JPH02257110A - Structure for connecting optical fiber and optical waveguide - Google Patents
Structure for connecting optical fiber and optical waveguideInfo
- Publication number
- JPH02257110A JPH02257110A JP7673589A JP7673589A JPH02257110A JP H02257110 A JPH02257110 A JP H02257110A JP 7673589 A JP7673589 A JP 7673589A JP 7673589 A JP7673589 A JP 7673589A JP H02257110 A JPH02257110 A JP H02257110A
- Authority
- JP
- Japan
- Prior art keywords
- optical waveguide
- single mode
- optical fiber
- face
- connection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 54
- 239000013307 optical fiber Substances 0.000 title claims abstract description 23
- 239000000758 substrate Substances 0.000 claims abstract description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 description 5
- 238000005253 cladding Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/30—Optical coupling means for use between fibre and thin-film device
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/30—Optical coupling means for use between fibre and thin-film device
- G02B6/305—Optical coupling means for use between fibre and thin-film device and having an integrated mode-size expanding section, e.g. tapered waveguide
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、光通信システムやセンサ等で用いられる誘電
体あるいは半導体からなる光導波路素子と、光ファイバ
とを接続する際の位置合わせの許容度(軸ずれ許容度)
を大きくし、低損失な接続を実現する光ファイバ・光導
波路接続構造に関するものである。[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to alignment tolerance when connecting an optical fiber and an optical waveguide element made of a dielectric or semiconductor used in optical communication systems, sensors, etc. degree (axis misalignment tolerance)
This invention relates to an optical fiber/optical waveguide connection structure that achieves a low-loss connection with a large capacity.
〈従来の技術〉 第4図は従来の光ファイバ・光導波路接続構造を示す。<Conventional technology> FIG. 4 shows a conventional optical fiber/optical waveguide connection structure.
同図に示すように、光導波路素子10は、基板11上に
光導波路12を形成してなり、光導波路12の断面はど
の部分でも等しくなっている。一方、光ファイバ20は
クラッド21とコア22とを有し、この光ファイバ20
の端面が光導波路12の端面に接続されている。ガラス
等の光導波路12を作製する際には、光導波路12のパ
ラメータを、光ファイバ20のコア22のパラメータと
ほぼ同じにする。これは、光ファイバ20と光導波路素
子10との端面接続損失を極力小さくするためである。As shown in the figure, the optical waveguide element 10 includes an optical waveguide 12 formed on a substrate 11, and the cross section of the optical waveguide 12 is the same everywhere. On the other hand, the optical fiber 20 has a cladding 21 and a core 22.
The end face of the optical waveguide 12 is connected to the end face of the optical waveguide 12 . When producing the optical waveguide 12 of glass or the like, the parameters of the optical waveguide 12 are made almost the same as the parameters of the core 22 of the optical fiber 20. This is to minimize the end face connection loss between the optical fiber 20 and the optical waveguide element 10.
〈発明が解決しようとする課題〉
しかし単一モード系の場合には、接続許容度が1μm程
度であり極めて厳しい。このため接続の軸合わせは正確
にできても、接着固定時にずれが生じるので、固定後の
接続損が数dB増加してしまうIQIWIiがあった。<Problems to be Solved by the Invention> However, in the case of a single mode system, the connection tolerance is approximately 1 μm, which is extremely severe. For this reason, even if the axis of the connection can be accurately aligned, a misalignment occurs when fixing with adhesive, resulting in an IQIWIi that increases the connection loss by several dB after fixing.
本発明の目的は、光導波路を光伝送システムやセンサへ
適用する際、特にアレイ化された光導波路と光ファイバ
の接続許容度を大幅に改善する接続構造を提供すること
にある。An object of the present invention is to provide a connection structure that greatly improves the connection tolerance between an arrayed optical waveguide and an optical fiber when the optical waveguide is applied to an optical transmission system or a sensor.
く課題を解決するための手段〉
上記目的を達成する本発明は、単一モード光ファイバを
、一端部がホーン状に広がった単一モード光導波路に接
続したことを、その特徴とする。Means for Solving the Problems The present invention, which achieves the above object, is characterized in that a single mode optical fiber is connected to a single mode optical waveguide whose one end is expanded into a horn shape.
〈実施例〉 以下に本発明の実施例を図面に基づき詳細に説明する。<Example> Embodiments of the present invention will be described in detail below based on the drawings.
第1図は本発明の第1の実施例を示す。同図に示すよう
に単一モードの光導波路素子110は、石英ガラス系材
料で形成されており、基板111上に光導波路112を
形成した構造となっており、その比屈折率(△)はΔ=
0.3[%]となっている。光導波路112はその左端
部がテーパ光導波路112aとなっており、このテーパ
光導波路112aば左端面に向うに従い幅(断面)が徐
々に広くなるホーン状をなし、その長さ(Iりは1=5
[mm]であり、左端面寸法は40[μm]X8[μm
]となっている。光導波路112のうちテーパ光導波路
112aを除く残りの部分は、幅が一定でありそのコア
径(断面寸法)は8[μm]×8 [μm]となってい
る。FIG. 1 shows a first embodiment of the invention. As shown in the figure, the single mode optical waveguide element 110 is made of a silica glass material and has a structure in which an optical waveguide 112 is formed on a substrate 111, and its relative refractive index (△) is Δ=
It is 0.3 [%]. The left end of the optical waveguide 112 is a tapered optical waveguide 112a, and this tapered optical waveguide 112a has a horn shape whose width (cross section) gradually increases toward the left end surface, and its length (I is 1). =5
[mm], and the left end surface dimensions are 40 [μm] x 8 [μm]
]. The remaining portion of the optical waveguide 112 except for the tapered optical waveguide 112a has a constant width and a core diameter (cross-sectional dimension) of 8 [μm]×8 [μm].
一方、単一モードの光ファイバ120はクラッド112
とコア122を有し、コア径は8[μm]、比屈折率(
△)は△−0,3%となっている。そして、この光ファ
イバ120の右端面がテーパ光導波路112aの左端面
に接続されている。On the other hand, the single mode optical fiber 120 has a cladding 112
and a core 122, the core diameter is 8 [μm], and the relative refractive index (
△) is △-0.3%. The right end surface of this optical fiber 120 is connected to the left end surface of the tapered optical waveguide 112a.
かかる構成の本実施例では、ホーン状をなして接続端面
の広いテーパ光導波路112aがあるため、基板111
の面に平行な接続許容度(軸ずれ許容度)が、従来技術
に比べ大幅に向上する。In this embodiment with such a configuration, since the tapered optical waveguide 112a is horn-shaped and has a wide connection end surface, the substrate 111
The connection tolerance parallel to the plane (axis misalignment tolerance) is significantly improved compared to the conventional technology.
第2図は第1の実施例と従来の技術との接=3
続許賽度の特性を対比して示している。この第2図の特
性からも、従来技術に比べ接続許容度が向上したことが
わかる。例えば、伝送光の波長が1.30[、czml
であるとき、1[dBの損失増加に対する接続許容度は
、従来技術では1[μm]であったのに対し本発明の実
施例では約6[μm]となり、接続許容度が大幅に向上
した。FIG. 2 shows a comparison of the connection tolerance characteristics of the first embodiment and the conventional technology. It can also be seen from the characteristics shown in FIG. 2 that the connection tolerance is improved compared to the conventional technology. For example, if the wavelength of the transmitted light is 1.30 [, czml
, the connection tolerance for a loss increase of 1 [dB] was 1 [μm] in the conventional technology, whereas it was approximately 6 [μm] in the embodiment of the present invention, and the connection tolerance was significantly improved. .
第3図は本発明の第2の実施例である。この実施例はア
レイ化した場合の接続構造である。つまり石英ガラス系
材でなる単一モードの光導波路素子210は、基板21
1上に4本の光導波#J212を並べて配列したアレイ
化構造をなし、光導波路212相互の中心線の間隔は1
25[μm]となっている。しかも、各光導波路212
の左端部は、第1の実施例と同様に、それぞれホーン状
をなすテーパ光導波路212aとなっている。FIG. 3 shows a second embodiment of the invention. This embodiment is a connection structure when arrayed. In other words, the single mode optical waveguide element 210 made of a quartz glass material is
It has an arrayed structure in which four optical waveguides #J212 are arranged side by side on one, and the distance between the center lines of the optical waveguides 212 is 1.
It is 25 [μm]. Moreover, each optical waveguide 212
As in the first embodiment, the left end portions of each are horn-shaped tapered optical waveguides 212a.
一方、Sl単結晶基板230にはエツチングにより4つ
の■溝231が形成されている。On the other hand, four grooves 231 are formed in the Sl single crystal substrate 230 by etching.
−4=
4本の単一モードの光ファイバ220は1本づつ■溝2
31内に設定・接着固定されており、光ファイバ220
のコア222相互の中心線間隔は、光導波路212の中
心線間隔と同じ<、125 [μm]にしている。こ
のように相互位置が規定されてアレイ化された4本の光
ファイバ220の右端面をテーパ光導波路212aの左
端面に接続している。なお221はクラッドである。−4= Four single mode optical fibers 220 are connected one by one to groove 2
The optical fiber 220 is set and fixed with adhesive in the
The center line spacing between the cores 222 is set to <125 [μm], which is the same as the center line spacing of the optical waveguide 212. The right end surfaces of the four optical fibers 220 arranged in an array with mutual positions defined in this way are connected to the left end surface of the tapered optical waveguide 212a. Note that 221 is a cladding.
このように構成した第2の実施例では、4つの接続箇所
の接続損失は、それぞれ0.35dB、0.30dB、
0.37dB、0.34dBであった。ちなみに従来の
アレイ化接続では接続損失は0.32 dB、 0.4
0 dB、 0.55dB、0.85dBであり、接続
位置がずれるにつれて次第に累積誤差が加わり接続損失
が大きくなる。このような点からみて、本発明は、アレ
イ化した接続構造に適用して特に大きな効果が得られる
。In the second embodiment configured in this way, the connection losses at the four connection points are 0.35 dB, 0.30 dB, and 0.30 dB, respectively.
They were 0.37dB and 0.34dB. By the way, in the conventional array connection, the connection loss is 0.32 dB and 0.4 dB.
0 dB, 0.55 dB, and 0.85 dB, and as the connection position shifts, cumulative errors are gradually added and the connection loss increases. From this point of view, the present invention is particularly effective when applied to an arrayed connection structure.
なお本発明の範囲は、上述した実施例に限るものではな
く、この技術思想を利用したすべての態様を含むもので
ある。Note that the scope of the present invention is not limited to the above-described embodiments, but includes all aspects that utilize this technical idea.
〈発明の効果〉
以上述べたように、本発明によれば、光ファイバから光
導波路へ光を導入する接続構造において、接続許容度を
上げることができ、特に光導波路をアレイ化した場合に
はその効果が極めて著しい。これにより光導波路を光伝
送システムやセンサに適用する際の実装が極めて容易に
なり、信頼性向上や低価格が期待できる。<Effects of the Invention> As described above, according to the present invention, connection tolerance can be increased in a connection structure that introduces light from an optical fiber to an optical waveguide, and especially when optical waveguides are arrayed. The effect is extremely significant. This makes it extremely easy to implement optical waveguides in optical transmission systems and sensors, and is expected to improve reliability and lower costs.
第1図は本発明の第1の実施例を示す構成図、第2図は
従来構造と本発明実施例構造の損失特性を対比して示す
特性図、
第3図は本発明の第2の実施例を示す構成図、第4図は
従来技術を示す構成図である。
図面中、
10.110,210は光導波路素子、11.111,
211は基板、
2.112,212は先導波路、
0.120,220は光ファイバ、
1.121,221はクラッド、
2.122,222はコア、
12a、212aはテーパ光導波路、
30はSi単結晶基板、
31は■溝である。FIG. 1 is a configuration diagram showing the first embodiment of the present invention, FIG. 2 is a characteristic diagram comparing the loss characteristics of the conventional structure and the structure of the embodiment of the present invention, and FIG. FIG. 4 is a block diagram showing an embodiment, and FIG. 4 is a block diagram showing a conventional technique. In the drawings, 10.110, 210 are optical waveguide elements, 11.111,
211 is a substrate, 2.112, 212 is a leading waveguide, 0.120, 220 is an optical fiber, 1.121, 221 is a cladding, 2.122, 222 is a core, 12a, 212a are a tapered optical waveguide, 30 is a silicon monomer. On the crystal substrate, 31 is a ■groove.
Claims (1)
単一モード光ファイバとを接続する接続構造であって、 前記単一モード光導波路の一端部は一端面に向うに従い
断面が徐々に広くなるホーン状をなし、前記単一モード
光ファイバの端面が単一モード光導波路の一端面に接続
されていることを特徴とする光ファイバ・光導波路接続
構造。[Claims] A single mode optical waveguide formed on a substrate of an optical waveguide element,
A connection structure for connecting a single mode optical fiber, wherein one end of the single mode optical waveguide has a horn shape with a cross section gradually widening toward one end surface, and the end surface of the single mode optical fiber is An optical fiber/optical waveguide connection structure characterized by being connected to one end surface of a single mode optical waveguide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7673589A JPH02257110A (en) | 1989-03-30 | 1989-03-30 | Structure for connecting optical fiber and optical waveguide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7673589A JPH02257110A (en) | 1989-03-30 | 1989-03-30 | Structure for connecting optical fiber and optical waveguide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02257110A true JPH02257110A (en) | 1990-10-17 |
Family
ID=13613846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7673589A Pending JPH02257110A (en) | 1989-03-30 | 1989-03-30 | Structure for connecting optical fiber and optical waveguide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02257110A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995014947A1 (en) * | 1993-11-22 | 1995-06-01 | Sheem, Sang, K. | Optical fiber interconnections using self-aligned core extensions |
JP2002328244A (en) * | 2001-05-01 | 2002-11-15 | Nippon Telegr & Teleph Corp <Ntt> | Optical components |
JP2022510466A (en) * | 2018-12-13 | 2022-01-26 | 中国科学院半▲導▼体研究所 | Photocoupled structure, system and method for manufacturing the photocoupled structure |
-
1989
- 1989-03-30 JP JP7673589A patent/JPH02257110A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5515464A (en) * | 1992-07-06 | 1996-05-07 | Sheem Sang K | Optical fiber interconnections using self-aligned core-extensions |
WO1995014947A1 (en) * | 1993-11-22 | 1995-06-01 | Sheem, Sang, K. | Optical fiber interconnections using self-aligned core extensions |
AU677493B2 (en) * | 1993-11-22 | 1997-04-24 | Sang K. Sheem | Optical fiber interconnections using self-aligned core extensions |
JP2002328244A (en) * | 2001-05-01 | 2002-11-15 | Nippon Telegr & Teleph Corp <Ntt> | Optical components |
JP2022510466A (en) * | 2018-12-13 | 2022-01-26 | 中国科学院半▲導▼体研究所 | Photocoupled structure, system and method for manufacturing the photocoupled structure |
US11513295B2 (en) | 2018-12-13 | 2022-11-29 | Institute Of Semiconductors, Chinese Academy Of Sciences | Optical coupling structure, system and method for preparing optical coupling structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3782247B2 (en) | Optical interferometer | |
CA2352919A1 (en) | Method for making a planar waveguide | |
WO1999057591A1 (en) | Coupling optical fibre to waveguide | |
CN112711093B (en) | Polarization beam splitter structure and polarization beam splitting method | |
JP3952696B2 (en) | Optical coupling structure | |
TWI867448B (en) | Edge couplers with consecutively-arranged tapers | |
CN117289493A (en) | Polarization insensitive silicon-based optical switch | |
US5546488A (en) | Waveguide-type optical path converter for converting a propagation direction of a light | |
JPH09105824A (en) | Waveguide type optical element | |
WO2020116146A1 (en) | Optical connection structure | |
KR19990040439A (en) | Optical waveguide chip | |
EP1491924B1 (en) | Optical coupler | |
JPH04212108A (en) | Waveguide type light branching element | |
JP3223930B2 (en) | Optical device | |
JPS59208509A (en) | Optical multiplexer for single mode | |
EP0726475A1 (en) | Optical waveguide | |
JP2961057B2 (en) | Optical branching device | |
JPH02257110A (en) | Structure for connecting optical fiber and optical waveguide | |
US7330618B2 (en) | Waveguide structure | |
JPH01261604A (en) | optical coupling device | |
KR100401203B1 (en) | Planar lightwave circuit with polynomial curve waveguide | |
JPH07281041A (en) | Waveguide and Mach-Zehnder type optical circuit using the same | |
US20220413220A1 (en) | Optical waveguides and methods for producing | |
JP2001235645A (en) | Optical waveguide circuit | |
KR100383586B1 (en) | Y-branch lightwave circuits using offset |