[go: up one dir, main page]

JPH02262270A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPH02262270A
JPH02262270A JP1082824A JP8282489A JPH02262270A JP H02262270 A JPH02262270 A JP H02262270A JP 1082824 A JP1082824 A JP 1082824A JP 8282489 A JP8282489 A JP 8282489A JP H02262270 A JPH02262270 A JP H02262270A
Authority
JP
Japan
Prior art keywords
electrolyte battery
organic electrolyte
battery according
salt
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1082824A
Other languages
Japanese (ja)
Other versions
JP2634904B2 (en
Inventor
Fusaji Kita
房次 喜多
Akira Kawakami
章 川上
Osamu Kajii
梶井 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP1082824A priority Critical patent/JP2634904B2/en
Publication of JPH02262270A publication Critical patent/JPH02262270A/en
Application granted granted Critical
Publication of JP2634904B2 publication Critical patent/JP2634904B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve low temperature characteristics and restrict increase of an inner resistance after discharge by adding compound including boron element to organic electrolyte consisting of organic solvent including cyclic ether and lithium salt dissolved in it. CONSTITUTION:Ester is included in organic solvent by more than 1% by the volume ratio. Lithium salt shall be at least one of LiClO4 and LiCF3SO3. Compound including boron shall be that having a bond of B-F, and it shall be at least one of BF3, solvent of BF3 and double salt of BF3 with other salt. The double salt of BF3 with other salt shall be that including BF4<->. The compound including boron shall be added by more than 10<-3>mol/l to the electrolyte, and its addition quantity shall be less than 30% of dissolved lithium salt quantity, while it shall be more than 10<-3> by the mol ratio to cyclic ether.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野1 本発明は、有機電解液電池の改良に係わり、さらに詳し
くは、第一に、低温での放電特性が優秀でしかも放電中
途で電池を保存したときの劣化を防止することに配慮し
、第二に、サイクル充放電の繰り返しに耐える特性をも
たせることに配慮したものである。
[Industrial Field of Application 1] The present invention relates to the improvement of organic electrolyte batteries, and more specifically, firstly, it has excellent discharge characteristics at low temperatures and prevents deterioration when the battery is stored in the middle of discharge. Secondly, consideration was given to providing characteristics that can withstand repeated charging and discharging cycles.

【従来の技術] リチウムを負極とし、MnO2を正極として用いたいわ
ゆるリチウム−MnO2電池に代表される上記の有機電
解液電池は、高エネルギー密度且つ軽量で長寿命のため
近年需要が増加している。 この電池の電解質としてはLiClO,がよく用いられ
、溶媒としてはプロピレンカーボネート(以下PCと略
する)とジメトキシエタン(以下DMEと略する)の混
合溶媒がよく用いられるが、この種の溶媒系は、−20
℃などの低温での電池特性が悪くなる傾向があった。 これを改善するため、最近カメラ用Li電池の一部にP
CとDMHの他にテトラヒドロフラン(以下THEと略
する)を加えた三成分からなる混合溶媒が使用されてい
る。 この電解液系を用いることにより、低温での電池特性は
確かに走路的に向上する。特に重負荷時の効果には著し
いものがある。例えば外径15nm、総高40nn+の
筒形Li電池でパルス放電を一20℃で行った場合、0
.6M LiClO4/PC:DMEテは、■、7v終
止で90回しか放電できないのに対し、0.6M Li
Cl0./PC:THF:DMEを用いることにより、
200〜300回のパルス放電が可能となる。 このように、PC:THF:DME3成分混合溶媒を使
用した電池は低温特性に優れたものである。 しかしながら、この種の電池の低温特性を評価していた
際に、本発明者らは、以下に述べる意外な事実を見い出
したのである。 即ち、この種の電池を、半分以上放電した後に放置して
おくと、低温での優れた放電特性がしだいに失われてい
き、内部抵抗も増加してしまうという現象が認められた
。この現象については、いまだ報告例が無いことから、
本発明者らは、これを究明することとした。 まず、原因となるTIIFを添加しないで、低温での放
電特性が優秀でしかも放電中途で電池を保存したときの
劣化が防止された電池を提供しようと考え、THFを添
加しないで検討を試みたが、THFを添加しない0.6
M LiClO4/PC:DMEでは、このような内部
抵抗の増加は少ないかわりに、前述の通り低温での特性
は期待できないものであった。 そこで、他の方法、例えば特開昭63−119160に
提案されているように、0.5M LiClO4−0,
IM LiBF4/PC:D肚(1:1)を用いた電池
を作成し、−20℃で放電試験を試みたが、100パル
ス程度しか放電できず、結局THFなしでは低温特性を
改善することができなかった。 以上のことから、低温特性改善のためにはやはりTHF
などの環状エーテルが必要であるとの見解に達し、環状
エーテルを含んだものであっても、半分以上放電後の内
部抵抗増大が少なくなるように改善することが必要であ
るとの見地に基づき、本発明をなすに至った。 【発明が解決しようとする問題点) 本発明は、上記従来製品が持っていた低温特性の悪さや
放電後の内部抵抗の増大などの欠点を少くすることを目
的とする。 【問題を解決するための手段】 本発明者等は、上記の目的を達成するために鋭意検討し
た結果、電解液にTHFのごとき環状エーテルを含む電
池では、半分以上放電後の内部抵抗が増大することを確
認した。 この原因について究明したところ、第一に、電解液にT
HFのごとき環状エーテルを含む場合、放電によって活
性になったLiが溶媒と一部反応することを見い出した
。 第二に、この反応にはTHFのごとき環状エーテルが関
与していることをつきとめた。 第三に、この反応においてTHFのごとき環状エーテル
がLi表面に皮膜を形成するための反応場を提供する傾
向があることを発見した。 第四にまた、この反応場としての挙動はTHFのような
環状エーテルを多く加えるにつれて強く現れる傾向があ
ることを見い出した。そしてこの原因はTHFのAN数
(アクセプター数)が低く電解液の酸性度が低下するた
めではないかと推測された。 そこで本発明者らは、このような一連の多数の事実の発
見に基づいて検討したところ、ホウ素元素を分子内に含
み、且つ電解液の酸性度を向上させる化合物を添加する
ことが効果的であるとの考えを持つに至り、環状エーテ
ルを含む有機溶媒にリチウム塩を溶解させた有機電解液
中にホウ素元素を含む化合物を添加したことを特徴とす
る有機電解液電池を提案するに至ったのでる。 本発明において用いられる、ホウ素元素を含む化合物と
しては、BF、、BCl3、BBr3などがあるが、中
でもBF3のようにB−F結合を有するものが安定であ
る。BF、でも単独ではLiとやや反応し望ましくない
が、本発明の電解液中においては、エーテルと溶媒和(
TI(Fの場合ならBF、・THF) t、たり、Li
ClO4やLiCF、 So、とある程度複塩(Li”
BF、 Cl0J−など)を形成し通常より安定に存在
しうる。 さらに典型的には、予めLiFやLiC1などのLi塩
と複塩を形成させたLiBF、、LiBF3C1などと
して添加することができる。 これらの複塩としてはBF4−アニオンを有する塩がL
iとの反応性が少ないことから望ましく、中でもLiB
F4が最もよく知られている。 また、このLiBF4の応用例としてLi塩を他のカチ
オンで置き換えた、(C2H4)4N BF41 (n
−C4tl、)4NBF4.(C2H,)4P BF4
なども挙げることができる。 本発明においてより高い効果を望む場合には、例えばB
F4−を含む塩であれば、少くとも10−3mol/l
以上添加することが好ましい。より望ましくは、[BF
4−/環状エーテル]のモル濃度比が、lXl0−3以
上であることが推奨され、BF4−濃度の増大につれて
より大きな効果が得られる。 ただ、電池の放電容量を充分にとるには、BF4−濃度
が、LiCl0.、とLiCF35o、の合計濃度の3
oパモル比)を越えない方が望ましい。 環状エーテルとして何を選択するかによって、最適な[
BF4−]の濃度はある程度具なる。 環状エーテルとして通常テトラヒドロフラン、■、3−
ジオキソラン、2−メチル−テトラヒドロフラン、4−
メチル−1,3−ジオキソランなどが挙げられるが、低
温特性向ヒのためには、テトラヒドロフランや1.3−
ジオキソランが望ましく、中でもテトラヒドロフランは
低温特性向上に最も効果が太きし)。 テトラヒドロフラン(THF)を環状エーテルとして用
い、BF4−をアニオンとして含むLiBF4の場合を
例にとると、[LIBF4/THF]のモル濃度比は2
×10−3以上であることが望ましい。 またテトラヒドロフランの全溶媒中での体積比率が0.
1以上より望ましくは0.25以上であることが、低温
特性向上のために望ましい。 環状エーテル以外の溶媒としては、プロピレンカーボネ
ート、エチレンカーボネート、γ〜ブチロラクトンなど
のエステルの少くとも1種を用い、エステルの全溶媒中
での比率が0.01以上(体積比)であることが望まし
い。 その他の使用可能な溶媒として、1,2−ジメトキシエ
タン、メチルジグライム、エチルグライム、メチルトリ
プライム、スルホランなどがある。 本発明において使用する負極としては、リチウムなどの
アルカリ金属またはその合金、正極としてはMnO2、
あるいは他の金属酸化物、金属硫化物を用いることがで
き、本発明はこれらの組合せの一次電池、二次電池のど
ちらにおいても有効である。 第1図はこの発明を適用した渦巻型筒形電池の構成例を
示す。この図において、1は正極、2は負極、3は正極
1を包む袋状のセパレータ、4は前記構成の有機電解液
であり、両極は帯状のものを重ねて渦巻状に捲回した状
態で負極缶をなす筒形のステンレス鋼製電池ケース5内
に装填され、その全体が電解液4に浸漬されている。 なお、この発明は、例示した渦巻型以外の各種筒形電池
、ボタン形、コイン形の如き薄型電池など、種々の電池
形態に適用可能である。 【実施例1 以下この発明を実施例に沿って説明する。 実施例1 外径15mmのステンレス鋼製の電池ケース内に、厚さ
0.17nn+、幅30nwnのリチウムからなる帯状
負極と、微孔性ポリプロピレンシートからなる袋状セパ
レータに包んだ厚さ0.4mm、幅30H1のMnO□
合剤からなる帯状正極とを重ねて渦巻状に捲回した状態
で且つ正負両極のリード体を取り付けて装填するととも
に、プロピレンカーボネートとテトラヒドロフランと1
・2−ジメトキシエタンとの体積比1:1:1の混合溶
媒に0.5モル/lのLiClO4と0.1モル/lの
LiBF4とを電解質として溶解し、電解液を注入した
。 ついで、電池を封口し、安定化、エイジングを行い、第
1図で示す構造の渦巻型の筒形電池を作製した。 実施例2 LiClO4濃度を0.57モル/lとし、LiBF4
濃度を0゜03モル/lとした以外は実施例1と同様に
筒形電池を作成した。 比較例l LiClO4濃度を0.6モル/lとし、LiBF4を
添加しなかった以外は実施例1と同様に筒形電池を作成
した。 これらの実施例1.2および比較例1の電池を880m
Ah放電し、4hr後に1kHzでの内部抵抗を測定し
た。測定後60℃で3日貯蔵し内部抵抗の変化を測定し
た。その結果を表1に示す。表よりLiBF4を添加す
ることにより、放電後の貯蔵時の内部抵抗の増加がかな
り押えられることがわかる。 また1本発明は二次電池にも適用可能であり、その効果
を検討するため、サイクル試験を行った。 即ち、厚さ100μlで1aaX1anの大きさのLL
極を作用極として用い、対極にもLiを用いて、0.5
+nA/aイで4時間充電(LLの電着)してのち0.
5mA/−で4時間放電(Li+の放出)するという操
作を繰返し、作用極の放電終止電圧を測定した。第2図
の結果から明らかなようにこの発明の有機電解液(実施
例1)を使用することにより、二次電池用としてのサイ
クル特性の改善を図れるものであることが判る。
[Prior Art] Demand for the above-mentioned organic electrolyte batteries, typified by the so-called lithium-MnO2 battery that uses lithium as a negative electrode and MnO2 as a positive electrode, has increased in recent years because of its high energy density, light weight, and long life. . LiClO is often used as the electrolyte in this battery, and a mixed solvent of propylene carbonate (hereinafter abbreviated as PC) and dimethoxyethane (hereinafter abbreviated as DME) is often used as the solvent, but this type of solvent system , -20
Battery characteristics tended to deteriorate at low temperatures such as °C. To improve this, some Li batteries for cameras have recently been
A mixed solvent consisting of three components is used, in which tetrahydrofuran (hereinafter abbreviated as THE) is added in addition to C and DMH. By using this electrolyte system, battery characteristics at low temperatures are certainly improved. The effect is particularly remarkable under heavy loads. For example, when pulse discharge is performed at -20°C with a cylindrical Li battery with an outer diameter of 15 nm and a total height of 40 nn+, 0
.. 6M LiClO4/PC: DMEte can only be discharged 90 times at 7V termination, whereas 0.6M Li
Cl0. By using /PC:THF:DME,
200 to 300 pulse discharges are possible. As described above, a battery using a 3-component mixed solvent of PC:THF:DME has excellent low-temperature characteristics. However, while evaluating the low-temperature characteristics of this type of battery, the present inventors discovered the unexpected fact described below. That is, a phenomenon has been observed in which if this type of battery is left undisturbed after being discharged to more than half its capacity, its excellent discharge characteristics at low temperatures are gradually lost and its internal resistance increases. Since there are no reported cases of this phenomenon,
The present inventors decided to investigate this. First, we tried to provide a battery that has excellent discharge characteristics at low temperatures and prevents deterioration when stored in the middle of discharge without adding TIIF, which is the cause of the discharge, so we tried to consider it without adding THF. but 0.6 without adding THF
In MLiClO4/PC:DME, although such an increase in internal resistance was small, the characteristics at low temperatures were not as expected as described above. Therefore, other methods such as 0.5M LiClO4-0,
A battery was created using IM LiBF4/PC:D (1:1) and a discharge test was performed at -20°C, but it was only possible to discharge about 100 pulses, and in the end it was not possible to improve the low-temperature characteristics without THF. could not. From the above, THF is still necessary to improve low-temperature characteristics.
Based on the opinion that cyclic ethers such as , the present invention was accomplished. [Problems to be Solved by the Invention] The present invention aims to reduce the drawbacks of the conventional products, such as poor low-temperature characteristics and increased internal resistance after discharge. [Means for Solving the Problem] As a result of intensive studies to achieve the above object, the present inventors have found that in batteries containing a cyclic ether such as THF in the electrolyte, the internal resistance increases after more than half discharge. It was confirmed that When we investigated the cause of this, we found that the first reason was that the electrolyte contained T.
It has been found that when a cyclic ether such as HF is included, Li activated by discharge partially reacts with the solvent. Second, they found that a cyclic ether such as THF is involved in this reaction. Third, we discovered that in this reaction, cyclic ethers such as THF tend to provide a reaction field for forming a film on the Li surface. Fourthly, we have also found that this behavior as a reaction field tends to appear more strongly as more cyclic ether such as THF is added. It was speculated that the cause of this was that the AN number (acceptor number) of THF was low and the acidity of the electrolyte solution was reduced. The inventors of the present invention conducted studies based on the discovery of a large number of facts as described above, and found that it is effective to add a compound that contains boron element in the molecule and improves the acidity of the electrolyte. We came to the idea that there is, and came to propose an organic electrolyte battery characterized by adding a compound containing the boron element to an organic electrolyte solution in which a lithium salt is dissolved in an organic solvent containing a cyclic ether. It comes out. Compounds containing the boron element used in the present invention include BF, BCl3, BBr3, etc. Among them, compounds having a BF bond such as BF3 are stable. BF alone is undesirable as it slightly reacts with Li, but in the electrolyte of the present invention, BF and solvated (
TI (BF in case of F, ・THF) t, tari, Li
ClO4, LiCF, So, and some double salts (Li”
BF, Cl0J-, etc.) and can exist more stably than usual. More typically, it can be added as LiBF, LiBF3C1, etc., which has been formed into a double salt with a Li salt such as LiF or LiC1. As these double salts, salts having BF4-anions are L
Among them, LiB is preferable because of its low reactivity with LiB.
F4 is the best known. In addition, as an application example of this LiBF4, (C2H4)4N BF41 (n
-C4tl, )4NBF4. (C2H,)4P BF4
etc. can also be mentioned. If a higher effect is desired in the present invention, for example, B
For salts containing F4-, at least 10-3 mol/l
It is preferable to add the above amount. More preferably, [BF
It is recommended that the molar concentration ratio of 4-/cyclic ether is 1X10-3 or more, and a greater effect can be obtained as the BF4- concentration increases. However, in order to obtain a sufficient discharge capacity of the battery, the BF4- concentration must be LiCl0. 3 of the total concentration of , and LiCF35o,
It is preferable not to exceed the mol ratio. Depending on what you choose as the cyclic ether, the optimal [
The concentration of BF4-] varies to some extent. The cyclic ether is usually tetrahydrofuran, ■, 3-
Dioxolane, 2-methyl-tetrahydrofuran, 4-
Examples include methyl-1,3-dioxolane, but to improve low-temperature properties, tetrahydrofuran and 1,3-dioxolane are recommended.
Dioxolane is preferable, and among them, tetrahydrofuran is the most effective in improving low-temperature properties). Taking the case of LiBF4 using tetrahydrofuran (THF) as a cyclic ether and containing BF4- as an anion, the molar concentration ratio of [LIBF4/THF] is 2.
It is desirable that it be 10-3 or more. Also, the volume ratio of tetrahydrofuran in all solvents is 0.
A value of 1 or more, more preferably 0.25 or more is desirable for improving low-temperature characteristics. As the solvent other than the cyclic ether, it is desirable to use at least one type of ester such as propylene carbonate, ethylene carbonate, and γ-butyrolactone, and the ratio of the ester in the total solvent is 0.01 or more (volume ratio). . Other usable solvents include 1,2-dimethoxyethane, methyldiglyme, ethylglyme, methyltriprime, sulfolane, and the like. The negative electrode used in the present invention is an alkali metal such as lithium or an alloy thereof, and the positive electrode is MnO2,
Alternatively, other metal oxides and metal sulfides can be used, and the present invention is effective in both primary and secondary batteries using a combination of these. FIG. 1 shows an example of the configuration of a spiral cylindrical battery to which the present invention is applied. In this figure, 1 is a positive electrode, 2 is a negative electrode, 3 is a bag-shaped separator that encloses the positive electrode 1, 4 is an organic electrolyte having the above structure, and both electrodes are formed by overlapping strips and winding them in a spiral shape. It is loaded into a cylindrical stainless steel battery case 5 that forms a negative electrode can, and is entirely immersed in an electrolytic solution 4. Note that the present invention is applicable to various battery forms, such as various cylindrical batteries other than the illustrated spiral type, and thin batteries such as button-shaped and coin-shaped batteries. [Example 1] The present invention will be described below with reference to Examples. Example 1 In a stainless steel battery case with an outer diameter of 15 mm, a band-shaped negative electrode made of lithium with a thickness of 0.17 nn+ and a width of 30 nwn was wrapped in a bag-shaped separator made of a microporous polypropylene sheet with a thickness of 0.4 mm. , MnO□ with width 30H1
A band-shaped positive electrode consisting of a mixture is stacked and wound spirally, and lead bodies of both positive and negative electrodes are attached and loaded, and propylene carbonate, tetrahydrofuran and 1
- 0.5 mol/l LiClO4 and 0.1 mol/l LiBF4 were dissolved as electrolytes in a mixed solvent with 2-dimethoxyethane at a volume ratio of 1:1:1, and the electrolyte solution was injected. The battery was then sealed, stabilized, and aged to produce a spiral cylindrical battery having the structure shown in FIG. Example 2 LiClO4 concentration was 0.57 mol/l, LiBF4
A cylindrical battery was produced in the same manner as in Example 1 except that the concentration was 0.03 mol/l. Comparative Example 1 A cylindrical battery was produced in the same manner as in Example 1 except that the LiClO4 concentration was 0.6 mol/l and LiBF4 was not added. The batteries of Example 1.2 and Comparative Example 1 were
After 4 hours of Ah discharge, the internal resistance at 1 kHz was measured. After the measurement, the sample was stored at 60°C for 3 days and the change in internal resistance was measured. The results are shown in Table 1. It can be seen from the table that by adding LiBF4, the increase in internal resistance during storage after discharge can be suppressed considerably. The present invention is also applicable to secondary batteries, and a cycle test was conducted to examine its effects. That is, LL with a thickness of 100 μl and a size of 1aa×1an
Using the electrode as a working electrode and using Li also as a counter electrode, 0.5
After charging for 4 hours at +nA/a (electrodeposition of LL), 0.
The operation of discharging at 5 mA/- for 4 hours (release of Li+) was repeated, and the final discharge voltage of the working electrode was measured. As is clear from the results shown in FIG. 2, it can be seen that by using the organic electrolyte of the present invention (Example 1), the cycle characteristics for secondary batteries can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の有機電解液電池の構成例を示すモデ
ル的な縦断面図、表1は実施例1,2、比較例1の各電
池の放電後の内部抵抗変化を示す特性表、第2図は上記
の実施例1.比較例1に用いた有機電解液についてのサ
イクル特性の試験結果を示す特性図である。 特許出願人 日立マクセル株式会社 代表者 水弁  厚 表1 第1図 +0  20  10 40 サイクル数(回) 第2図 手続補正書(方式) 1、事件の表示 平成1年特許願第82824号 2、発明の名称 有機電解液電池 3、補正をする者 事件との関係 特許出願人 郵便番号 56フ イJ<ラキシ ウシトラ 住所 大阪府茨木市丑寅1丁目1番88号氏名 ピッチ 日立マクセル株式会社 フタ  ナベ     ヒロシ 代表者  渡 遣  宏 U先 電話(02072)4−1127  特許情報部
4、補正命令の日付(発送口) 5、補正の対象 (1)明細書の「発明の詳細な説明」の欄。 2)明細書の「図面の簡単な説明」の欄。 3)図面 6、補正の内容 (1)明細書第13頁の第16行目と第17行目との間
に、以下の表を挿入する。 「 表1 各電池の放電後の内部抵抗変化(2)明細書
第13頁の第17行目の「[図面の簡単な説明]」を「
4、図面の簡単な説明」と補正する。 (3)明細書第13頁の第19行目から第14頁第1行
目までの[表1は実施例1,2、比較例1の各電池の放
電後の内部抵抗変化を示す特性表、」の記載を削除する
。 (4)図面中、表1を記載した第2図を、別紙補正図面
の通り、表1を削除した第2図に補正する。 7、添付書類の目録 (1)補正図面            1通+Q  
 20   :’IQ  40サイクル数(回) 第2図
FIG. 1 is a model vertical cross-sectional view showing an example of the structure of an organic electrolyte battery of the present invention, Table 1 is a characteristic table showing internal resistance changes after discharge of each battery of Examples 1 and 2 and Comparative Example 1, FIG. 2 shows the above embodiment 1. 3 is a characteristic diagram showing test results of cycle characteristics of an organic electrolyte used in Comparative Example 1. FIG. Patent Applicant Hitachi Maxell Co., Ltd. Representative Mizuben Atsushi Table 1 Figure 1 +0 20 10 40 Number of cycles (times) Figure 2 Procedural amendment (method) 1. Indication of the case 1999 Patent Application No. 82824 2. Name of the invention Organic electrolyte battery 3. Relationship with the case of the person making the amendment Patent applicant Zip code 56 Fui J < Rakishi Ushitra Address 1-1-88 Ushitora, Ibaraki-shi, Osaka Name Pitch Hitachi Maxell Co., Ltd. Representative Hiroshi Futanabe Person: Hiroshi Watari Telephone: (02072) 4-1127 Patent Information Department 4. Date of amendment order (shipping address) 5. Subject of amendment (1) "Detailed description of the invention" column of the specification. 2) "Brief explanation of drawings" column in the specification. 3) Drawing 6, contents of amendment (1) The following table is inserted between line 16 and line 17 on page 13 of the specification. "Table 1 Internal resistance change after discharge of each battery (2) "[Brief explanation of drawings]" on page 13, line 17 of the specification"
4. A brief explanation of the drawings”. (3) From line 19 on page 13 of the specification to line 1 on page 14 [Table 1 is a characteristic table showing the internal resistance change after discharge of each battery of Examples 1 and 2 and Comparative Example 1. ," will be deleted. (4) In the drawings, Figure 2, which shows Table 1, is amended to Figure 2 with Table 1 deleted, as shown in the attached revised drawing. 7. List of attached documents (1) 1 amended drawing + Q
20:'IQ 40 cycle number (times) Figure 2

Claims (16)

【特許請求の範囲】[Claims] (1)環状エーテルを含む有機溶媒にリチウム塩を溶解
させた有機電解液と、正極、負極、セパレータとを構成
要素とし、前記電解液中にホウ素元素を含む化合物を添
加したことを特徴とする有機電解液電池。
(1) It is characterized in that its constituent elements are an organic electrolytic solution in which a lithium salt is dissolved in an organic solvent containing a cyclic ether, a positive electrode, a negative electrode, and a separator, and a compound containing a boron element is added to the electrolytic solution. Organic electrolyte battery.
(2)前記溶媒中にエステルを1%(体積比)以上含む
ことを特徴とする請求項(1)記載の有機電解液電池。
(2) The organic electrolyte battery according to claim 1, wherein the solvent contains 1% or more (volume ratio) of ester.
(3)前記リチウム塩がLiClO_4及びLiCF_
3SO_3の少くとも一種であることを特徴とする請求
項(1)記載の有機電解液電池。
(3) The lithium salt is LiClO_4 and LiCF_
The organic electrolyte battery according to claim 1, characterized in that the electrolyte is at least one type of 3SO_3.
(4)前記ホウ素元素を含む化合物がB−F結合を有す
る化合物であることを特徴とする請求項(1)記載の有
機電解液電池。
(4) The organic electrolyte battery according to claim 1, wherein the compound containing the boron element is a compound having a B-F bond.
(5)前記B−F結合を有する化合物が、BF_3、B
F_3の溶媒和物及びBF_3と他の塩との複塩のうち
の少くとも一種であることを特徴とする請求項(4)記
載の有機電解液電池。
(5) The compound having the BF bond is BF_3, B
The organic electrolyte battery according to claim 4, wherein the organic electrolyte battery is at least one of a solvate of F_3 and a double salt of BF_3 and another salt.
(6)前記BF_3と他の塩との複塩が、BF_4^−
を含む塩であることを特徴とする請求項(5)記載の有
機電解液電池。
(6) The double salt of BF_3 and another salt is BF_4^-
The organic electrolyte battery according to claim 5, wherein the organic electrolyte battery is a salt containing.
(7)前記ホウ素元素を含む化合物を、電解液全体に対
して、10^−^3モル/l以上添加したことを特徴と
する請求項(1)記載の有機電解液電池。
(7) The organic electrolyte battery according to claim (1), wherein the compound containing the boron element is added to the entire electrolyte in an amount of 10^-^3 mol/l or more.
(8)前記ホウ素元素を含む化合物の添加量がモル比で
前記リチウム塩の溶解量の30%以下であることを特徴
とする請求項(1)記載の有機電解液電池。
(8) The organic electrolyte battery according to claim 1, wherein the amount of the compound containing the boron element added is 30% or less of the dissolved amount of the lithium salt in terms of molar ratio.
(9)前記ホウ素元素を含む化合物の添加量が、前記環
状エーテルに対して、モル比で10^−^3以上である
ことを特徴とする請求項(1)記載の有機電解液電池。
(9) The organic electrolyte battery according to claim (1), wherein the amount of the compound containing the boron element added is 10^-^3 or more in molar ratio to the cyclic ether.
(10)前記環状エーテルがテトラヒドロフランである
ことを特徴とする請求項(1)記載の有機電解液電池。
(10) The organic electrolyte battery according to claim 1, wherein the cyclic ether is tetrahydrofuran.
(11)前記ホウ素元素を含む化合物の添加量が、前記
環状エーテルに対して、モル比で2×10^−^3以上
であることを特徴とする請求項(10)記載の有機電解
液電池。
(11) The organic electrolyte battery according to claim (10), wherein the amount of the compound containing the boron element added is 2 x 10^-^3 or more in molar ratio to the cyclic ether. .
(12)前記有機溶媒中に前記環状エーテルが体積比率
で0.1以上を含むことを特徴とする請求項(1)記載
の有機電解液電池。
(12) The organic electrolyte battery according to claim 1, wherein the organic solvent contains the cyclic ether in a volume ratio of 0.1 or more.
(13)前記リチウム塩がLiClO_4であることを
特徴とする請求項(1)記載の有機電解液電池。
(13) The organic electrolyte battery according to claim (1), wherein the lithium salt is LiClO_4.
(14)有機溶媒が環状エーテルとエステル及び鎖状エ
ーテルを含むことを特徴とする請求項(1)記載の有機
電解液電池。
(14) The organic electrolyte battery according to claim (1), wherein the organic solvent contains a cyclic ether, an ester, and a chain ether.
(15)前記エステルがプロピレンカーボネートである
ことを特徴とする請求項(14)記載の有機電解液電池
(15) The organic electrolyte battery according to claim 14, wherein the ester is propylene carbonate.
(16)前記鎖状エーテルがジメトキシエタンであるこ
とを特徴とする請求項(14)記載の有機電解液電池。
(16) The organic electrolyte battery according to claim 14, wherein the chain ether is dimethoxyethane.
JP1082824A 1989-03-31 1989-03-31 Organic electrolyte battery Expired - Lifetime JP2634904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1082824A JP2634904B2 (en) 1989-03-31 1989-03-31 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1082824A JP2634904B2 (en) 1989-03-31 1989-03-31 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPH02262270A true JPH02262270A (en) 1990-10-25
JP2634904B2 JP2634904B2 (en) 1997-07-30

Family

ID=13785151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1082824A Expired - Lifetime JP2634904B2 (en) 1989-03-31 1989-03-31 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP2634904B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2717620A1 (en) * 1994-03-21 1995-09-22 Centre Nat Rech Scient Additive limiting the corrosion of the collector in an electrochemical cell.
JP2004342607A (en) * 2003-04-25 2004-12-02 Mitsui Chemicals Inc Nonaqueous electrolytic solution for lithium battery and its manufacturing method, and lithium ion secondary battery
WO2008032795A1 (en) * 2006-09-14 2008-03-20 National University Corporation Shizuoka University Electrolytic solution for electrochemical device
WO2008151902A1 (en) * 2007-06-15 2008-12-18 Robert Bosch Gmbh Additives for lithium ion accumulators
US8986896B2 (en) 2008-09-11 2015-03-24 Toyota Jidosha Kabushiki Kaisha Electrolyte solution and use therefor
US9105942B2 (en) 2010-12-27 2015-08-11 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte solution and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5987772A (en) * 1982-11-10 1984-05-21 Sanyo Electric Co Ltd Organic electrolyte battery
JPS63119160A (en) * 1987-09-24 1988-05-23 Sanyo Electric Co Ltd Nonaqueous electrolyte cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5987772A (en) * 1982-11-10 1984-05-21 Sanyo Electric Co Ltd Organic electrolyte battery
JPS63119160A (en) * 1987-09-24 1988-05-23 Sanyo Electric Co Ltd Nonaqueous electrolyte cell

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2717620A1 (en) * 1994-03-21 1995-09-22 Centre Nat Rech Scient Additive limiting the corrosion of the collector in an electrochemical cell.
JP2004342607A (en) * 2003-04-25 2004-12-02 Mitsui Chemicals Inc Nonaqueous electrolytic solution for lithium battery and its manufacturing method, and lithium ion secondary battery
WO2008032795A1 (en) * 2006-09-14 2008-03-20 National University Corporation Shizuoka University Electrolytic solution for electrochemical device
JPWO2008032795A1 (en) * 2006-09-14 2010-01-28 国立大学法人静岡大学 Electrolyte for electrochemical devices
US8241787B2 (en) 2006-09-14 2012-08-14 National University Corporation Shizuoka University Liquid electrolyte for electrochemical device
JP5155868B2 (en) * 2006-09-14 2013-03-06 国立大学法人静岡大学 Electrolyte for electrochemical devices
WO2008151902A1 (en) * 2007-06-15 2008-12-18 Robert Bosch Gmbh Additives for lithium ion accumulators
JP2010529628A (en) * 2007-06-15 2010-08-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Additives for lithium ion batteries
US9318772B2 (en) 2007-06-15 2016-04-19 Robert Bosch Gmbh Additives for lithium-ion accumulators
US8986896B2 (en) 2008-09-11 2015-03-24 Toyota Jidosha Kabushiki Kaisha Electrolyte solution and use therefor
US9105942B2 (en) 2010-12-27 2015-08-11 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte solution and use thereof

Also Published As

Publication number Publication date
JP2634904B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
US5256504A (en) Monaqueous electrolyte secondary batteries
US5474862A (en) Nonaqueous electrolyte secondary batteries
US20030077517A1 (en) Lithium secondary battery
KR100414718B1 (en) Non-aqueous electrolyte cell
US5484669A (en) Nonaqueous electrolyte secondary batteries
JP3199426B2 (en) Non-aqueous electrolyte secondary battery
JP2000011996A (en) Non-aqueous electrolyte secondary battery
KR100414719B1 (en) Non-aqueous electrolyte and non-aqueous electrolyte cell
JPS6286673A (en) Electrolyte for lithium secondary batteries
JPH11111332A (en) Nonaqueous electrolyte battery
JPH02262270A (en) Organic electrolyte battery
JPH09161778A (en) Organic electrolyte secondary battery
JP3036674B2 (en) Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided therewith
JP2830365B2 (en) Non-aqueous electrolyte secondary battery
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JPH08241731A (en) Organic electrolytic secondary battery
JPH087922A (en) Organic electrolytic secondary cell
JPH02262271A (en) organic electrolyte battery
JP4753655B2 (en) Lithium secondary battery
TW529198B (en) Nonaqueous organic electrolytes for low temperature discharge of rechargeable electrochemical cells
JPH02262268A (en) organic electrolyte battery
JPH04171659A (en) Nonaqueous-electrolyte secondary battery
US6221533B1 (en) Nonaqueous electrolyte battery
JPH02262269A (en) organic electrolyte battery
JPWO2020090922A1 (en) Non-aqueous electrolyte secondary battery and non-aqueous electrolyte

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

EXPY Cancellation because of completion of term