子により結合した光であるための単色性が強く、従来の
動的単一縦モード発振のレーザに比べて、より安定に発
振させることが可能となり、また、第2光導波路の回折
格子も分布反射器として作用することから、半導体レー
ザの素子長を短くできた。Furthermore, since the active layer and the second guiding waveguide are configured to exist within the same electric field distribution of light, the reflected light that contributes to stimulated emission is reflected by the diffraction gratings of both the first guiding waveguide and the second guiding waveguide. Because the light is coupled by the laser beam, it has strong monochromaticity, making it possible to oscillate more stably than conventional dynamic single longitudinal mode oscillation lasers, and the diffraction grating of the second optical waveguide also uses distributed reflection. Because it acts as a vessel, the element length of the semiconductor laser can be shortened.
活性層への電流注入のために、活性導波路の両側に不純
物の拡散を行なうが、この方法により、上面が平坦で両
極の電極を上面からとり出すことが可能となり、金属電
極が対向しないためレーザに寄生する静電容量を極めて
小さくすることが可能となり、また電気配線が容易とな
った。In order to inject current into the active layer, impurities are diffused on both sides of the active waveguide, but this method allows the top surface to be flat and both electrodes to be taken out from the top surface, and the metal electrodes do not face each other. It has become possible to extremely reduce the electrostatic capacitance parasitic to the laser, and electrical wiring has become easier.
前記活性層に超格子を用いた場合は、不純物の拡散等の
熱処理時に超構造の無秩序化が生じ、活性導波路の電流
と光の閉じ込めの強い屈折率導波型レーザが容易、かつ
有効に実現できる。When a superlattice is used in the active layer, the superstructure becomes disordered during heat treatment such as diffusion of impurities, making it easy and effective to create an index-guided laser with strong current and light confinement in the active waveguide. realizable.
[実施例1
第1図に本発明の特徴を最もよく表わす半導体レーザの
共垢方向断面図(a)と共振方向垂直断面図(b)を示
す。[Embodiment 1] FIG. 1 shows a cross-sectional view (a) in the co-iron direction and a vertical cross-sectional view (b) in the resonance direction of a semiconductor laser that best represents the features of the present invention.
この半導体レーザは、周期的凹凸からなる回折格子21
が形成された半絶縁性1nP基板1上に第1光導波層t
−1no、 72GaO,21SAS0.6IP0.3
92 +第1クラッド層1−InP 3、活性層P−1
no、 5gGa6.41ASo、 9OPO10層4
、第2光導波層1−Ink、 ?2GaO2A胎。6,
5を順次積層する。第1光導波層2は0.15μm、活
性層4は0.1 μm、第2光導波層5は0.1μmと
し、第1クラッド層3は1〜2μ田とした。その後、第
2光導波層5上に周期的凹凸をもつ回折格子22を三光
束干渉露光法またはマスク露光法等のフォトリソ工程と
エツチングにより作成し、そのトに再成長し第2クラツ
ド層1−rnP 6を積層する。回折格子21と回折格
子22は、発光波長1.55μmに対して、2次以上の
高次の同じブラッグ波長の回折格子となるように、2次
の場合、周期4800人、深さ800人程定形した。This semiconductor laser has a diffraction grating 21 consisting of periodic concavities and convexities.
A first optical waveguide layer t is formed on a semi-insulating 1nP substrate 1 formed with
-1no, 72GaO, 21SAS0.6IP0.3
92 + first cladding layer 1-InP 3, active layer P-1
no, 5gGa6.41ASo, 9OPO10 layer 4
, second optical waveguide layer 1-Ink, ? 2GaO2A embryo. 6,
5 are stacked one after another. The first optical waveguide layer 2 had a thickness of 0.15 μm, the active layer 4 had a thickness of 0.1 μm, the second optical waveguide layer 5 had a thickness of 0.1 μm, and the first cladding layer 3 had a thickness of 1 to 2 μm. Thereafter, a diffraction grating 22 having periodic irregularities is created on the second optical waveguide layer 5 by a photolithography process such as a three-beam interference exposure method or a mask exposure method, and etching, and the second cladding layer 1- Stack rnP6. The diffraction grating 21 and the diffraction grating 22 are designed to be diffraction gratings having the same Bragg wavelength of higher order than second order for the emission wavelength of 1.55 μm. It was shaped.
第2クラッド層6の工どタキシサル成長後、絶縁層5i
027をCVDにより成膜し、第1(b)図のように活
性導波路直上にフォトリソ工程とエツチングにより8μ
mのストライブを形成する。その陵、n型不A11l物
領域11にSjを拡散し、P型不純物領域lOにZnを
拡散するが、結果として活性導波路の幅は2μm程度に
なった。そして、それぞれの上面にn型電極としてAu
Ge/Au、 p型電極としてAu/Zn/Auを蒸着
合金化した。After the second cladding layer 6 is grown, the insulating layer 5i
A film of 027 was formed by CVD, and as shown in FIG. 1(b), an 8μ
form a stripe of m. Sj is diffused into the n-type impurity region 11 and Zn is diffused into the p-type impurity region 10, and as a result, the width of the active waveguide is about 2 μm. Then, Au is placed on the top surface of each as an n-type electrode.
Ge/Au and Au/Zn/Au were vapor-deposited and alloyed as a p-type electrode.
最後に必要に応じて第1(a)図のように第1クラッド
層の内部まで切り込むことが可能である。Finally, if necessary, it is possible to cut into the first cladding layer as shown in FIG. 1(a).
この利点は、エピタキシャル成長終了後第1クラッド層
の内部まで切り込んで、その上に別の受光素子や光変調
素子などを成膜できるという点にあり、集積化に通して
いる。また、この切り込みの深さを前後で異ならせれば
、それぞれの領域において等偏屈折率が変化するために
前後面で反射率が異なり効率の制御も容易である。The advantage of this is that after the epitaxial growth is completed, it is possible to cut into the first cladding layer and form another light receiving element, light modulating element, etc. thereon, which facilitates integration. Moreover, if the depth of this cut is made different between the front and the front, the equipolarized refractive index changes in each region, so that the reflectance differs between the front and rear surfaces, making it easy to control the efficiency.
以上のようにして作製した動的単一縦モード発振レーザ
は、活性層に水平に横方向からキャリアが注入され、活
性導波路において再結合し発光する。発生した光は、第
2先導波路5の回折格子により分布帰還され、また、第
1光導波路2と光学的結合して、分布反射されて活性領
域において誘導放出する。その結果、発振光は波長がそ
ろい変調時でも安定な動的単一モードで発振することに
なり、レーザ光は第1光導波路内を伝搬し出射する。In the dynamic single longitudinal mode oscillation laser fabricated as described above, carriers are injected horizontally into the active layer from the lateral direction, recombine in the active waveguide, and emit light. The generated light is distributed back by the diffraction grating of the second guide waveguide 5, optically coupled to the first optical waveguide 2, reflected distributed, and stimulated to be emitted in the active region. As a result, the oscillated light has the same wavelength and oscillates in a stable dynamic single mode even during modulation, and the laser light propagates within the first optical waveguide and is emitted.
第1光導波層および第2光導波層と活性層の導波モード
はともに基本モードのみを伝搬するように各層厚と組成
は制御しておき、上記両光導波層上の回折格子のブラッ
グ波長は同じにする必要がある。The thickness and composition of each layer are controlled so that only the fundamental mode of the waveguide modes of the first optical waveguide layer, the second optical waveguide layer, and the active layer propagates, and the Bragg wavelength of the diffraction grating on both of the optical waveguide layers is controlled. must be the same.
また、第1クラッド層と第2クラッド層の層厚は、光導
波層を伝搬する光の電界分布が独立になるように1μm
程度以上あれば良い。In addition, the layer thickness of the first cladding layer and the second cladding layer is 1 μm so that the electric field distribution of light propagating through the optical waveguide layer is independent.
It is good if it is above a certain level.
第1光導波層−ヒの導波路は本実施例においては、不純
物の拡散を第1光導波層に達するまで行なうことにより
光の閉じ込めを行っているが、不純物領域が第1光導波
層の上までなされており、等偏向に屈折率が変化してい
て光の閉じ込め効果があれば問題はない。In this embodiment, the waveguide of the first optical waveguide layer-1 confines light by diffusing impurities until it reaches the first optical waveguide layer. There is no problem as long as the refractive index changes with equal polarization and there is a light confinement effect.
第2図は、本発明の他の実施例の一つである半導体レー
ザ装置である。FIG. 2 shows a semiconductor laser device which is another embodiment of the present invention.
第1の実施例と同様、回折格子の形成された半絶縁性1
nP基板1上に第1光導波層14no、 72Gao、
2FIASO6+Po、 392、第1クラツド層1
−1nP3、活性層P−1nn、 s!1cao、 4
1ASQ、 90P0. +04、第2クラツト層1−
1nP 6を積層後、第2図[11]以外活性層まで選
択性のあるウェットエツチングにより除去し、 [I]
と [rV]部の分布反射器に回折格子凹凸を作成する
6次に第2光導波層1−In。、 、2G80.2FI
AS0.61PO395、第2クラツド層1−1nP6
°を積層しエピタキシャル成長は終わる。次に[I]、
[11]、 [III]、 [rV]部に相当する領
域にp型不純物、n型不純物を拡散させて活性導波路4
、第2先導波路5への電流注入を横方向から膜に水平に
行なわせ、各々電極蒸着する。Similar to the first embodiment, the semi-insulating 1 on which the diffraction grating is formed
On the nP substrate 1, first optical waveguide layers 14no, 72Gao,
2FIASO6+Po, 392, first cladding layer 1
-1nP3, active layer P-1nn, s! 1cao, 4
1ASQ, 90P0. +04, second crust layer 1-
After laminating 1nP 6, the active layer except for [11] in Figure 2 was removed by selective wet etching, [I]
and the sixth-order second optical waveguide layer 1-In that creates diffraction grating irregularities on the distributed reflector of the [rV] section. , ,2G80.2FI
AS0.61PO395, 2nd cladding layer 1-1nP6
The epitaxial growth is completed by stacking the layers. Next [I],
[11], [III], active waveguide 4 by diffusing p-type impurities and n-type impurities in the region corresponding to the [rV] part.
, current is injected into the second leading waveguide 5 from the lateral direction horizontally into the film, and electrodes are deposited on each film.
さらに第2図[I] と [rV]部は、それぞれ注入
電流が干渉しあわないように電気的に分離されており、
[1〜[IV]部は分布反射領域、[m1部は位相調
整領域、 [In部は活性領域である。Furthermore, the [I] and [rV] sections in Fig. 2 are electrically separated so that the injection currents do not interfere with each other.
[1 to [IV] portions are distributed reflection regions, [m1 portion is a phase adjustment region, and [In portion is an active region.
活性領域で発生した光は第2先導波路の分布反射器[1
と [IVJ部で分布反射し、一部第1光導波路と光学
的に結合し、分布反射して動的単一縦モードで発振する
ことになる。また、第2図において右側の台形の端は左
側のそれよりも深く切り込んだが、これにより見かけ上
台側の反射率は増加し左側への出力が増えた。The light generated in the active region passes through the distributed reflector [1
and [Distributed reflection at the IVJ section, part of which is optically coupled to the first optical waveguide, distributed reflection, and oscillation in a dynamic single longitudinal mode. Also, in FIG. 2, the end of the trapezoid on the right side was cut deeper than that on the left side, but this apparently increased the reflectance on the platform side and increased the output to the left side.
本実施例では、 [I]、[rV]部と [+1]部へ
の注入電流の制御により発振波長を変化させることが可
能である。In this embodiment, it is possible to change the oscillation wavelength by controlling the currents injected into the [I], [rV] and [+1] parts.
本実施例において分布反射領域は前後に設けたが、これ
は前後のうちいずれかであっても良く、また位相調整領
域がなくてもある範囲においては波長可変である。In this embodiment, the distributed reflection regions are provided at the front and rear, but they may be located at either the front or rear, and the wavelength can be varied within a certain range even without the phase adjustment region.
不純物領域の形成は、n型にはSi、Sn等、P型には
Zn、Be等の拡散やイオン打込み等により行なうこと
ができる。The impurity region can be formed by diffusion or ion implantation of Si, Sn, etc. for n-type and Zn, Be, etc. for p-type.
本発明において活性層に超格子を用いた場合、例えば、
A lGaAs/GaAs系の材料からなる場合、n型
にはSi等、p型にはZn等の拡散を行なわせることに
より不純物傾城の超格子の無秩序化が生じる。これによ
り活性導波路の電流と光の閉じ込めが行われ、効率の良
い半導体レーザが実現できる以上、本実施例では、活性
領域を屈折率導波性とし、電流注入を容易にする方法と
してp型、n型の不純物の拡散について説明したが、埋
込み構造を用いて横方向注入を行って良い。その際は、
p型とn型の埋込みを別々に行う必要がある。When a superlattice is used in the active layer in the present invention, for example,
In the case of AlGaAs/GaAs-based materials, diffusion of Si or the like into n-type and Zn or the like into p-type causes disorder in the superlattice of impurity tilting. As a result, the current and light in the active waveguide are confined, and a highly efficient semiconductor laser can be realized.In this example, the active region is made to have refractive index waveguiding properties, and as a method to facilitate current injection, the p-type , the diffusion of n-type impurities has been described, but lateral implantation may be performed using a buried structure. In that case,
P-type and n-type implants must be performed separately.
本発明は、InGaAsP/InP系半導体材料のみな
ら丁半導体材料 IAs/GaAs系、InGa八s/
へnAlAs系等他の半導体材料を用いてももちろんか
まわない。The present invention is applicable only to InGaAsP/InP based semiconductor materials.
Of course, other semiconductor materials such as AlAs may also be used.
[発明の効果]
以上説明したように、回折格子により光学的に結合した
光導波層を2層設け、活性層への電流注入を横方向から
行なうことにより、集積化に適した低損失の光導波路を
もつ動的単一縦モード発振の半導体レーザを作製するこ
とが可能となった。[Effects of the Invention] As explained above, by providing two optical waveguide layers optically coupled by a diffraction grating and injecting current into the active layer from the lateral direction, a low-loss optical waveguide suitable for integration can be achieved. It has become possible to fabricate a dynamic single longitudinal mode oscillation semiconductor laser with a wave path.
第1図は、本発明を実施した分布帰還型半導体レーザに
ついての、
(a)共振方向断面図、
(b)共振方向垂直断面図、
第2図は、本発明を実施した波長可変型分布反射型半導
体レーザの共振方向断面図である。
1・・・半絶縁性基板 2・・・第1光導波層3・・
・第1クラッド層 4・・・活性層5・・・第2光導波
層
6.6′・・・第2クラッド層
7・・・絶縁層 8−p型電極9・・・n型電
極 10・・・ρ型導電領域11−−− n型導
電領域
21・・・第1光導波層上の回折格子
22−・・第2光導波層上の回折格子
[1][TV]・・・分布反射領域
[f[I・・・活性領域
[I11]−・・位相調整領域FIG. 1 shows (a) a sectional view in the resonance direction, (b) a vertical sectional view in the resonance direction, and FIG. 2 shows a wavelength tunable distributed reflection type laser in which the present invention is implemented. FIG. 2 is a cross-sectional view in the resonance direction of a type semiconductor laser. 1... Semi-insulating substrate 2... First optical waveguide layer 3...
-First cladding layer 4...Active layer 5...Second optical waveguide layer 6.6'...Second cladding layer 7...Insulating layer 8-P type electrode 9...N type electrode 10 ... ρ-type conductive region 11 --- n-type conductive region 21 --- Diffraction grating 22 on the first optical waveguide layer --- Diffraction grating [1] [TV] on the second optical waveguide layer --- Distributed reflection region [f[I... Active region [I11] -... Phase adjustment region
Claims (1)
導波層、第1クラッド層、活性層、第2光導波層、第2
クラッド層がこの順にエピタキシャル成長され、活性層
には電流の注入が可能なように構成された半導体レーザ
装置において、第1光導波層と第2光導波層には、活性
層で発光する光に対して2次以上の高次の回折格子が形
成されており、かつ第1光導波層と第2光導波層とは互
いに光学的に結合しており、第1光導波層が光出力用導
波路であることを特徴とする半導体レーザ装置。 2、前記活性層への電流注入は活性層に平行に横方向か
ら行なわれるように、活性導波路の両側にp型領域およ
びn型領域が形成されており、各々の領域に接続された
電極が上面すなわち基板とは反対の面に設けられている
ことを特徴とする請求項1に記載の半導体レーザ装置。 3、前記活性層は超格子構造からなり、かつ前記p型不
純物領域およびn型不純物領域作製時の不純物拡散等の
熱処理により不純物領域の超格子の無秩序化が生じてお
り、活性導波路の電流と光の閉じ込めが行われているこ
とを特徴とする請求項2に記載の半導体レーザ装置。[Claims] 1. At least a first optical waveguide layer, a first cladding layer, an active layer, a second optical waveguide layer, a second optical waveguide layer, and a second optical waveguide layer are formed on a semiconductor or semi-insulating substrate.
In a semiconductor laser device configured such that cladding layers are epitaxially grown in this order and current can be injected into the active layer, the first optical waveguide layer and the second optical waveguide layer have a A high-order diffraction grating of second order or higher is formed, and the first optical waveguide layer and the second optical waveguide layer are optically coupled to each other, and the first optical waveguide layer serves as an optical output waveguide. A semiconductor laser device characterized by: 2. A p-type region and an n-type region are formed on both sides of the active waveguide, and electrodes connected to each region are formed on both sides of the active waveguide so that current injection into the active layer is carried out laterally parallel to the active layer. 2. The semiconductor laser device according to claim 1, wherein the semiconductor laser device is provided on an upper surface, that is, on a surface opposite to the substrate. 3. The active layer has a superlattice structure, and the superlattice of the impurity region is disordered due to heat treatment such as impurity diffusion during the formation of the p-type impurity region and the n-type impurity region, and the current in the active waveguide is 3. The semiconductor laser device according to claim 2, wherein light is confined.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8393089A JPH02263491A (en) | 1989-04-04 | 1989-04-04 | Semiconductor laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8393089A JPH02263491A (en) | 1989-04-04 | 1989-04-04 | Semiconductor laser device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02263491A true JPH02263491A (en) | 1990-10-26 |
Family
ID=13816315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8393089A Pending JPH02263491A (en) | 1989-04-04 | 1989-04-04 | Semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02263491A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5608749A (en) * | 1992-09-16 | 1997-03-04 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor laser diode and semiconductor laser diode array including plated heat sink (PHS) electrode |
US6885804B2 (en) * | 2002-02-07 | 2005-04-26 | Electronics And Telecommunications Research Institute | Semiconductor optical devices with differential grating structure and method for manufacturing the same |
-
1989
- 1989-04-04 JP JP8393089A patent/JPH02263491A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5608749A (en) * | 1992-09-16 | 1997-03-04 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor laser diode and semiconductor laser diode array including plated heat sink (PHS) electrode |
US6885804B2 (en) * | 2002-02-07 | 2005-04-26 | Electronics And Telecommunications Research Institute | Semiconductor optical devices with differential grating structure and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8319229B2 (en) | Optical semiconductor device and method for manufacturing the same | |
EP0735635B1 (en) | Optical semiconductor apparatus, driving method therefor, light source apparatus and optical communication system using the same | |
US5789274A (en) | Wavelength-tunable semiconductor laser and fabrication process thereof | |
JPS6327879B2 (en) | ||
JPS6215875A (en) | Semiconductor device and manufacture thereof | |
JPH04243216A (en) | Method for manufacturing optical waveguide, integrated optical device and method for manufacturing the same | |
JP2019054107A (en) | Semiconductor optical device | |
JP2943510B2 (en) | Tunable semiconductor laser device | |
JP3284994B2 (en) | Semiconductor optical integrated device and method of manufacturing the same | |
JP2019008179A (en) | Semiconductor optical device | |
US12027818B2 (en) | Semiconductor laser | |
US7466736B2 (en) | Semiconductor laser diode, semiconductor optical amplifier, and optical communication device | |
JPH04783A (en) | Semiconductor optical element | |
JPH08298355A (en) | Laser device | |
JP2957240B2 (en) | Tunable semiconductor laser | |
JP2965011B2 (en) | Semiconductor optical device and method of manufacturing the same | |
US11557876B2 (en) | Semiconductor laser | |
JPH02263491A (en) | Semiconductor laser device | |
JPS6328520B2 (en) | ||
CN115280609B (en) | Optics | |
JPS6373683A (en) | Distributed feedback semiconductor laser | |
JPH0638544B2 (en) | Optoelectronic device | |
JP2023020996A (en) | Semiconductor optical device | |
JP2010045066A (en) | Semiconductor laser device | |
JP2508529B2 (en) | Distributed feedback semiconductor laser |