[go: up one dir, main page]

JPH02254316A - Displacement measuring device - Google Patents

Displacement measuring device

Info

Publication number
JPH02254316A
JPH02254316A JP7705889A JP7705889A JPH02254316A JP H02254316 A JPH02254316 A JP H02254316A JP 7705889 A JP7705889 A JP 7705889A JP 7705889 A JP7705889 A JP 7705889A JP H02254316 A JPH02254316 A JP H02254316A
Authority
JP
Japan
Prior art keywords
light
diffraction grating
type diffraction
substrate
relief
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7705889A
Other languages
Japanese (ja)
Inventor
Tetsuji Nishimura
西村 哲治
Akira Ishizuka
公 石塚
Satoru Ishii
哲 石井
Masaaki Tsukiji
築地 正彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7705889A priority Critical patent/JPH02254316A/en
Priority to US07/496,259 priority patent/US5021649A/en
Priority to EP90105852A priority patent/EP0390092B2/en
Priority to DE69011918T priority patent/DE69011918T3/en
Publication of JPH02254316A publication Critical patent/JPH02254316A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)

Abstract

PURPOSE:To measure the displacement of an optical scale highly accurately by forming a reflecting film on a relief type diffraction grating, and illuminating the optical scale from the side of the other surface of a transparent substrate. CONSTITUTION:Luminous flux is not inputted into the surface of a reflecting film 2 from the side of the surface of a substrate on which a relief type diffraction grading is formed. But the luminous flux is inputted from the side of the surface of the substrate that is the opposite side from the surface on which the relief type diffraction grating is formed. Namely, when reflection preventing treatment and reflection-reducing optical coating for incident light are applied on a light inputting surface 6 of the transparent substrate 1, the incident luminous flux 20 is not attenuated and reaches a boundary plane between the grooves of the relief type diffraction grating of the substrate 1 and the reflecting film 2. The light is reflected, and reflected light rays 21 and 22 are generated. Therefore, the specified amount of the diffracted light is generated regardless of the thickness of the reflecting film 2. Therefore, when the diffracted light is made to interfere, the change in brightness and darkness is detected and the displacement amount of a body to be checked is detected and the displacement amount of a body to be checked is measured; the stable output is obtained from a photodetector element, and the highly accurate measurement can be performed.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は変位測定装置に関し、特に透明基板上にレリー
フ型回折格子を形成した光学式スケールの変位をレリー
フ型回折格子で生じる回折光を利用して測定する変位測
定装置に関する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a displacement measuring device, and particularly to a displacement measuring device that measures the displacement of an optical scale in which a relief-type diffraction grating is formed on a transparent substrate using diffracted light generated by the relief-type diffraction grating. This invention relates to a displacement measuring device.

〔従来技術〕[Prior art]

従来、この種の変位測定装置としては、例えば実公昭6
1−39289号公報に開示しであるような装置が知ら
れている。この装置はガラス基板上に周期的な溝を形成
してレリーフ型の回折格子とし、周期的な溝表面にAu
5Afなどの反射膜を蒸着して光学式スケールを構成し
ている。そして、この光学式スケールを、第4図に示す
如(レリーフ型回折格子の上方から照明し、レリーフ型
回折格子で生じた回折光同志を干渉させて干渉縞を形成
し、この干渉縞を光電変換することにより光学式スケ−
の変位を測定している。
Conventionally, as this type of displacement measuring device, for example,
A device as disclosed in Japanese Patent No. 1-39289 is known. This device forms periodic grooves on a glass substrate to form a relief-type diffraction grating, and the surface of the periodic grooves is made of Au.
An optical scale is constructed by depositing a reflective film such as 5Af. This optical scale is then illuminated from above the relief-type diffraction grating as shown in Figure 4, and the diffracted lights generated by the relief-type diffraction grating are made to interfere with each other to form interference fringes. Optical scale by converting
The displacement of

このようなレリーフ型回折格子は溝の高さを適宜定めて
やることで零次反射回折光(正反射光)の強度を弱め、
測定に用いる高次反射回折光の強度を強めることができ
るので極めて有効である。
Such a relief type diffraction grating weakens the intensity of the zero-order reflected diffraction light (regularly reflected light) by appropriately setting the height of the grooves.
This is extremely effective because it can increase the intensity of high-order reflected diffraction light used for measurement.

しかしながら、第4図に示す如く、溝表面に反射膜2を
蒸着すると、蒸着された膜の厚さの変動によって、溝の
形状や溝の深さが変化する。その結果、従来の装置では
回折光の光量が変動し、高精度な測定が不可能となる。
However, as shown in FIG. 4, when the reflective film 2 is deposited on the groove surface, the shape and depth of the groove change due to variations in the thickness of the deposited film. As a result, in the conventional apparatus, the amount of diffracted light fluctuates, making highly accurate measurement impossible.

〔発明の概要〕[Summary of the invention]

本発明は上記従来の問題点を解消し、高精度な測定を行
なうことが可能な変位測定装置を提供することを目的と
している。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional problems and provide a displacement measuring device capable of performing highly accurate measurements.

この目的を達成するために、本発明の変位測定装置は、
透明基板の一方の基板面上にレリーフ型回折格子を形成
した光学式スケールを光で照明し、該レリーフ型回折格
子で生じた回折光を用いて干渉縞を形成し、該干渉縞を
光電変換することにより該光学式スケールの変位を測定
する装置において、該レリーフ型回折格子上に反射膜を
形成し、該透明基板の他方の基板面側から該光学式スケ
ールを照明することを特徴としている。
To achieve this objective, the displacement measuring device of the present invention includes:
An optical scale with a relief-type diffraction grating formed on one side of a transparent substrate is illuminated with light, and the diffracted light generated by the relief-type diffraction grating is used to form interference fringes, and the interference fringes are photoelectrically converted. The apparatus for measuring the displacement of the optical scale by forming a reflective film on the relief-type diffraction grating, and illuminating the optical scale from the other substrate surface side of the transparent substrate. .

本発明では、その上に反射膜が施されたレリーフ型回折
格子が形成されている基板面とは反対側の基板面側から
光を照射し、レリーフ型回折格子によって回折光を発生
させるので、反射膜の膜厚変動による回折光光量の変動
が生じない。従って、極めて高精度に光学式スケールの
変位を測定することができる。
In the present invention, light is irradiated from the substrate surface opposite to the substrate surface on which the relief-type diffraction grating with a reflective film is formed, and diffracted light is generated by the relief-type diffraction grating. There is no variation in the amount of diffracted light due to variation in the thickness of the reflective film. Therefore, the displacement of the optical scale can be measured with extremely high precision.

本発明の変位測定装置は、予め決めた方向に並進移動す
る所謂リニアスケールの変位、或いは所定の軸を回転軸
として回転する所謂ロータリースケールの変位等様々な
光学式スケールの読み取りに用いることができるが、本
願ではいくつかの実施例を挙げて、本発明の種々の特徴
を説明する。
The displacement measurement device of the present invention can be used to read various optical scales, such as the displacement of a so-called linear scale that translates in a predetermined direction, or the displacement of a so-called rotary scale that rotates about a predetermined axis. However, in this application, various features of the present invention will be explained with reference to several examples.

〔実施例〕〔Example〕

第1図(A)〜CC’)は本発明の基本的特徴を示す説
明図である。
FIGS. 1(A) to CC') are explanatory diagrams showing the basic features of the present invention.

同図において、lはレリーフ型回折格子を形成した透明
基板、2は反射膜、6は透明基板1の光入射面、20は
入射光、2Iは−1次回折光、22は+1次回折光を示
す。
In the figure, l indicates a transparent substrate on which a relief-type diffraction grating is formed, 2 indicates a reflective film, 6 indicates a light incident surface of the transparent substrate 1, 20 indicates incident light, 2I indicates -1st-order diffracted light, and 22 indicates +1st-order diffracted light. .

第1図(A)は溝の断面形状が矩形波状のレリーフ型回
折格子を形成した光学式スケールの一例、第1図(B)
は同様に正弦波状の回折格子を形成したもの、第1図(
C)も同様に三角波状のブレーズド回折格子を形成した
ものである。いずれの光学式スケールも、レリーフ型回
折格子の溝表面に反射回折光の強度を上げるための反射
膜2を蒸着する。そしてレリーフ型回折格子を形成する
基板lをガラスや透明樹脂などの光透過性物質で構成し
ている。
Figure 1 (A) is an example of an optical scale that forms a relief-type diffraction grating with grooves having a rectangular cross-sectional shape, and Figure 1 (B).
Similarly, a sinusoidal diffraction grating is formed, as shown in Fig. 1 (
Similarly, C) also has a triangular wave-shaped blazed diffraction grating. In both optical scales, a reflective film 2 for increasing the intensity of reflected diffraction light is deposited on the groove surface of the relief type diffraction grating. The substrate l forming the relief type diffraction grating is made of a light-transmitting material such as glass or transparent resin.

本発明ではレリーフ型回折格子が形成された基板面側か
ら反射膜2の表面に光束を入射するのでなくレリーフ型
回折格子が形成された面とは反対側の基板面側から入射
させる。透明基板Iの光入射面6に、入射光に対する反
射防止、増透処理を施してお(と、入射光束20は減衰
することなく、基板1のレリーフ型回折格子の溝と反射
膜2の境界面に達し、反射膜で反射されて反射回折光2
1.22が発生する。
In the present invention, the light beam is not incident on the surface of the reflective film 2 from the substrate surface side on which the relief type diffraction grating is formed, but is made incident on the substrate surface side opposite to the surface on which the relief type diffraction grating is formed. The light incident surface 6 of the transparent substrate I is subjected to anti-reflection and transmission enhancement treatment for the incident light (so that the incident light beam 20 is not attenuated and passes through the boundary between the grooves of the relief type diffraction grating of the substrate 1 and the reflective film 2). It reaches the surface, is reflected by the reflective film and becomes reflected diffracted light 2.
1.22 occurs.

従って、反射膜2の膜厚とは無関係に、一定光量の回折
光が発生する。
Therefore, a constant amount of diffracted light is generated regardless of the thickness of the reflective film 2.

第2図は本発明の変位測定装置の一実施例を示す概略図
で、図中の矢印方向に変位する光学式スケールを読取る
所謂光学式ソニアエンコーダーを示す。
FIG. 2 is a schematic diagram showing an embodiment of the displacement measuring device of the present invention, and shows a so-called optical sonia encoder that reads an optical scale that is displaced in the direction of the arrow in the figure.

同図において、llは第1図(A)で示した光学式スケ
ールであり、透明基板Iの一方の基板面に周期的な溝を
刻んだレリーフ型回折格子を形成し、溝表面にAu、A
1等を蒸着して反射膜を施している。そして、レリーフ
型回折格子が形成された基板面とは反対側の基板面には
反射防止膜(不図示)が形成しである。
In the same figure, ll is the optical scale shown in FIG. 1(A), and a relief type diffraction grating with periodic grooves carved on one substrate surface of the transparent substrate I is formed, and Au, A
A reflective film is applied by vapor-depositing 1st grade. Further, an antireflection film (not shown) is formed on the substrate surface opposite to the substrate surface on which the relief type diffraction grating is formed.

31は可干渉性光源である半導体レーザー、32はコリ
メータレンズ、33は反射鏡、34はハーフミラ−13
5は受光素子である。
31 is a semiconductor laser which is a coherent light source, 32 is a collimator lens, 33 is a reflecting mirror, and 34 is a half mirror 13.
5 is a light receiving element.

レーザー31から出射した光束はコリメータレンズ32
によってほぼ平行な光束となって光学式スケール11を
照射する。第2図のように回折格子形成面に対して、垂
直な方向から光束を照射すれば、次式であられされる角
度±θ力方向1次の回折光が発生する。
The light beam emitted from the laser 31 passes through the collimator lens 32
As a result, the optical scale 11 is irradiated with a substantially parallel beam of light. As shown in FIG. 2, when a light beam is irradiated from a direction perpendicular to the surface on which the diffraction grating is formed, first-order diffracted light is generated in the angle ±θ force direction given by the following equation.

θ=sin−’(λ/p)  ・・・・・・・・・・ 
・・・・・・・・・・・・・・・・・・・ (1)(λ
:レーザー31の波長、p:回折格子のピッチ)±1次
回折光21.22は、反射鏡33で各々反射され、ハー
フミラ−34を介して重ね合わされて干渉光となって受
光素子35に入射する。
θ=sin-'(λ/p) ・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・ (1)(λ
: wavelength of the laser 31, p: pitch of the diffraction grating) The ±1st-order diffracted lights 21 and 22 are each reflected by the reflecting mirror 33 and superimposed via the half mirror 34 to become interference light and enter the light receiving element 35. .

光学式スケール11が、第2図の矢印の方向にXだけ移
動すると、+1次回折光22の位相は2πx/p、−1
次回折光21の位相は一2πx/pだけ変化する。その
結果、受光素子35からは次式であられされる出力信号
1 (x)が得られる。
When the optical scale 11 moves by X in the direction of the arrow in FIG. 2, the phase of the +1st-order diffracted light 22 becomes 2πx/p, -1
The phase of the next diffracted light 21 changes by -2πx/p. As a result, the light receiving element 35 obtains an output signal 1 (x) expressed by the following equation.

1 (X) = 1exp[i(ωt+2πx/p)l
 +exp(i(ωt−2πx/p)]=2 (1+c
os (4yr x/p)1従って、受光素子35から
の出力信号はx=p/2を1周期とする正弦波信号であ
り、たとえば、回折格子のピッチpを1.6μmとすれ
ば、0.8μm周期の正弦波信号が得られる。このよう
に、受光素子35の出力信号から、光学式スケール11
の移動量を測定できる。そして、光学式スケール11を
不図示の被検測定物、たとえば、可動ステージに取り付
けておけば、このステージの移動量を1μm以下の分解
能で且つ高精度に測定できる。
1 (X) = 1exp[i(ωt+2πx/p)l
+exp(i(ωt-2πx/p)]=2 (1+c
os (4yr x/p)1 Therefore, the output signal from the light receiving element 35 is a sine wave signal with one period of x=p/2. For example, if the pitch p of the diffraction grating is 1.6 μm, A sine wave signal with a period of .8 μm is obtained. In this way, from the output signal of the light receiving element 35, the optical scale 11
The amount of movement can be measured. If the optical scale 11 is attached to an object to be measured (not shown), such as a movable stage, the amount of movement of this stage can be measured with high precision and a resolution of 1 μm or less.

本変位測定装置によれば回折格子を形成する基板を光透
過性材料とし回折格子が形成された面とは反対側の基板
面側から光束を入射させることにより、回折格子の溝表
面に蒸着された反射膜に膜厚変化があっても回折光の光
量が減少したり、変動することがない。従って、回折光
を干渉させ、その干渉光の明暗変化を検出して、被検物
体の変位量を測定する際、受光素子からは安定した出力
信号が得られ、高精度な測定が可能になるという効果が
ある。
According to this displacement measuring device, the substrate forming the diffraction grating is made of a light-transmissive material, and the light beam is incident on the surface of the substrate opposite to the surface on which the diffraction grating is formed. Even if the thickness of the reflective film changes, the amount of diffracted light does not decrease or fluctuate. Therefore, when measuring the displacement of an object by interfering the diffracted light and detecting the change in brightness of the interference light, a stable output signal is obtained from the light receiving element, making highly accurate measurement possible. There is an effect.

第3図は本発明の他の実施例を示す概略図である。同図
において7は第1図(A)〜(C)に示す基板lと同じ
光透過性基板で、ガラスなどを円板状に加工し、一方の
基板面に等角度ピッチで周期的な溝を刻んでレリーフ型
回折格子が形成されている。そして反射膜2を溝面に蒸
着しである。
FIG. 3 is a schematic diagram showing another embodiment of the present invention. In the same figure, 7 is the same light-transmissive substrate as the substrate 1 shown in FIGS. 1(A) to (C). Glass or the like is processed into a disc shape, and periodic grooves are formed on one substrate surface at equal angular pitches. A relief-type diffraction grating is formed by carving. Then, a reflective film 2 is deposited on the groove surface.

第1回(A)〜(C)と同じく、光透過性基板7のレリ
ーフ型回折格子を形成した面とは反対側の基板面6側か
ら光束を入射させることによって、回転角度測定につい
ても前記実施例と同等の効果を得ることができる。
As in the first sections (A) to (C), the rotation angle can also be measured by inputting a light beam from the side of the substrate surface 6 opposite to the surface on which the relief-type diffraction grating of the light-transmissive substrate 7 is formed. Effects equivalent to those of the embodiment can be obtained.

以上説明した実施例では、光学式スケールの移動量若し
くは回転量(回転角)を測定する装置を例示したが、光
学式スケールの移動速度や回転速度を測定する装置にも
本発明は適用可能である。
In the embodiments described above, a device for measuring the amount of movement or rotation (rotation angle) of an optical scale was exemplified, but the present invention can also be applied to a device that measures the speed of movement or rotation of an optical scale. be.

また、光学式スケールを読取る光学系も第2図に示した
形態に限定されるものではなく、本件出願人により特開
昭58−191907号公報、特開昭61−65115
号公報、特開昭61−212728号公報、特開昭62
−6119号公報で開示された光学系や、米国特許4,
629,886及び米国特許4,676.645に開示
しである光学系など様々な形態とすることができる。
Furthermore, the optical system for reading the optical scale is not limited to the form shown in FIG.
No. 61-212728, JP-A-62
The optical system disclosed in Publication No. 6119, U.S. Pat.
629,886 and US Pat. No. 4,676.645.

〔発明の効果〕〔Effect of the invention〕

以上、本発明では、その上に反射膜が施されたレリーフ
型回折格子が形成されている基板面とは反対側の基板面
から光学式スケールに光を照射し、レリーフ型回折格子
によって回折光を発生させて測地に用いているので、反
射膜の膜厚変動による回折光光量の変動が生じない。従
って、極めて高精度に光学式スケールの変位を測定する
ことが可能な変位測定装置を提供できる。
As described above, in the present invention, light is irradiated onto the optical scale from the substrate surface opposite to the substrate surface on which the relief-type diffraction grating with a reflective film is formed, and the relief-type diffraction grating causes the diffraction light to be emitted. is generated and used for geodetic measurements, so there is no variation in the amount of diffracted light due to variations in the thickness of the reflective film. Therefore, it is possible to provide a displacement measuring device that can measure the displacement of an optical scale with extremely high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)〜(C)は本発明の基本的特徴を示すため
の説明図。 第2図は本発明の変位測定装置の一実施例を示す概略図
。 第3図は本発明の他の実施例を示す概略図。 第4図は従来の変位測定装置を示すための説明図。 1・・・・・・透明基板 2・・・・・・反射膜 11・・φ・・・光学式スケール 20・・・・・・入射光 21.22・・・回折光 31・・・・・・半導体レーザー 32・・・・・・コリメータレンズ 33・・・・・・反射鏡 34・1〕・・ハーフミラ− 35・・・・・・受光素子 第1図 (A)
FIGS. 1(A) to 1(C) are explanatory diagrams for showing the basic features of the present invention. FIG. 2 is a schematic diagram showing an embodiment of the displacement measuring device of the present invention. FIG. 3 is a schematic diagram showing another embodiment of the present invention. FIG. 4 is an explanatory diagram showing a conventional displacement measuring device. 1... Transparent substrate 2... Reflective film 11... φ... Optical scale 20... Incident light 21.22... Diffracted light 31... ... Semiconductor laser 32 ... Collimator lens 33 ... Reflector 34.1] ... Half mirror 35 ... Light receiving element Fig. 1 (A)

Claims (1)

【特許請求の範囲】[Claims] 透明基板の一方の基板面上にレリーフ型回折格子を形成
した光学式スケールを光で照明し、該レリーフ型回折格
子で生じた回折光を用いて干渉縞を形成し、該干渉縞を
光電変換することにより該光学式スケールの変位を測定
する装置において、該レリーフ型回折格子上に反射膜を
形成し、該透明基板の他方の基板面側から該光学式スケ
ールを照明することを特徴とする変位測定装置。
An optical scale with a relief-type diffraction grating formed on one side of a transparent substrate is illuminated with light, and the diffracted light generated by the relief-type diffraction grating is used to form interference fringes, and the interference fringes are photoelectrically converted. In the apparatus for measuring the displacement of the optical scale, a reflective film is formed on the relief-type diffraction grating, and the optical scale is illuminated from the other substrate surface side of the transparent substrate. Displacement measuring device.
JP7705889A 1989-03-28 1989-03-28 Displacement measuring device Pending JPH02254316A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7705889A JPH02254316A (en) 1989-03-28 1989-03-28 Displacement measuring device
US07/496,259 US5021649A (en) 1989-03-28 1990-03-20 Relief diffraction grating encoder
EP90105852A EP0390092B2 (en) 1989-03-28 1990-03-27 Encoder
DE69011918T DE69011918T3 (en) 1989-03-28 1990-03-27 Coding.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7705889A JPH02254316A (en) 1989-03-28 1989-03-28 Displacement measuring device

Publications (1)

Publication Number Publication Date
JPH02254316A true JPH02254316A (en) 1990-10-15

Family

ID=13623193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7705889A Pending JPH02254316A (en) 1989-03-28 1989-03-28 Displacement measuring device

Country Status (1)

Country Link
JP (1) JPH02254316A (en)

Similar Documents

Publication Publication Date Title
EP0390092B1 (en) Encoder
JP3254737B2 (en) encoder
JPS60260813A (en) Method and device for measuring displacement
GB2185314A (en) Encoder
JPH056853B2 (en)
JPH0130088B2 (en)
JPH02285214A (en) Length measuring machine and scale member used for the same
US4969744A (en) Optical angle-measuring device
JPS63231217A (en) Measuring instrument for movement quantity
US5113071A (en) Encoder in which single light source projects dual beams onto grating
JPH02206745A (en) Highly stable interferometer for measuring refractive index
JPS6244203B2 (en)
JPH02254316A (en) Displacement measuring device
JP2603338B2 (en) Displacement measuring device
JPH0687007B2 (en) Angle measuring device
JPS62200224A (en) Rotary encoder
JP3116535B2 (en) Rotary encoder and encoder
JP2688988B2 (en) Optical measuring device
JPH045142B2 (en)
RU80563U1 (en) OPTOELECTRONIC ANGLES AND VIBRATION SENSOR
JPH0285717A (en) Encoder
JPS62163921A (en) Rotary encoder
JPH03115809A (en) Encoder
JP3221748B2 (en) Encoder
JPH0471161B2 (en)