[go: up one dir, main page]

JPH0226345B2 - - Google Patents

Info

Publication number
JPH0226345B2
JPH0226345B2 JP56185336A JP18533681A JPH0226345B2 JP H0226345 B2 JPH0226345 B2 JP H0226345B2 JP 56185336 A JP56185336 A JP 56185336A JP 18533681 A JP18533681 A JP 18533681A JP H0226345 B2 JPH0226345 B2 JP H0226345B2
Authority
JP
Japan
Prior art keywords
charge
electrode
tetramethylethylenediamine
electrolyte
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56185336A
Other languages
Japanese (ja)
Other versions
JPS5887777A (en
Inventor
Shinichi Tobishima
Akihiko Yamaji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56185336A priority Critical patent/JPS5887777A/en
Publication of JPS5887777A publication Critical patent/JPS5887777A/en
Publication of JPH0226345B2 publication Critical patent/JPH0226345B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はリチウム二次電池に用いる非水電解液
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a non-aqueous electrolyte used in lithium secondary batteries.

従来の技術 リチウムを負極活物質として用いる電池は小
型・高エネルギ密度を有する電池として研究され
ているが、その二次化が大きな問題点をなつてい
る。
BACKGROUND TECHNOLOGY Batteries using lithium as a negative electrode active material are being researched as small-sized batteries with high energy density, but secondaryization has become a major problem.

二次化が可能な正極活物質として、V2O5
TiO2等の金属酸化物、TiS2、WS2等の層状化合
物がLiとの間でトポケミカルな反応をする化合物
として知られており、現在までチタン、ジルコニ
ウム、ハフニウム、ニオビウム、タンタル、バナ
ジウムの硫化物、セレン化物、テルル化物を用い
た電池(米国特許第4089052号明細書参照)及び
セレン化ニオビウム等を用いた電池(J.
Electrochem.Soc.、vol.124,No.7第968頁及び第
325頁(1977年)参照)等が開示されている。
As a positive electrode active material that can be secondaryized, V 2 O 5 ,
Metal oxides such as TiO 2 and layered compounds such as TiS 2 and WS 2 are known as compounds that undergo topochemical reactions with Li. Batteries using niobium selenide, selenide, telluride (see US Pat. No. 4,089,052), and batteries using niobium selenide (J.
Electrochem.Soc., vol.124, No.7, pages 968 and
325 (1977)) etc. are disclosed.

発明が解決しようとする問題点 しかしながら、このような二次電池用正極活物
質の研究に比してLi極の充放電特性に関する研究
は充分とはいえず、Li二次電池実現のためには、
充放電効率及びサイクル寿命等の充放電特性の良
好な電解液の探査が重大な問題となつている。
Problems to be Solved by the Invention However, compared to such research on positive electrode active materials for secondary batteries, research on the charging and discharging characteristics of Li electrodes is not sufficient. ,
The search for electrolytes with good charge/discharge characteristics such as charge/discharge efficiency and cycle life has become a serious issue.

Li極の充放電効率を向上させる試みとしては、
LiClO4/プロピレンカーボネイト(以下PCと略
記)にニトロメタン、SO2等の添加剤を加える試
み〔Electorchmica.Acta.、vol.122、第75〜83頁
(1977)〕やLiClO4/メチルアセテートを用いる
試みが行われているが、必ずしも充分とはいえ
ず、さらに特性の優れたリチウム二次電池用電解
液が求められている。
In an attempt to improve the charging and discharging efficiency of Li electrodes,
An attempt was made to add additives such as nitromethane and SO 2 to LiClO 4 /propylene carbonate (hereinafter abbreviated as PC) [Electorchmica.Acta., vol. 122, pp. 75-83 (1977)] and use of LiClO 4 /methyl acetate. Although attempts have been made, they are not necessarily satisfactory, and there is a need for an electrolytic solution for lithium secondary batteries with even better characteristics.

問題を解決するための手段 本発明は、このような現状に鑑みてなされたも
のであり、その日的はLi極の充放電特性の優れた
リチウム二次電池用非水電解液を提供する事にあ
る。
Means for Solving the Problems The present invention was made in view of the current situation, and its purpose is to provide a non-aqueous electrolyte for lithium secondary batteries that has excellent charging and discharging characteristics for Li electrodes. be.

従つて、本発明によるリチウム二次電池用非水
電解液は無機リチウム塩を有機溶媒に溶解させた
非水電解液において前記非水電解液の添加剤とし
て、N,N,N′,N′−テトラメチルエチレンジ
アミンを用いた事を特徴とするものである。
Therefore, the non-aqueous electrolyte for lithium secondary batteries according to the present invention is a non-aqueous electrolyte in which an inorganic lithium salt is dissolved in an organic solvent, and N, N, N', N' are added as additives to the non-aqueous electrolyte. -It is characterized by using tetramethylethylenediamine.

本発明によれば、前記添加剤としてN,N,
N′,N′−テトラメチルエチレンジアミンを用い
ることにより、Li極の充放電特性の良好なリチウ
ム二次電池を実現できる。
According to the present invention, the additives include N, N,
By using N',N'-tetramethylethylenediamine, a lithium secondary battery with good Li electrode charge/discharge characteristics can be realized.

本発明を更に詳しく説明する。 The present invention will be explained in more detail.

本発明によるリチウム二次電池用非水電解液に
用いられる有機溶媒は、従来、この種の電解液に
用いられるものであれば、いかなるものでもよ
い。例えば、プロピレンカーボネイト、テトラハ
イドロフラン、ジメチルスルホキシド、γ−ブチ
ロラクトン、ジオキリラン、1,2−ジメトキシ
エタン、2−メチルテトラハラドロフランから選
択された1種以上の有機溶媒を用いることができ
る。
The organic solvent used in the non-aqueous electrolyte for a lithium secondary battery according to the present invention may be any organic solvent as long as it is conventionally used in this type of electrolyte. For example, one or more organic solvents selected from propylene carbonate, tetrahydrofuran, dimethyl sulfoxide, γ-butyrolactone, dioxirane, 1,2-dimethoxyethane, and 2-methyltetrahaladofuran can be used.

さらに、溶質である無機リチウム塩は前述の有
機溶媒と同様限定されない。例えばLiClO4
LiBF4、LiAsF6、LiPE6、LiAlCl4、から選択さ
れた1種以上のような、一般に非水電解液の溶質
として用いられている無機リチウム塩を有効に用
いる事ができる。
Furthermore, the inorganic lithium salt that is the solute is not limited like the above-mentioned organic solvent. For example LiClO4 ,
Inorganic lithium salts that are generally used as solutes in nonaqueous electrolytes, such as one or more selected from LiBF 4 , LiAsF 6 , LiPE 6 , and LiAlCl 4 , can be effectively used.

有機溶媒に溶解させる溶質の量は好ましくは、
0.5〜2.5Nである。0.5N未満であると充放電特性
が著しく低下し、また2.5Nを超えると溶解が困
難となつたり粘度が上昇し充放電特性が悪化すく
という欠点を生ずるからである。特に好ましくは
例えばLiClO4の場合、1N前後である。
The amount of solute dissolved in the organic solvent is preferably
It is 0.5-2.5N. This is because if it is less than 0.5N, the charge-discharge characteristics will be significantly deteriorated, and if it exceeds 2.5N, it will become difficult to dissolve, the viscosity will increase, and the charge-discharge characteristics will deteriorate easily. Particularly preferably, for example in the case of LiClO 4 , it is around 1N.

本発明において前記有機溶媒に添加される添加
剤はN,N,N′,N′−テトラメチルエチレンジ
アミンであるが、添加するとなぜ充放働特性が向
上するのか、その理由は必ずしも明確ではない。
In the present invention, the additive added to the organic solvent is N,N,N',N'-tetramethylethylenediamine, but the reason why its addition improves the charge-release characteristics is not necessarily clear.

しかしながら、以下のようなことや考えられ
る。
However, the following things can be considered.

Liの充放電効率の減少の主要因として、析出し
た活性化Liが溶媒を化学的に還元し、Liが電気化
学的に不活性(Li+イオンを放電できない)化合
物に変化し、結局、Liが消耗してしまうことが認
められる。この化学反応を抑制するためには、
1)Liとの反応性が低い溶媒を使用する、あるい
は2)Liの表面に保護膜を形成する添加剤を使用
する、方法が考えられるが、1)の方法は電解液
の導電率などの他の特性を劣化させてしまう恐れ
がある。
The main reason for the decrease in Li charging and discharging efficiency is that the precipitated activated Li chemically reduces the solvent, and Li changes into an electrochemically inert compound (cannot discharge Li + ions), and eventually Li It is recognized that the energy is consumed. In order to suppress this chemical reaction,
Possible methods include 1) using a solvent with low reactivity with Li, or 2) using an additive that forms a protective film on the surface of Li, but method 1) There is a possibility that other characteristics may deteriorate.

本発明の添加剤は、上記2)の効果を狙つたも
のであつて、N,N,N′,N′−テトラメチルエ
チレンジアミンは、Li+イオンに対する溶媒和
力が高い溶媒の一つであり、Li金属と反応する
ことが知られている。
The additive of the present invention aims at the effect 2) above, and N,N,N',N'-tetramethylethylenediamine is one of the solvents with high solvation power for Li + ions. , is known to react with Li metal.

の理由により、前述した有機溶媒にN,N,
N′,N′−テトラメチルエチレンジアミンを添加
すると、いずれの溶媒においても電析反応を行う
Li+イオンは添加剤に選択的に溶媒和されて、安
定な一対一の錯体をつくる。そしての理由によ
りN,N,N′,N′−テトラメチルエチレンジア
ミンがLiと反応し、Li表面に保護膜を形成すると
考えられる。
For this reason, N, N,
When N′,N′-tetramethylethylenediamine is added, electrodeposition reaction occurs in any solvent.
The Li + ions are selectively solvated by the additive to form stable one-to-one complexes. For this reason, it is thought that N,N,N',N'-tetramethylethylenediamine reacts with Li to form a protective film on the Li surface.

なお、エチレンジアミンを添加剤として用いた
場合、アミノ基の水素がリチウム金属と反応し水
素ガスを発生させる。この水素ガスは発火の原因
となり電池の安全上問題がある。
Note that when ethylenediamine is used as an additive, hydrogen in the amino group reacts with lithium metal to generate hydrogen gas. This hydrogen gas causes ignition and poses a safety problem for batteries.

一方、N,N,N′,N′−テトラメチルエチレ
ンジアミンは、エチレンジアミンのアミノ基の水
素をメチル基で置換したものであり、添加剤とし
て用いても水素ガスは発生せず、安全性が優れて
いる。
On the other hand, N,N,N',N'-tetramethylethylenediamine is produced by replacing the hydrogen in the amino group of ethylenediamine with a methyl group, and does not generate hydrogen gas even when used as an additive, making it highly safe. ing.

N,N,N′,N′−テトラメチルエチレンジア
ミンの添加量は好ましくは、Li+イオン濃度に対
しモル比で2以下、最も好ましくは1.5以下であ
るのが好ましい。2を超えると充放電特性が低下
するからである。
The amount of N,N,N',N'-tetramethylethylenediamine added is preferably 2 or less, most preferably 1.5 or less in molar ratio to the Li + ion concentration. This is because if it exceeds 2, the charge/discharge characteristics will deteriorate.

実施例 以下本発明の実施例を説明する。Example Examples of the present invention will be described below.

実施例 1 作用極としてPt極を、対極としてLiを、さら
に参照電極としてLiを用いたセルを組み、Pt極
上にLiを析出させる事により、Li極の充放電特性
を測定した。電解液には、1NLiClO4/プロピレ
ンカーボネイト(以下、PCと略記)に、3%の
体積混合比でN,N,N′,N′−テトラメチルエ
チレンジアミン(以下、TMEDA略記)を添加
したものを用いた。下記の式()に上記添加剤
の構造式を示す。上記電解液の当量伝導度は6.5
Ω-1mol-1cm2であり、1NLiClO4/PC単独系の当
量伝導度である6.0Ω-1mol-1cm2より高かつた。
Example 1 A cell was assembled using a Pt electrode as a working electrode, Li as a counter electrode, and Li as a reference electrode, and Li was deposited on the Pt electrode to measure the charge/discharge characteristics of the Li electrode. The electrolyte was made by adding N,N,N',N'-tetramethylethylenediamine (hereinafter abbreviated as TMEDA) to 1NLiClO 4 /propylene carbonate (hereinafter abbreviated as PC) at a volume mixing ratio of 3%. Using. The structural formula of the above additive is shown in the following formula (). The equivalent conductivity of the above electrolyte is 6.5
Ω −1 mol −1 cm 2 , which was higher than the equivalent conductivity of 1NLiClO 4 /PC alone, which was 6.0 Ω −1 mol −1 cm 2 .

(CH32NCH2CH2N(CH32 () 測定はまず5mA/cm2の定電流で1分間、Pt
極上にLiを析出させ充電した後、5mA/cm2の定
電流でPt極上に析出したLiをLi+イオンとして放
電するサイクル試験を行つた。充放電効率はPt
極の電位変化を求め、Pt極上に析出したLiをLi+
イオンとして放電させるのに要した電気量とPt
極上にLiを析出させるために要した電気量との比
から算出した。
(CH 3 ) 2 NCH 2 CH 2 N (CH 3 ) 2 () First, the Pt
After depositing Li on the Pt pole and charging it, a cycle test was conducted in which the Li deposited on the Pt pole was discharged as Li + ions at a constant current of 5 mA/cm 2 . Charge/discharge efficiency is Pt
Obtain the potential change of the electrode, and change the Li deposited on the Pt electrode to Li +
Amount of electricity required to discharge as ions and Pt
It was calculated from the ratio to the amount of electricity required to deposit Li on the top.

第1図は、Li極の充放電効率とサイクル数の関
係を示す図であり、図中のaは上記電解液を用い
た場合であり、bは1NLiClO4/PC単独系の電解
液を用いた場合の充放電特性を参考例として示し
た。第1図から判るように、単独系bに比べて
TMEDAを添加した系aでは、明らかに充放電
サイクル特性は向上している。
Figure 1 is a diagram showing the relationship between the charge/discharge efficiency of Li electrodes and the number of cycles. In the figure, a shows the case where the above electrolyte is used, and b shows the case where the electrolyte of 1NLiClO 4 /PC alone is used. The charge/discharge characteristics in the case where the battery is used are shown as a reference example. As can be seen from Figure 1, compared to independent system b,
In system a to which TMEDA was added, the charge-discharge cycle characteristics were clearly improved.

実施例 2 電解液として、1NLiClO4/PCに0.5%の体積
混合比でTMEDAを添加したものを用いた以外
は実施例1と同様にしてLi極の充放電特性を測定
した。上記電解液の当量伝導度は6.2Ω-1mol-1cm2
であり、1NLiClO4/PC単独系の当量伝導度であ
る6.0Ω-mol-1cm2より高かつた。
Example 2 The charging and discharging characteristics of the Li electrode were measured in the same manner as in Example 1, except that 1NLiClO 4 /PC with TMEDA added at a volume mixing ratio of 0.5% was used as the electrolyte. The equivalent conductivity of the above electrolyte is 6.2Ω -1 mol -1 cm 2
This was higher than the equivalent conductivity of 1NLiClO 4 /PC alone, which was 6.0Ω - mol -1 cm 2 .

第2図は充放電効率とサイクル数の関係を示す
図であり、図中のaは、上記電解液を用いた場合
であり、bは1NLiCl4/PC単独系の電解液を用
いた場合の充放電特性を参考例として示した。
Figure 2 is a diagram showing the relationship between charge/discharge efficiency and number of cycles. In the figure, a shows the case when the above electrolyte is used, and b shows the case when the electrolyte of 1NLiCl 4 /PC alone is used. The charge/discharge characteristics are shown as a reference example.

第2図から判る様に単独系bに比べて
TMEDAを添加した系aでは明らかに充放電特
性は向上している。
As can be seen from Figure 2, compared to independent system b,
In system a to which TMEDA was added, the charge-discharge characteristics were clearly improved.

発明の効果 以上の説明から明らかな様に、本発明によれ
ば、無機リチウム塩を有機溶媒に溶解した電解液
に、N,N,N′,N′−テトラメチルエチレンジ
アミンを添加する事により、Li極の充放電特性が
良好なリチウム二次電池用非水電解液を実現する
事ができる。
Effects of the Invention As is clear from the above explanation, according to the present invention, by adding N,N,N',N'-tetramethylethylenediamine to an electrolytic solution in which an inorganic lithium salt is dissolved in an organic solvent, It is possible to realize a non-aqueous electrolyte for lithium secondary batteries with good Li electrode charge/discharge characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は、本発明の実施例におけるリ
チウム極の充放電効率とサイクル数の関係を示し
た図である。
FIGS. 1 and 2 are diagrams showing the relationship between the charge/discharge efficiency of a lithium electrode and the number of cycles in an example of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 無機のリチウム塩を有機溶媒に溶解させた非
水電解液において、前記非水電解液の添加剤とし
てN,N,N′,N′−テトラメチルエチレンジア
ミンを用いたことを特徴とするリチウム二次電池
用非水電解液。
1. A non-aqueous electrolyte in which an inorganic lithium salt is dissolved in an organic solvent, characterized in that N,N,N',N'-tetramethylethylenediamine is used as an additive in the non-aqueous electrolyte. Non-aqueous electrolyte for secondary batteries.
JP56185336A 1981-11-20 1981-11-20 Nonaqueous electrolytic solution for lithium secondary battery Granted JPS5887777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56185336A JPS5887777A (en) 1981-11-20 1981-11-20 Nonaqueous electrolytic solution for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56185336A JPS5887777A (en) 1981-11-20 1981-11-20 Nonaqueous electrolytic solution for lithium secondary battery

Publications (2)

Publication Number Publication Date
JPS5887777A JPS5887777A (en) 1983-05-25
JPH0226345B2 true JPH0226345B2 (en) 1990-06-08

Family

ID=16169015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56185336A Granted JPS5887777A (en) 1981-11-20 1981-11-20 Nonaqueous electrolytic solution for lithium secondary battery

Country Status (1)

Country Link
JP (1) JPS5887777A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0636370B2 (en) * 1984-01-24 1994-05-11 日本電信電話株式会社 Electrolyte for lithium secondary battery
JPH0650650B2 (en) * 1984-07-25 1994-06-29 日本電信電話株式会社 Electrolyte for lithium secondary battery
JP3475449B2 (en) * 1993-08-24 2003-12-08 宇部興産株式会社 Non-aqueous battery
CN104781970B (en) * 2012-12-25 2018-01-23 日新电机株式会社 Battery

Also Published As

Publication number Publication date
JPS5887777A (en) 1983-05-25

Similar Documents

Publication Publication Date Title
US7247404B2 (en) Electrolyte for lithium secondary batteries and lithium secondary battery comprising the same
KR100941299B1 (en) Non-aqueous electrolyte additive with cyano group and electrochemical device using same
JP2002083633A (en) Electrolyte for lithium sulfur battery and lithium sulfur battery containing the same
JP2002075447A (en) Electrolyte for lithium sulfur battery and lithium sulfur battery containing the same
JPS59134568A (en) Electrolyte for lithium battery
US20110183214A1 (en) Nonaqueous secondary battery
US7422827B2 (en) Nonaqueous electrolyte
RU2330354C1 (en) Non-aquatic electrolyte containing oxyanions, and lithium battery using it
JP2548573B2 (en) Electrolyte for lithium battery
KR100592248B1 (en) Organic Electrolyte and Lithium Battery Using the Same
JPWO2003036751A1 (en) Non-aqueous electrolyte secondary battery
JPH053112B2 (en)
JPH0636370B2 (en) Electrolyte for lithium secondary battery
JPH0351068B2 (en)
JPH0226345B2 (en)
JP3974012B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP2654553B2 (en) Electrolyte for lithium secondary battery
JP3831599B2 (en) Lithium secondary battery
JPH0477426B2 (en)
JPH0564429B2 (en)
KR100370384B1 (en) Non-aqueous electrolyte solution for lithium battery
JPS5931571A (en) Electrolyte for lithium secondary battery
JPH11250933A (en) Nonaqueous electrolyte secondary battery
JP3086878B1 (en) Lithium metal secondary battery
JPH08162154A (en) Secondary battery having nonaqueous solvent electrolyt