JPH02259509A - Method and instrument for measuring surface shape or the like - Google Patents
Method and instrument for measuring surface shape or the likeInfo
- Publication number
- JPH02259509A JPH02259509A JP1082345A JP8234589A JPH02259509A JP H02259509 A JPH02259509 A JP H02259509A JP 1082345 A JP1082345 A JP 1082345A JP 8234589 A JP8234589 A JP 8234589A JP H02259509 A JPH02259509 A JP H02259509A
- Authority
- JP
- Japan
- Prior art keywords
- measured
- shape
- data
- measurement data
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/2441—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02034—Interferometers characterised by particularly shaped beams or wavefronts
- G01B9/02038—Shaping the wavefront, e.g. generating a spherical wavefront
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02083—Interferometers characterised by particular signal processing and presentation
- G01B9/02085—Combining two or more images of different regions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/02—Testing optical properties
- G01M11/0242—Testing optical properties by measuring geometrical properties or aberrations
- G01M11/025—Testing optical properties by measuring geometrical properties or aberrations by determining the shape of the object to be tested
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/02—Testing optical properties
- G01M11/0242—Testing optical properties by measuring geometrical properties or aberrations
- G01M11/0271—Testing optical properties by measuring geometrical properties or aberrations by using interferometric methods
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Geometry (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、例えば、被測定物体からの光を利用した干渉
作用を用いて3次元物体形状等を高精度に測定する方法
及び装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for measuring the shape of a three-dimensional object with high precision, for example, by using an interference effect using light from an object to be measured.
[従来の技術]
従来、非対称非球面やシリンドリカル、トーリックとい
った特殊形状を高精度に計測する方法としては、第4図
に示す様な構成を用いて被測定面の点座橢測定を繰り返
して全体形状を得る方法が知られている(光学12.1
983.450〜454頁参照)。[Conventional technology] Conventionally, as a method for measuring special shapes such as asymmetric aspherical surfaces, cylindrical surfaces, and toric surfaces with high precision, the entire surface is measured by repeating point and spot measurements of the surface to be measured using a configuration as shown in Figure 4. It is known how to obtain the shape (Optics 12.1
983, pp. 450-454).
また、被測定面の形状全体を一括で測定する方法として
は、ヌルテストと呼ばれるものがあり、これは、第4図
に示す様に、被測定面形状とほぼ同じ形状を持つ形状の
知られた参照面を用いて通常の干渉縞による形状測定を
行なうものである。In addition, there is a method called the null test that measures the entire shape of the surface to be measured at once. This method uses a reference surface to perform shape measurement using normal interference fringes.
更に、両方法を組合わせた測定方法として、軸対称非球
面を光軸方向に移動させて、粗い干渉縞を生み出す被測
定面の各部の測定形状を繋ぎ合わせて全体形状を得る方
法が知られている(光学2.1983.296〜300
頁参照)。Furthermore, as a measurement method that combines both methods, a method is known in which an axially symmetric aspherical surface is moved in the direction of the optical axis and the measured shapes of each part of the surface to be measured, which produce coarse interference fringes, are connected to obtain the overall shape. (Optics 2.1983.296-300
(see page).
[発明が解決しようとする課題]
しかし乍ら、上記従来例のうち点座標計測法は様々な形
状の被測定物が測定できて汎用性が高い反面、測定点数
が多(なると測定時間が長(なるという欠点がある。[Problems to be Solved by the Invention] However, among the conventional examples mentioned above, the point coordinate measurement method can measure objects of various shapes and is highly versatile, but on the other hand, it requires a large number of measurement points (as the measurement time becomes long). (There is a drawback that it becomes.
また、ヌルテスト法は、1つの被測定、物形状に対して
1つの参照用ミラーやレンズが必要となり、汎用性が低
(計測コストが高(なるという欠点がある。Further, the null test method requires one reference mirror or lens for one object shape to be measured, and has the drawback of low versatility (high measurement cost).
更に、干渉縞の粗い部分を繋ぎ合わせて全体形状を得る
方法は、汎用性があり且つ測定時間も点座標計測に比べ
て短くなるという利点があるが、繋ぎ合わせるに際し重
複部分の1点の座標が、同じであるとして繋ぎ合わせる
為、例えば、重複部分のその1点の測定データの測定誤
差が繋ぎ合わせた後の面形状データ全部の測定エラーと
なる。その上、機械的な移動をさせる事に伴なう被測定
物のアオリ方向の移動δθがあると、繋ぎ合わせる部分
のラジアル方向距離をrとして、r・δθの形状測定エ
ラーが発生するという精度上の問題を有している。Furthermore, the method of connecting the coarse parts of the interference fringes to obtain the overall shape has the advantage of being versatile and requiring shorter measurement time than point coordinate measurement, but when joining, the coordinates of one point of the overlapped part are However, since they are connected assuming that they are the same, for example, a measurement error in the measurement data at one point in the overlapping portion becomes a measurement error in all the surface shape data after being connected. Furthermore, if there is movement δθ in the tilt direction of the object to be measured due to mechanical movement, a shape measurement error of r・δθ will occur, where r is the radial distance of the connecting part. I have the above problem.
また、この従来例では、光軸方向にのみ被測定物を動か
す構成なので、軸対称非球面などしか測定できず、シリ
ンドリカルやトーリックといった特殊形状は測定不可能
であった従って、本発明の目的は、上記問題点に鑑み、
測定時間が短縮され且つ多様な形状を測定可能として汎
用性を高めた面形状等測定方法及び装置を提供する事に
ある。In addition, in this conventional example, since the object to be measured is moved only in the optical axis direction, it is possible to measure only axisymmetric aspherical surfaces, and special shapes such as cylindrical and toric shapes cannot be measured.Therefore, the object of the present invention is to , In view of the above problems,
It is an object of the present invention to provide a method and device for measuring surface shapes, etc., which shortens measurement time and is capable of measuring various shapes, increasing versatility.
[課題を解決するための手段]
上記目的を達成する為の本発明においては、被測定物を
測定可能な互いに重なり合う部分を持つような複数の部
分領域に分割して、各部分領域について測定した面形状
データ等を繋ぎ合わせる事により被測定物の全体形状等
を得ている。[Means for Solving the Problems] In order to achieve the above object, the present invention divides the object to be measured into a plurality of partial regions each having measurable overlapping portions, and measures each partial region. By connecting surface shape data, etc., the overall shape of the object to be measured is obtained.
各部分領域の測定は1例えば、この領域からの反射光や
透過光を用いた干渉作用を利用して行なわれて面形状デ
ータ等が求められるまた、上記目的を達成する本発明の
干渉測定装置においては、干渉光学系と被測定物の光軸
方向の相対距離を変化させるステージと、被測定物の干
渉測定光照射領域を光軸に直交する方向に変化させるス
テージと、被測定物を干渉光学系に対して光軸に直交す
る2軸まわりに回転させてアオリを与えるステージとを
有する。Measurement of each partial area is performed by using interference effect using reflected light or transmitted light from this area, for example, to obtain surface shape data, etc.Furthermore, the interference measuring device of the present invention achieves the above object. , a stage that changes the relative distance between the interference optical system and the object to be measured in the optical axis direction, a stage that changes the interference measurement light irradiation area of the object to be measured in a direction perpendicular to the optical axis, and a stage that changes the relative distance between the interference optical system and the object to be measured in the optical axis direction. It has a stage that rotates the optical system around two axes perpendicular to the optical axis to provide tilt.
[作用]
上記の構成の本発明では、被測定物を光軸方向と直交す
る面内で任意に分割し、各分割部類域を測定してその測
定データを繋ぎ合わせて全体の面形状等のデータを復元
するという手法を用いているので、測定時間が比較的短
縮されてシリンドリカル、トーリック、軸対称非球面な
どを含む多様の形状の物を測定でき、汎用性が高められ
ている。[Function] In the present invention having the above configuration, the object to be measured is arbitrarily divided in a plane perpendicular to the optical axis direction, each divided area is measured, and the measurement data is connected to determine the overall surface shape, etc. Because it uses a method of restoring data, the measurement time is relatively short and it is possible to measure objects with a variety of shapes, including cylindrical, toric, and axisymmetric aspheric surfaces, increasing its versatility.
そして、繋ぎ合わせの方法として、互いに重なり合う部
分の測定データを統計的にフィッティングする事により
各部分領域について測定した面形状データ等を繋ぎ合わ
せれば、繋ぎ合わせに伴なう誤差の発生が極力抑えられ
て精度の劣化が防げる。Then, as a connection method, if the surface shape data etc. measured for each partial area are connected by statistically fitting the measurement data of the mutually overlapping parts, the occurrence of errors caused by the connection can be suppressed as much as possible. This prevents deterioration of accuracy.
[実施例1
第1図は本発明の1実施例を示し、同図において、1は
光源であるレーザ、2はビーム径を拡げるビームエキス
パンダ、3は大射光をP偏光成分とS偏光成分に2分す
る偏光ビームスプリッタ、4a、4bは往復する事で偏
光方向を90度回転せしめるところの丸/4板、5は参
照面である平面ミラー、6は平面波を球面波に変換する
コリメータレンズ、7は被測定物、8は互いに直交する
2偏光酸分を干渉せしめるところの偏光板、9は結像レ
ンズ、10は干渉縞を観測するところのCCD素子など
の光検出器、11は被測定物7にアオリを与えるチルト
ステージ、12.13.14は被測定物7に並進移動を
与えるステージで、夫々、Zステージ、Yステージ、X
ステージ、15は干渉縞をスキャンして縞走査測定を行
なわせる為のピエゾ素子、16はステージの光軸方向(
X方向)の移動距離を測定するレーザ測長器、17はピ
エゾ素子15を光軸方向に駆動する為のPZTドライバ
、18はCCD素子10からのデータを一時蓄積する画
像メモリ、19はステージを駆動する為のステージドラ
イバ、20は全システムを管理すると共にCCD素子1
0からのデータを処理するマイクロコンピュータである
。[Embodiment 1] Figure 1 shows an embodiment of the present invention. In the figure, 1 is a laser as a light source, 2 is a beam expander that expands the beam diameter, and 3 is a beam expander that divides the large incident light into a P-polarized light component and an S-polarized light component. 4a and 4b are round quarter plates that rotate the polarization direction by 90 degrees by reciprocating, 5 is a plane mirror that is a reference surface, and 6 is a collimator lens that converts plane waves into spherical waves. , 7 is an object to be measured, 8 is a polarizing plate that causes two polarized light components perpendicular to each other to interfere with each other, 9 is an imaging lens, 10 is a photodetector such as a CCD element that observes interference fringes, and 11 is an object to be measured. 12, 13, and 14 are stages that give translational movement to the object to be measured 7; Z stage, Y stage, and X stage, respectively;
A stage, 15 is a piezo element for scanning interference fringes to perform fringe scanning measurement, and 16 is a piezo element in the optical axis direction of the stage (
17 is a PZT driver for driving the piezo element 15 in the optical axis direction; 18 is an image memory for temporarily storing data from the CCD element 10; 19 is a stage. A stage driver 20 for driving controls the entire system and also controls the CCD element 1.
It is a microcomputer that processes data from 0.
上記構成において、レーザ1から出射した光はビームエ
キスパンダ2によって所定の径に拡げられ偏光ビームス
プリッタ3に入射する。この光のうち、S偏光成分は上
方に折り曲げられ、λ/4板4aを通り参照ミラー5で
反射されて、再びλ/4板4aを通って。In the above configuration, the light emitted from the laser 1 is expanded to a predetermined diameter by the beam expander 2 and enters the polarizing beam splitter 3. Of this light, the S-polarized component is bent upward, passes through the λ/4 plate 4a, is reflected by the reference mirror 5, and passes through the λ/4 plate 4a again.
偏光角が90度回転した状態で偏光ビームスプリッタ3
に戻り下方に直進する。こうして偏光板8、結像レンズ
9を通ってCCD素子10に入射する。Polarizing beam splitter 3 with polarization angle rotated 90 degrees
Go back and go straight down. In this way, the light passes through the polarizing plate 8 and the imaging lens 9 and enters the CCD element 10 .
一方、偏光ビームスプリッタ3に入射した光のうち、P
偏光成分は右方に直進し、L/4板4bを通ってコリメ
ータレンズ6によって適当な球面波とされて被測定物7
に入射する。そして、ここで反射されて再びコリメータ
レンズ6、λ/4板4bを通り、偏光角が90度回転さ
れた状態で偏光ビームスプリッタ3に戻り、下方に折り
曲げられて偏光板8、結像レンズ9を通ってCCD素子
10に入射する。On the other hand, out of the light incident on the polarizing beam splitter 3, P
The polarized light component travels straight to the right, passes through the L/4 plate 4b, is converted into a suitable spherical wave by the collimator lens 6, and is sent to the object to be measured 7.
incident on . Then, it is reflected here, passes through the collimator lens 6 and the λ/4 plate 4b again, returns to the polarizing beam splitter 3 with the polarization angle rotated by 90 degrees, and is bent downward to pass through the polarizing plate 8 and the imaging lens 9. The light passes through and enters the CCD element 10.
このとき、被測定物7の位置が調整されて被測定物7の
形状とコリメータレンズ6が作り出す球面波との形状が
概略一致していれば、CCD素子10上には充分な粗さ
の干渉縞が観測される。観測された干渉縞は被測定物7
の形状と球面波との形状のズレ即ち波面収差の情報を与
えており、縞1本が丁度レーザ1からの光の波長んの半
分のズレに等しくなっている。At this time, if the position of the object to be measured 7 is adjusted and the shape of the object to be measured 7 and the shape of the spherical wave produced by the collimator lens 6 approximately match, there will be sufficient roughness of interference on the CCD element 10. Stripes are observed. The observed interference fringes are measured object 7.
It gives information on the deviation between the shape of the spherical wave and the shape of the spherical wave, that is, the wavefront aberration, and one stripe is exactly equal to a deviation of half the wavelength of the light from the laser 1.
従って、被測定物7の形状が球面に近い場合は、全体に
亙って干渉縞の粗さが適当なものとなって干渉縞パター
ンを解析する事により被測定物7の全体形状を一括で測
定できるピエゾ素子15を用いた縞走査測定を行なう事
で、CCD画素間の位相差を読んで全体形状を高精度に
計測することができる。Therefore, if the shape of the object to be measured 7 is close to a spherical surface, the roughness of the interference fringes will be appropriate over the entire area, and the overall shape of the object to be measured 7 can be determined at once by analyzing the interference fringe pattern. By performing fringe scanning measurement using the measurable piezo element 15, the overall shape can be measured with high precision by reading the phase difference between CCD pixels.
とこころが、被測定物7の形状が特殊で球面から大きく
ずれている場合、全体形状を一括で測定しようとすると
部分的に縞間隔が細か(なり過ぎ測定不能となる。原理
的には、CCDl0上でCCDの隣接画素間の干渉縞パ
ターンの位相差がπ以上になると測定不能となる。However, if the shape of the object 7 to be measured is special and deviates greatly from a spherical surface, if you try to measure the entire shape at once, the stripe spacing will be too small (so much so that it becomes impossible to measure).In principle, If the phase difference between the interference fringe patterns between adjacent pixels of the CCD on the CCD10 exceeds π, measurement becomes impossible.
しかし、被測定物7の形状を幾つかの小部分に分ければ
、その小領域内では干渉縞パターンを観測可能な粗さと
する事が出来る。However, if the shape of the object to be measured 7 is divided into several small parts, it is possible to make the interference fringe pattern observable in the small areas.
第2図はこの様子を示す、同図(a)に示す如(、被測
定物7の形状を、必ず重なり合う部分を持つu、v、w
の領域に分割したとすると、領域Uは曲率半径が比較的
小さいので被測定物7をコリメータレンズ6に近付ける
と共に適当に傾斜させる事により、その領域Uの面形状
と球面波が略等しくなってその領域に関して粗い縞を出
せる様になる0次に、やや大きい曲率半径の領域Vを測
定する為に、第2図(b)に示す如(、被測定物7をZ
方向上方に動かすと共にX方向右方に動かしてコリメー
タレンズ6からやや遠ざけ更に適当に傾斜させる。これ
により、領域Vの面形状と曲率半径がやや大きくなった
球面波が略等しくなって同じ(領b!vについても粗い
縞を出す事が可能になる。続いて、更に曲率半径の大き
い領域Wを測定する為に、第2図(C)に示す如(被測
定物をZ方向上方且つX方向右方に動かして適当に傾斜
させる。これによって、同様にして領域Wについても粗
い縞を出すことが可能となって測定可能となる。この際
、被測定物7の移動は第1図に示すステージ12.13
、I4を用いて行ない、傾斜は同図に示すチルトステー
ジ11を用いて行なう。Figure 2 shows this situation, as shown in Figure 2(a).
Assuming that the area U has a relatively small radius of curvature, by bringing the object 7 closer to the collimator lens 6 and tilting it appropriately, the surface shape of the area U and the spherical wave will be approximately equal. In order to measure a region V with a slightly larger radius of curvature in the 0th order, where coarse stripes can be produced in that region, the object 7 is moved to Z as shown in FIG.
It is moved upward in the X direction and rightward in the X direction to move it a little further away from the collimator lens 6 and further tilt it appropriately. As a result, the surface shape of region V and the spherical wave with a slightly larger radius of curvature become almost the same (it is also possible to produce rough stripes in regions b!v). To measure W, move the object to be measured upward in the Z direction and to the right in the X direction and tilt it appropriately as shown in FIG. At this time, the object to be measured 7 is moved by the stages 12 and 13 shown in FIG.
, I4, and tilting is performed using the tilt stage 11 shown in the figure.
以上述べた操作により得られる各領域u9v、wのデー
タは、夫々、曲率の異なる参照球面からのズレ量で示さ
れる相対的情報であるから、各参照球面の曲率を考慮し
て補正された絶対尺度での形状データに変換される。Since the data of each area u9v, w obtained by the above-mentioned operation is relative information indicated by the amount of deviation from the reference spherical surface with different curvature, the absolute value is corrected by taking into account the curvature of each reference spherical surface. Converted to shape data in scale.
絶対尺度での形状に変換されたデータは、各領域U、V
、W測定の際にチルトステージ11であおられた分だけ
元に戻して繋ぎ合わせる必要があるが、このあおり量を
0.1秒より高精度で別途計測することは通常困難であ
るし、X、Y、Zステージ14.13.12の並進に伴
なうピッチング、ローリング、ヨーイングといったエラ
ーも通常は数秒以上存在するので、あおられた分だけ元
に戻して繋ぎ合わせる事はしない。The data converted to the shape on an absolute scale is
, When measuring W, it is necessary to restore the amount tilted by the tilt stage 11 and connect it together, but it is usually difficult to separately measure the amount of tilting with a precision higher than 0.1 seconds, and , Y, Z stage 14.13.12 Errors such as pitching, rolling, and yawing associated with translation usually exist for several seconds or more, so the error is not restored and connected by the amount of agitation.
従って、高精度な繋ぎ合わせを実現する為に、各小領域
の測定データの重なり合う部分の形状データを用いる。Therefore, in order to realize highly accurate connection, shape data of the overlapping portion of the measurement data of each small area is used.
この繋ぎ合わせの方法として、以下の方法がある。The following methods are available for this connection.
第1は1重なり合う部分の形状データのうち、少なくと
も同一直線上にない任意の3点を選び出し、重なり合う
領域の対応する点の座標が一致する様に座標変換マトリ
ックスの係数を決定する方法である。この方法は計算v
f間が短(て済むが、選び出した測定点データに誤差が
あると各小領域の絶対尺度での形状データを繋ぎ合わせ
たとき大きな誤差となる。The first method is to select at least three arbitrary points that are not on the same straight line from among the shape data of one overlapping part, and determine the coefficients of the coordinate transformation matrix so that the coordinates of corresponding points in the overlapping area match. This method calculates v
Although the distance between f is short, if there is an error in the selected measurement point data, a large error will result when the shape data of each small area on an absolute scale is connected.
第2の方法は、重なり合う部分の形状データの全部若し
くは一部を用いて対応する点のデータの差の自乗和が最
小となる襟に座標変換マトリックスの係数を決定して両
部分の測定データ全部をフィッティングする方法である
。The second method uses all or part of the shape data of the overlapping parts to determine the coefficients of the coordinate transformation matrix that minimizes the sum of the squares of the data differences of corresponding points, and then calculates all the measured data of both parts. This is a method of fitting.
第3は、重なり合う部分の形状データの相互相関関数R
o等がピーク値ないし最大値をとるように座標変換マト
リックスの係数を決定して両部分の測定データ全部をフ
ィッティングする方法である。The third is the cross-correlation function R of the shape data of the overlapping parts.
In this method, the coefficients of the coordinate transformation matrix are determined so that o, etc. take the peak value or the maximum value, and all measured data of both parts are fitted.
第4は%重なり合う部分の形状データを、夫々、ツェル
ニケ多項式展開したときのR2、R51nθ、Rcos
θの係数すなわち曲率半径のズレ及び面傾斜成分を表わ
す両部分の係数を比較して座標変換マトリックスの係数
を決定して両部分の測定データ全部をフィッティングす
る方法である。The fourth is R2, R51nθ, Rcos when the shape data of the % overlapping parts are respectively expanded by Zernike polynomials.
In this method, the coefficients of the two parts representing the deviation of the radius of curvature and the surface inclination component are compared, the coefficients of the coordinate transformation matrix are determined, and all the measured data of the two parts are fitted.
以上の方法は計算時間やフィッティング精度の点で一長
一短があり、計算の処理能力や必要精度に応じて選択し
たり組合わせたりデータの数を設定したりする必要があ
る。The above methods have advantages and disadvantages in terms of calculation time and fitting accuracy, and it is necessary to select, combine, and set the number of data depending on the calculation processing capacity and required accuracy.
第3図に全体の測定シーケンスのフローチャートが示さ
れている。A flowchart of the entire measurement sequence is shown in FIG.
同図において、測定台すなわちステージにセットされる
被検物7の形状は設計データに略近いものである筈だか
ら、この設計データに基づいて被検物7の全体形状が重
なり合うサブアパーチャすなわち小領域にコンビエータ
20で分割され、このデータが記憶される、このデータ
は駆動部すなわちステージドライバー19に転送されて
、被検物7の小領域7が順次測定される様に各領域測定
終了後ドライバー19により被検物7が適宜移動させら
れる。In the same figure, since the shape of the test object 7 set on the measurement table or stage should be approximately close to the design data, the sub-aperture, or small region, where the overall shape of the test object 7 overlaps is created based on this design data. The data is divided by the combiator 20, and this data is stored. This data is transferred to the drive unit, that is, the stage driver 19, and after the measurement of each area is completed, the driver 19 The test object 7 is moved appropriately.
そして、各小領域が測定可能となるように微調整が行な
われた後、参照球面の曲率が測定されると共にCOD画
素間の位相差が干渉縞パターンから測定されて、当該小
領域の絶対尺度による面形状データが演算されてメモリ
にストアされる。Then, after fine adjustments are made so that each small area can be measured, the curvature of the reference sphere is measured, and the phase difference between COD pixels is measured from the interference fringe pattern, which is the absolute measure of the small area. Surface shape data is calculated and stored in memory.
以上の測定が全小領域に亙って行なわれた後、上述した
ような方法で面形状データの繋ぎ合わせが行なわれ被検
物7の全体形状が合成されて適当に表示される。After the above measurements have been performed over all the small areas, the surface shape data are connected in the manner described above, and the entire shape of the test object 7 is synthesized and appropriately displayed.
上記実施例では、被測定物側を移動させていたが、干渉
光学系と被測定物との相対位置関係を変化させればよい
訳であるから、被測定物が大きく重い場合には干渉光学
系側を移動させればよい。In the above embodiment, the object to be measured was moved, but since it is sufficient to change the relative positional relationship between the interference optical system and the object to be measured, if the object to be measured is large and heavy, the interference optical system All you have to do is move the system.
また、上記実施例では、凹面の被測定物を測定する例を
とっていたが、凸面の場合には、第1図のコリメータレ
ンズ6の焦点Pより左側に被測定物7を移動させれば測
定可能となり、はぼ平面の被測定物の場合には、第1図
のコリメータレンズ6を取り除けば測定可能となる。In addition, in the above embodiment, an example was taken in which the object to be measured has a concave surface, but in the case of a convex surface, the object to be measured 7 can be moved to the left side of the focal point P of the collimator lens 6 in FIG. In the case of a flat object to be measured, the measurement becomes possible by removing the collimator lens 6 shown in FIG. 1.
更に、被測定物がシリンドリカル、トーリックといった
特殊形状である場合、コリメータレンズ6をシリンドリ
カルレンズやトーリックレンズ等を含むレンズ系として
おけば。Furthermore, if the object to be measured has a special shape such as cylindrical or toric, the collimator lens 6 may be a lens system including a cylindrical lens, a toric lens, etc.
参照波面と被検面形状が粗一致して少ない繋ぎ合わせ回
数で全面の測定が可能となる。The reference wavefront and the shape of the test surface roughly match, making it possible to measure the entire surface with fewer connections.
[発明の効果]
以上説明した様に、本発明においては、干渉縞が祖(現
われ干渉測定が可能な領域に分割して被測定面形状を測
定するので、こうして測定された互いに重なり合う領域
のデータを繋ぎ合わせる事で、計測コストを上げず且つ
測定時間も比較的短(特殊形状の測定、評価が可能とな
っている。[Effects of the Invention] As explained above, in the present invention, the shape of the surface to be measured is measured by dividing the surface into regions where interference fringes appear and can be measured by interference. By connecting the two, the measurement cost does not increase and the measurement time is relatively short (it is possible to measure and evaluate special shapes.
また、各領域の形状データの繋ぎ合わせに統計的手段を
用いる事により、繋ぎ合わせによる精度劣化を最小限に
抑えることができるIn addition, by using statistical means to connect the shape data of each region, it is possible to minimize the deterioration in accuracy caused by the connections.
第1図は本発明の1実施例を示す図、第2図(a)、(
b)、(c)は本発明の詳細な説明する図、第3図は測
定シーケンスのフローチャートを示す図、第4図と第5
図は従来例を示す図である。
1・・・レーザ、3・・・偏光ビームスプリッタ、5・
・・参照ミラー、6・・・コリメータレンズ、7・・・
被測定物、1o・・・搬像素子、11・・・チルトステ
ージ、12.13.14・・・Z、Y、Xステージ、1
5・・・ピエゾ素子FIG. 1 is a diagram showing one embodiment of the present invention, FIG. 2(a), (
b) and (c) are diagrams explaining the present invention in detail, FIG. 3 is a diagram showing a flowchart of the measurement sequence, and FIGS. 4 and 5.
The figure shows a conventional example. 1... Laser, 3... Polarizing beam splitter, 5...
...Reference mirror, 6...Collimator lens, 7...
Object to be measured, 1o... Image carrier element, 11... Tilt stage, 12.13.14... Z, Y, X stage, 1
5... Piezo element
Claims (1)
定可能な互いに重なり合う部分を持つ様な複数の部分領
域に分割して、各部分領域について測定した面形状デー
タ等を繋ぎ合わせることにより被測定物の全体形状等を
得ることを特徴とする3次元形状等測定方法。 2、前記各部分領域の測定は該部分領域からの光を用い
た干渉作用を利用して行なわれて面形状データ等が求め
られる請求項1記載の測定方法。 3、前記重なり合う部分の同一直線上にない少なくとも
3点を測定データ数として選び出し、重なり合う部分領
域の対応する点の座標が一致する様に座標変換してフィ
ッティングすることにより各部分領域について測定した
面形状データ等を繋ぎ合わせる請求項1記載の測定方法
。 4、前記重なり合う部分の一方の測定データに対し他方
の測定データの差の自乗和が最小となる様に他方の測定
データ全部を座標変換してフィッティングすることによ
り各部分領域について測定した面形状データ等を繋ぎ合
わせる請求項1記載の測定方法。 5、前記重なり合う部分の一方の測定データと他方の測
定データとの相関関数が最大値をとる様に他方の測定デ
ータ全部を座標変換してフィッティングすることにより
各部分領域について測定した面形状データ等を繋ぎ合わ
せる請求項1記載の測定方法。 6、前記重なり合う部分の一方の測定データをツェルニ
ケ多項式展開した係数のうちR^2の係数、Rsinθ
の係数及びRcosθの係数と他方の測定データについ
ての同係数とを比較して座標変換してフィッティングす
ることにより各部分領域について測定した面形状データ
等を繋ぎ合わせる請求項1記載の測定方法。 7、3次元形状等を測定する干渉測定装置において、干
渉光学系と被測定物の光軸方向の相対距離を変化させる
ステージと、被測定物の干渉測定光照射領域を光軸に直
交する方向に変化させるステージと、被測定物を干渉光
学系に対して光軸に直交する2軸まわりに回転させてア
オリを与えるステージとを有する3次元形状測定装置。[Claims] In a method of measuring a one-dimensional shape, etc., an object to be measured is divided into a plurality of partial areas having measurable overlapping parts, and a surface measured for each partial area. A method for measuring a three-dimensional shape, etc., characterized in that the overall shape, etc. of an object to be measured is obtained by connecting shape data, etc. 2. The measuring method according to claim 1, wherein the measurement of each partial region is performed using interference effect using light from the partial region to obtain surface shape data and the like. 3. A surface measured for each partial area by selecting at least three points that are not on the same straight line in the overlapping areas as the number of measurement data, and performing coordinate conversion and fitting so that the coordinates of corresponding points in the overlapping partial areas match. 2. The measuring method according to claim 1, wherein shape data and the like are connected. 4. Surface shape data measured for each partial region by coordinate transformation and fitting of all of the other measurement data so that the sum of squares of the difference between the measurement data of one of the overlapping parts and the measurement data of the other is minimized 2. The measuring method according to claim 1, wherein the measuring method comprises connecting the above. 5. Surface shape data etc. measured for each partial region by coordinate transformation and fitting of all the other measurement data so that the correlation function between the measurement data of one of the overlapping parts and the measurement data of the other takes the maximum value. 2. The measuring method according to claim 1, wherein: 6. Among the coefficients obtained by expanding the measurement data of one of the overlapping parts into a Zernike polynomial, the coefficient of R^2, Rsinθ
2. The measuring method according to claim 1, wherein the surface shape data etc. measured for each partial region are connected by comparing the coefficients of R cos θ and the same coefficients of the other measurement data and performing coordinate transformation and fitting. 7. In an interferometric measurement device that measures three-dimensional shapes, etc., there is a stage that changes the relative distance between the interference optical system and the object to be measured in the optical axis direction, and a stage that changes the relative distance between the interference optical system and the object to be measured in the optical axis direction, and a stage that changes the relative distance between the interference optical system and the object to be measured in the direction perpendicular to the optical axis. A three-dimensional shape measuring device that has a stage that changes the shape of the object to be measured, and a stage that rotates the object to be measured about two axes orthogonal to the optical axis with respect to an interference optical system to give tilt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08234589A JP3162355B2 (en) | 1989-03-31 | 1989-03-31 | Surface shape measurement method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08234589A JP3162355B2 (en) | 1989-03-31 | 1989-03-31 | Surface shape measurement method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02259509A true JPH02259509A (en) | 1990-10-22 |
JP3162355B2 JP3162355B2 (en) | 2001-04-25 |
Family
ID=13771980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08234589A Expired - Lifetime JP3162355B2 (en) | 1989-03-31 | 1989-03-31 | Surface shape measurement method and device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3162355B2 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04290907A (en) * | 1991-03-19 | 1992-10-15 | Fuji Photo Optical Co Ltd | Inter-division connecting method for surface to be measured and undulate surface connecting method between divisions |
US5960379A (en) * | 1996-11-27 | 1999-09-28 | Fuji Xerox Co., Ltd. | Method of and apparatus for measuring shape |
JP2000310518A (en) * | 1999-04-27 | 2000-11-07 | Olympus Optical Co Ltd | Three-dimensional shape measuring device |
US6912055B2 (en) | 2002-03-29 | 2005-06-28 | Fujinon Corporation | Spherical form measuring and analyzing method |
JP2006098255A (en) * | 2004-09-30 | 2006-04-13 | Ricoh Co Ltd | Photographing method, photographing system, composite device, three-dimensional shape restoring method, program, and information recording medium |
JP2007010405A (en) * | 2005-06-29 | 2007-01-18 | Yokohama Rubber Co Ltd:The | Method and device for measuring of dynamic landing shape of tire |
WO2007097244A1 (en) * | 2006-02-20 | 2007-08-30 | Jtec Corporation | Ultra precision profile measuring method |
JP2008533439A (en) * | 2005-02-01 | 2008-08-21 | テイラー・ホブソン・リミテッド | measurement tool |
JP2008292438A (en) * | 2007-05-23 | 2008-12-04 | J Tec:Kk | Ultraprecision shape measuring method and apparatus |
JP2010008345A (en) * | 2008-06-30 | 2010-01-14 | Olympus Corp | Shape measurement apparatus and shape measurement method |
JP2010066103A (en) * | 2008-09-10 | 2010-03-25 | Olympus Corp | Method for integrating shape data |
JP2011123053A (en) * | 2009-11-12 | 2011-06-23 | Canon Inc | Measuring method and measuring apparatus |
WO2012008031A1 (en) * | 2010-07-15 | 2012-01-19 | キヤノン株式会社 | Method and apparatus for measuring shape of surface to be inspected, and method for manufacturing optical element |
US8274661B2 (en) | 2008-12-05 | 2012-09-25 | Canon Kabushiki Kaisha | Shape calculation method |
US8593642B2 (en) | 2009-09-18 | 2013-11-26 | Carl Zeiss Smt Gmbh | Method of measuring a shape of an optical surface based on computationally combined surface region measurements and interferometric measuring device |
US8868366B2 (en) | 2009-10-15 | 2014-10-21 | Canon Kabushiki Kaisha | Calculation method and calculation apparatus |
JP2014219372A (en) * | 2013-05-12 | 2014-11-20 | 夏目光学株式会社 | Surface shape measuring apparatus |
CN106030241A (en) * | 2014-01-09 | 2016-10-12 | 齐戈股份有限公司 | Measuring topography of aspheric and other non-flat surfaces |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5586134B2 (en) * | 2008-09-01 | 2014-09-10 | オリンパス株式会社 | Shape measurement method |
JP5312100B2 (en) | 2009-03-03 | 2013-10-09 | キヤノン株式会社 | Measuring method and measuring device |
JP2019152570A (en) | 2018-03-05 | 2019-09-12 | 東芝メモリ株式会社 | measuring device |
-
1989
- 1989-03-31 JP JP08234589A patent/JP3162355B2/en not_active Expired - Lifetime
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04290907A (en) * | 1991-03-19 | 1992-10-15 | Fuji Photo Optical Co Ltd | Inter-division connecting method for surface to be measured and undulate surface connecting method between divisions |
US5960379A (en) * | 1996-11-27 | 1999-09-28 | Fuji Xerox Co., Ltd. | Method of and apparatus for measuring shape |
JP2000310518A (en) * | 1999-04-27 | 2000-11-07 | Olympus Optical Co Ltd | Three-dimensional shape measuring device |
US6912055B2 (en) | 2002-03-29 | 2005-06-28 | Fujinon Corporation | Spherical form measuring and analyzing method |
JP2006098255A (en) * | 2004-09-30 | 2006-04-13 | Ricoh Co Ltd | Photographing method, photographing system, composite device, three-dimensional shape restoring method, program, and information recording medium |
JP2008533439A (en) * | 2005-02-01 | 2008-08-21 | テイラー・ホブソン・リミテッド | measurement tool |
US8296098B2 (en) | 2005-02-01 | 2012-10-23 | Taylor Hobson Limited | Metrological instrument |
JP2007010405A (en) * | 2005-06-29 | 2007-01-18 | Yokohama Rubber Co Ltd:The | Method and device for measuring of dynamic landing shape of tire |
WO2007097244A1 (en) * | 2006-02-20 | 2007-08-30 | Jtec Corporation | Ultra precision profile measuring method |
US7616324B2 (en) | 2006-02-20 | 2009-11-10 | Jtec Corporation | Ultra precision profile measuring method |
JP2007218852A (en) * | 2006-02-20 | 2007-08-30 | J Tec:Kk | Ultra-precision shape measurement method |
JP2008292438A (en) * | 2007-05-23 | 2008-12-04 | J Tec:Kk | Ultraprecision shape measuring method and apparatus |
JP2010008345A (en) * | 2008-06-30 | 2010-01-14 | Olympus Corp | Shape measurement apparatus and shape measurement method |
JP2010066103A (en) * | 2008-09-10 | 2010-03-25 | Olympus Corp | Method for integrating shape data |
US8274661B2 (en) | 2008-12-05 | 2012-09-25 | Canon Kabushiki Kaisha | Shape calculation method |
US8593642B2 (en) | 2009-09-18 | 2013-11-26 | Carl Zeiss Smt Gmbh | Method of measuring a shape of an optical surface based on computationally combined surface region measurements and interferometric measuring device |
US8868366B2 (en) | 2009-10-15 | 2014-10-21 | Canon Kabushiki Kaisha | Calculation method and calculation apparatus |
JP2011123053A (en) * | 2009-11-12 | 2011-06-23 | Canon Inc | Measuring method and measuring apparatus |
US9719773B2 (en) | 2009-11-12 | 2017-08-01 | Canon Kabushiki Kaisha | Measuring method and measuring apparatus |
US8675206B2 (en) | 2010-07-15 | 2014-03-18 | Canon Kabushiki Kaisha | Measurement method for measuring shape of test surface, measurement apparatus, and method for manufacturing optical element |
WO2012008031A1 (en) * | 2010-07-15 | 2012-01-19 | キヤノン株式会社 | Method and apparatus for measuring shape of surface to be inspected, and method for manufacturing optical element |
JP5442122B2 (en) * | 2010-07-15 | 2014-03-12 | キヤノン株式会社 | Measuring method for measuring shape of test surface, measuring apparatus and optical element manufacturing method |
CN103003662A (en) * | 2010-07-15 | 2013-03-27 | 佳能株式会社 | Method and apparatus for measuring shape of surface to be inspected, and method for manufacturing optical element |
JP2014219372A (en) * | 2013-05-12 | 2014-11-20 | 夏目光学株式会社 | Surface shape measuring apparatus |
CN106030241A (en) * | 2014-01-09 | 2016-10-12 | 齐戈股份有限公司 | Measuring topography of aspheric and other non-flat surfaces |
JP2017505434A (en) * | 2014-01-09 | 2017-02-16 | ザイゴ コーポレーションZygo Corporation | Measuring topography of aspheric and other non-planar surfaces |
US9798130B2 (en) | 2014-01-09 | 2017-10-24 | Zygo Corporation | Measuring topography of aspheric and other non-flat surfaces |
Also Published As
Publication number | Publication date |
---|---|
JP3162355B2 (en) | 2001-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02259509A (en) | Method and instrument for measuring surface shape or the like | |
US5485275A (en) | Apparatus and method for measuring the error of an apparatus which measure a cylindrical shape using an interferometer | |
CN106840027B (en) | Astigmatism-compensated interference detection device and detection method for optical free-form surface | |
US6943896B2 (en) | Reconfigurable interferometer system | |
US5187539A (en) | Mirror surface characteristic testing | |
CN109029288B (en) | Reflective large-gradient aspheric surface and free-form surface detection device and method based on DMD wave-front sensing technology | |
JPH0519927B2 (en) | ||
JP3667149B2 (en) | Lens evaluation method, lens evaluation device, and lens adjustment device | |
CN116608792B (en) | Wavefront interferometry system and method | |
US5033855A (en) | Fizeau interference measuring method and apparatus therefor | |
JPH02259510A (en) | Method and instrument for measuring surface shape or the like | |
JP2024063078A (en) | Wavefront measuring device, wavefront measuring method, and method for manufacturing optical system and optical element | |
US6972850B2 (en) | Method and apparatus for measuring the shape of an optical surface using an interferometer | |
US20200232789A1 (en) | Devices and Methods for Calibrating a Measuring Apparatus Using Projected Patterns | |
JPH08240417A (en) | Shape measuring method and shape measuring apparatus using the same | |
JPH07280535A (en) | Three-dimensional shape measuring device | |
JPH06313707A (en) | Shape measuring method and apparatus | |
RU2078307C1 (en) | Interferential method of determination of optical characteristics of optical elements and device for its implementation (variants) | |
Palum | Surface profile error measurement for small rotationally symmetric surfaces | |
Vandenrijt et al. | Development of full-field deflectometry for characterization of free-form mirrors for space applications | |
Arnold et al. | Interferometer for testing of general aspherics using computer-generated holograms | |
Bouwens et al. | Development of full-field deflectometry for characterization of free-form mirrors for space applications | |
US20240264035A1 (en) | Interferometer with auxiliary lens for measurement of a transparent test object | |
JP2000097669A (en) | Light-wave interferometer device and its data processing method | |
JPH10281720A (en) | Stage device and wave front aberration measuring device using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080223 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090223 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100223 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100223 Year of fee payment: 9 |