[go: up one dir, main page]

JPH02252605A - Combustion equipment for reformer - Google Patents

Combustion equipment for reformer

Info

Publication number
JPH02252605A
JPH02252605A JP1073108A JP7310889A JPH02252605A JP H02252605 A JPH02252605 A JP H02252605A JP 1073108 A JP1073108 A JP 1073108A JP 7310889 A JP7310889 A JP 7310889A JP H02252605 A JPH02252605 A JP H02252605A
Authority
JP
Japan
Prior art keywords
flame
fuel
ignition
air
pilot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1073108A
Other languages
Japanese (ja)
Other versions
JP2581208B2 (en
Inventor
Sadatoshi Takayanagi
高柳 貞敏
Hiroko Tsuji
辻 博子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1073108A priority Critical patent/JP2581208B2/en
Publication of JPH02252605A publication Critical patent/JPH02252605A/en
Application granted granted Critical
Publication of JP2581208B2 publication Critical patent/JP2581208B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain a combustion equipment for reformer having high reliability to ignition by arranging an ignition means capable of simultaneously igniting a plurality of flame holes for firing means in the neighbor of flame hole for firing means. CONSTITUTION:In the actuation of fuel cell generator, preliminary combustion is carried out using a conventional fuel, e.g. city gas. Namely, air 201 for combustion is introduced from a blower into an air chamber B and successively city gas fuel 401 is introduced into a fuel jetting apace 502 of an ignition means 51 while scattering discharge spark to the ignition means 51 by discharge electrode 404 and simultaneously secondary air 201 is introduced in the neighbor of the space 502 and the city gas fuel 401 is fired with the means 51 and further circular flame 503 for ignition is produced. Meanwhile, air 201 from the fuel 401 and secondary air hole 202 is introduced into a pilot burner 41 and a plurality of pilot flame holes 402 are simultaneously ignited by the flame 503 to simultaneously provide a plurality of pilot flames 403. Consequently, even if some flames 403 are lost, firing is made instantly possible by flame 503.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は燃料電池発電装置の燃料改質装置用燃焼装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a combustion device for a fuel reformer of a fuel cell power generation device.

〔従来の技術〕[Conventional technology]

燃料電池発電装置の基本的な構成を簡単・模式化して第
4図に示す。基本的な構成要素としては改質装置(9)
とCo転化器(901)及び発電セル本体(902)で
あり、改質装置(9)には改質反応の温度維持と反応熱
の供給のための燃焼器(904)と、改質炉(C)内部
には改質触媒が充填されている改質反応管(903)が
収納されている。燃料電池発電装置の始動は、まず改質
用燃焼器(904)で在来の燃料例えば都市ガス(13
A)と燃焼用空気を供給して予熱燃焼を行なう。反応管
(903)が反応を進行させるに十分な所定の温度に達
した後、改質原料ガス(通常は都市ガス(13A)又は
メタノール)十水蒸気(LO)を反応管(903)に導
入する。改質装置(9)にて改質された水素(Hり分を
多く含む改質ガスはCo転化器(901)を通り、未反
応のCOとH,Oより更に迅が富化された燃料ガスとな
り発電セル本体(902)に供給される。発電セル本体
(902)ではこのH1富化改質ガスと酸化剤の空気と
が電解質を通して反応し電気出力を得ると同時に改質ガ
ス中のH!分は消費され電池オフガスとなって排出され
る。しかしこの電池オフガスには未消費のH,分が約z
−,4)vol−程度残っており、その他はH,0やC
O7の不活酸ガスという低カロリー可燃ガスである。
The basic configuration of the fuel cell power generation device is simplified and schematically shown in FIG. The basic component is the reformer (9)
The reformer (9) includes a combustor (904) for maintaining the temperature of the reforming reaction and supplying reaction heat, and a reforming furnace (902). C) A reforming reaction tube (903) filled with a reforming catalyst is housed inside. To start the fuel cell power generation device, first, the reforming combustor (904) uses conventional fuel such as city gas (13
A) and combustion air are supplied to perform preheating combustion. After the reaction tube (903) reaches a predetermined temperature sufficient for the reaction to proceed, reformed raw material gas (usually city gas (13A) or methanol) and steam (LO) are introduced into the reaction tube (903). . The reformed gas containing a large amount of hydrogen (H) that has been reformed in the reformer (9) passes through the Co converter (901) and becomes a fuel that is even more enriched than unreacted CO, H, and O. It becomes a gas and is supplied to the power generation cell main body (902).In the power generation cell main body (902), this H1-enriched reformed gas and the oxidizing agent air react through the electrolyte to obtain an electrical output and at the same time remove the H1 in the reformed gas. ! minute is consumed and discharged as battery off-gas. However, this battery off-gas contains unconsumed H, minute of about z.
-, 4) vol- remains, others are H, 0 and C
It is a low calorie combustible gas called O7 inert acid gas.

この低カロリー可燃ガスである電池オフガスを再び改質
用燃焼器(904)に導入して燃焼させ改質反応の熱供
給に利用して燃料電池発電装置の効率を高いものにして
いる。
This battery off-gas, which is a low-calorie combustible gas, is again introduced into the reforming combustor (904), burned, and used to supply heat for the reforming reaction, thereby increasing the efficiency of the fuel cell power generation device.

なお、低カロリーオフガス燃焼が行なわれる時点では、
予熱燃焼はすでに停止している。
In addition, at the time when low-calorie off-gas combustion is performed,
Preheating combustion has already stopped.

また、供給される燃料ガスの種類(低カロリーオフガス
か高カロリー都市ガスかなど)や量に応じて供給される
燃焼用空気の量も調節されるのは言うまでもない。
It goes without saying that the amount of combustion air to be supplied is also adjusted depending on the type and amount of fuel gas (low-calorie off-gas, high-calorie city gas, etc.) to be supplied.

また、燃焼装置としては、例えば特願昭63−7785
3号に示すものがあり、その概略を第5図に示す。第5
図(a)は要部断面図、第5図に)は第5図(a)を改
質炉側から見た平面図である。図において、(C)は改
質炉であり、改質反応管(図示せず)が収納される。C
B)は改質炉(C)に隣接して設けられ燃焼用空気(2
01)が供給される空気室、(A)はこの空気室CB)
に隣接して設けられ燃料ガス(101)が供給される燃
料室である。(110)は燃料管であり、一端が燃料室
(A)に開口し、他端が改質炉(C)に開口して燃料ガ
ス(101)を改質炉(C)に噴出して炎孔部となる。
In addition, as a combustion device, for example, Japanese Patent Application No. 63-7785
There is one shown in No. 3, and its outline is shown in Figure 5. Fifth
FIG. 5(a) is a sectional view of the main part, and FIG. 5(a) is a plan view of FIG. 5(a) viewed from the reforming furnace side. In the figure, (C) is a reforming furnace in which a reforming reaction tube (not shown) is housed. C
B) is installed adjacent to the reforming furnace (C) and is equipped with combustion air (2
01) is supplied to the air chamber, (A) is this air chamber CB)
A fuel chamber is provided adjacent to the fuel chamber and is supplied with fuel gas (101). (110) is a fuel pipe, one end of which opens into the fuel chamber (A) and the other end into the reforming furnace (C), which injects fuel gas (101) into the reforming furnace (C) and causes a flame. It becomes a hole.

(1ン〜(5ンはそれぞれ壁である。また、第5図(a
)では複雑となるため図示していないが、空気室CB)
と改質炉(C)を仕切る壁薪こは燃料管(IIQ)と隣
接して複数個の空気噴出孔が設けられており、この空気
噴出孔と燃料@ (110)の分散の様子を第5図(1
))に示す。第5図(b)は第5図(a)を改質炉(C
)側から見た平面図であり・図において、 (210)
は空気噴出孔を示す。この例では、燃料管(110)の
炎孔部た隣接して多数の空気噴出孔(210)を設けた
大板(211)が空気室(、B)と改質炉(C)を仕切
る壁(3)に例えば溶接などにより接合され、燃料管(
110)と空気噴出孔(210)を多数集合させて一つ
のメインバーナを構成している。また燃料!(110)
はその内径が数ysx例えば5j11であり、燃料室(
A)と空気室(B)とを仕切る壁(5)に例えば溶接な
どにより隙間のないように固定され、炎孔部分が改質炉
(C)内に数n以下程度突出するように配置されている
。さらに、例えば周囲に4個配置されたメインバーナの
中央部には、着火手段すなわちメインバーナ着火用のパ
イロットバーナぐ〃が取り付けられており、その先端の
パイロット火炎孔(402)の近傍にはパイロット火炎
(403)の着火用放電電極(404)が設置されると
共に、パイロット火炎(403)の火炎検知電極(40
5)がパイロット火炎(403)に挿入されるように設
置されている。なお、壁(4)の空気室CB)に接する
位置にはパイロット火炎(403)用の2次空気孔(2
20)が開けられている。(401)はパイロット火炎
(403)用の燃料である。
(1 to 5 are walls respectively. Also, Fig. 5 (a)
) is complicated, so it is not shown in the figure, but the air chamber CB)
The wall that separates the reforming furnace (C) from the fuel pipe (IIQ) is equipped with multiple air injection holes adjacent to the fuel pipe (IIQ). Figure 5 (1
)). Figure 5(b) shows Figure 5(a) in a reforming furnace (C
) is a plan view seen from the side. In the figure, (210)
indicates an air vent. In this example, a large plate (211) with a large number of air injection holes (210) adjacent to the flame hole of the fuel pipe (110) is a wall that partitions the air chamber (B) and the reforming furnace (C). (3), for example by welding, and the fuel pipe (
110) and a large number of air jet holes (210) are assembled to form one main burner. Fuel again! (110)
has an inner diameter of several ysx, for example 5j11, and the fuel chamber (
It is fixed to the wall (5) that partitions A) and the air chamber (B), for example by welding, so that there is no gap, and is arranged so that the flame hole part protrudes into the reforming furnace (C) by several nanometers or less. ing. Furthermore, an ignition means, that is, a pilot burner for igniting the main burner is attached to the center of the four main burners arranged around the periphery, and a pilot flame hole (402) at the tip of the pilot burner is attached. A discharge electrode (404) for igniting the flame (403) is installed, and a flame detection electrode (40) for the pilot flame (403) is installed.
5) is installed to be inserted into the pilot flame (403). Additionally, there is a secondary air hole (2) for the pilot flame (403) at a position in contact with the air chamber CB of the wall (4).
20) is opened. (401) is fuel for the pilot flame (403).

次に、動作について説明する。燃料電池発電装置の始動
時は、まず、在来の燃料、例えば都市ガス(13A)を
用いて予熱燃焼を行なう。すなわち、空気源、例えば送
風機から燃焼用空気(201)を空気室CB)に導入し
、続いて放電電極も0によりパイロットバーナ(ロ)に
対して放電スパークを飛ばしながらパイロットバーナ@
優に都市ガス燃料(401)と2次空気孔(220)か
らの燃焼用空気(201)を導入することによりパイロ
ットバーナ0のが着火する。
Next, the operation will be explained. When starting the fuel cell power generation device, first, preheating combustion is performed using a conventional fuel, such as city gas (13A). That is, combustion air (201) is introduced from an air source, such as a blower, into the air chamber CB), and then the discharge electrode is also 0 to blow discharge sparks toward the pilot burner (B).
Pilot burner 0 is ignited by introducing city gas fuel (401) and combustion air (201) from the secondary air hole (220).

パイロットバーナ(6)の着火によりパイロット火炎(
403)が生じ、そのパイロット火炎(403)中に挿
入された火炎検知電極(405)とパイロットバーナ(
L4やとの間に電圧を印加することにより火炎内を電流
が流れ、その電流値により着火検知され、着火が確認さ
れる。着火が確認されると、燃料室(A)に予熱用の都
市ガス(13A)が導入され燃料管(110)を通り、
空気噴出孔(210)から噴出される燃焼用空気と拡散
混合してパイロット火炎(403)と接触することによ
って着火し、メインバーナ上に燃焼火炎(102)が形
成され改質炉(C)を予熱する。その後、改質炉(C)
が所定温度に達したら、燃料室(A)への都市ガス(1
3A)の導入を停止する。予熱完了後は予熱燃焼は停止
し第4図に示す改質反応管(903)に原料ガス十H,
Oが導入され鴇富化された改質ガスは発電セル(902
)に導入され発電を開始する。発電後の未消費H!分を
含む電池オフガス(101)は再び改質用燃焼器(90
4)に供給され、燃料室(A)から燃料管(110)を
通りメインバーナ上で低カロリーオフガス燃焼が行なわ
れる。この際、燃焼用空気(201)が供給されている
ことは言うまでもない。
Pilot flame (
403) is generated, and the flame detection electrode (405) inserted into the pilot flame (403) and the pilot burner (
By applying a voltage between L4 and L4, a current flows through the flame, and ignition is detected based on the current value, thereby confirming ignition. When ignition is confirmed, city gas (13A) for preheating is introduced into the fuel chamber (A) and passes through the fuel pipe (110).
It diffuses and mixes with the combustion air ejected from the air nozzle (210) and ignites when it comes into contact with the pilot flame (403), and a combustion flame (102) is formed on the main burner, starting the reforming furnace (C). Preheat. After that, the reforming furnace (C)
When the temperature reaches the specified temperature, the city gas (1
Stop introducing 3A). After the preheating is completed, the preheating combustion is stopped and the raw material gas 10H,
The reformed gas that has been enriched with O and is then sent to the power generation cell (902
) and started generating power. Unconsumed H after power generation! The battery off-gas (101) containing the
4), and is passed from the fuel chamber (A) through the fuel pipe (110) to perform low-calorie off-gas combustion on the main burner. Needless to say, combustion air (201) is supplied at this time.

ところで、電池オフガス(101)が燃料室(A)に戻
ってくる間、メインバーナが着火していない又は負荷が
急変した様な場合、発電セル(902)に流通する燃料
ガスと発電負荷とのバランスが崩れ、−時的に極度に低
カロリーの電池オフガス(101)が戻り、メインバー
ナが失火する場合もある。このため、パイロットバーナ
Ql)は常に着火状態においておく必要があり、又、着
火確認の信頼性が十分に高い必要性がある。パイロット
バーナ(L4テの着火確認としては、パイロット火炎(
403)中に挿入配置された火炎検知電極(405)と
パイロットバーナOυとの間に電圧を印加し、その間に
流れる電流を検出し設定値と比較し、その電流値により
着火検出を行っている。
By the way, while the battery off-gas (101) is returning to the fuel chamber (A), if the main burner is not ignited or the load suddenly changes, the relationship between the fuel gas flowing to the power generation cell (902) and the power generation load is The balance may be disrupted and - sometimes extremely low-calorie battery off-gas (101) returns, causing the main burner to misfire. For this reason, the pilot burner Ql) needs to be kept in the ignition state at all times, and the reliability of ignition confirmation needs to be sufficiently high. To check the ignition of the pilot burner (L4), check the pilot flame (
403) A voltage is applied between the flame detection electrode (405) inserted inside and the pilot burner Oυ, the current flowing between them is detected and compared with a set value, and ignition is detected based on the current value. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら上述した従来装置は、パイロットバーナ(
6)の複数のパイロット火炎孔(402)を1個の放電
電極(404)で点火させて複数のパイロット火炎(4
03)を発生させ、燃料管(110)と空気噴出孔(2
10)からそれぞれ改質炉(C)内に噴出された燃料ガ
スと空気の混合気に点火して着火するようにしているの
で、複数のパイロット火炎(403)のうちいくつかが
着火遅れを生じたり、吹き消えて着火しない等の問題が
ある。これは、特にオンサイト型の燃料電池発電装置に
おいては、負荷に即応した運転を行い、改質炉(C)内
の加熱分布を均一にする必要があるため、着火に対する
信頼性の低いことは大きな欠点の一つである。
However, the conventional device described above uses a pilot burner (
A plurality of pilot flame holes (402) of 6) are ignited with one discharge electrode (404) to create a plurality of pilot flames (402).
03) and connects the fuel pipe (110) and air nozzle (2).
Since the mixture of fuel gas and air injected into the reforming furnace (C) from each of the pilot flames (403) is ignited, some of the pilot flames (403) are delayed in ignition. There are problems such as burning out and not igniting. This is because, especially in on-site type fuel cell power generation equipment, it is necessary to operate immediately in response to the load and to make the heating distribution uniform in the reformer (C), so it is possible that the reliability of ignition is low. This is one of the major drawbacks.

この発明は上記のような課題を解決するためになされた
ものであり、着火に対する信頼性が高い改質装置用燃焼
装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and an object thereof is to obtain a combustion device for a reformer that has high reliability in ignition.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る改質装置用燃焼装置は、着火手段の火炎
孔近傍にその着火手段の複数の火炎孔に同時に点火する
点火手段を配設したものである。
The combustion device for a reformer according to the present invention has ignition means disposed near the flame holes of the ignition means for simultaneously igniting a plurality of flame holes of the ignition means.

〔作間〕[Sakuma]

この発明における改質装置用燃焼装置は、着火手段の火
炎孔近傍に配設置ノだ点火手段により、着火手段の複数
の火炎孔に同時に点火する。
In the combustion device for a reformer according to the present invention, a plurality of flame holes of the ignition means are simultaneously ignited by the ignition means disposed near the flame holes of the ignition means.

〔実施例〕〔Example〕

以下、この発明の一実施例を第】、図〜第3図に基づい
て説明する。これら各図において、(1)〜(5)。
An embodiment of the present invention will be described below with reference to FIGS. In each of these figures, (1) to (5).

(6)、 (401)〜(,405) * (101)
 −(102) * (110) * (201) p
 (211) *(220) 、 (A)〜CC)は上
述した従来装置の構成と同様である。6υはパイロット
バーナ0υのパイロット火炎孔(402)近傍に取り付
けられtコ環状の点火手段であり、パイロットバーナ0
])に複数放射状に形成した燃料導入孔(501’)と
、パイロットバーナ0◇との間に形成した環状の燃料噴
出空間(502)と、この燃料噴出空間(502)の近
傍に配設される放電電極(404)により点火される点
火用火炎(503)とにより点火手段6J)が構成され
ている。
(6), (401) ~ (,405) * (101)
−(102) * (110) * (201) p
(211) *(220) and (A) to CC) are similar to the configuration of the conventional device described above. 6υ is an annular ignition means installed near the pilot flame hole (402) of pilot burner 0υ;
]) A plurality of radially formed fuel introduction holes (501') and an annular fuel injection space (502) formed between the pilot burner 0◇, and an annular fuel injection space (502) arranged near the fuel injection space (502). The ignition flame (503) ignited by the discharge electrode (404) constitutes an ignition means 6J).

次に動作について説明する。燃料電池発電装置の始動時
は、まず、在来の燃料、例えば都市ガス(13A)を用
いて予熱燃焼を行う。即ち、空気源、例えば送風機から
燃焼用空気(201)を空気室CB)に導入し、続いて
放電電極(404)により点火手段も0に対して放電ス
パークを飛ばしながら点火手段61)の燃料噴出空間(
502)に都市ガス燃料(401)を導入すると共に点
火手段←1)の燃料噴出空間(502)近傍に2次空気
孔(220)からの燃焼用空気(201)を導入するこ
とにJ:す、点火手段←1)が着火する。
Next, the operation will be explained. When starting the fuel cell power generation device, first, preheating combustion is performed using a conventional fuel, such as city gas (13A). That is, combustion air (201) is introduced into the air chamber CB) from an air source, such as a blower, and then the fuel is ejected from the ignition means 61) while blowing a discharge spark from the ignition means 61) using the discharge electrode (404). space(
502) and the combustion air (201) from the secondary air hole (220) in the vicinity of the fuel injection space (502) of the ignition means←1). , the ignition means←1) ignites.

点火手段6υの着火により環状の点火用火炎(503)
が生じる。パイロットバーナ01)に都市ガス燃料(4
01)と2次空気孔(220)からの燃焼用空気(20
1)を導入することにより、環状の点火用火炎(503
)によって複数のパイロット火炎孔(402)に同時に
点火でき、複数のパイロワI・火炎(403)が同時に
得られる。従って、何れかのパイロット火炎(403)
が失火したとしても環状の点火用火炎(503)により
即時着火可能となる。パイロット火炎(403)の着火
後は上述した従来装置の動作と同様なので説明は省略す
る。以上のように、複数のパイロット火炎(403)が
同時に着火されるので1着火遅れを生じることがなく且
つ失火したどしても即時着火可能であり、着火に対する
傭頼性を著しく向上させることができる。これは、特に
オンサイト型の燃料電池発電装置にあっては非常に有効
に作用するものである。
An annular ignition flame (503) is created by ignition of the ignition means 6υ
occurs. City gas fuel (4) to pilot burner 01)
01) and combustion air (20
1), an annular ignition flame (503
), a plurality of pilot flame holes (402) can be ignited simultaneously, and a plurality of Pyrower I flames (403) can be obtained simultaneously. Therefore, any pilot flame (403)
Even if there is a misfire, immediate ignition is possible with the annular ignition flame (503). After the pilot flame (403) is ignited, the operation is the same as that of the conventional device described above, so a description thereof will be omitted. As described above, since a plurality of pilot flames (403) are ignited at the same time, there is no one-ignition delay, and even if a misfire occurs, ignition is possible immediately, and reliability for ignition can be significantly improved. can. This is particularly effective in on-site fuel cell power generation devices.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明t、 r、:通り%着火手段の火炎
孔近傍にその着火手段の複数の火炎孔に同時に点火する
点火手段を配設したことにより、着火手段の複数の火炎
孔に同時に点火でき、着火に対する信頼性が高い改質装
置用燃焼装置を得ることができる。
This invention is as described above: t, r:% By disposing an ignition means for simultaneously igniting a plurality of flame holes of the ignition means in the vicinity of the flame hole of the ignition means, a plurality of flame holes of the ignition means can be ignited simultaneously. Thus, it is possible to obtain a combustion device for a reformer that has high reliability in terms of ignition.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はこの発明の一実施例による改質装置
用燃焼装置を示す断面図及び要部拡大断面図、第3図は
第2図ト」線における断面図、第4図は一般的な燃料電
池システムを示す系統図。 第5図(a)及び@は従来の改質装置用燃焼装置を示す
断面図及び改質炉側から見た平面図である。 図において、(6)は着火手段、(402)は火炎孔、
(403)は火炎、参1)は点火手段である。 尚、図中同一符号は同−又は相当部分を示す。
1 and 2 are a sectional view and an enlarged sectional view of essential parts showing a combustion device for a reformer according to an embodiment of the present invention, FIG. 3 is a sectional view taken along the line T' in FIG. 2, and FIG. FIG. 1 is a system diagram showing a general fuel cell system. FIG. 5(a) and @ are a cross-sectional view and a plan view seen from the reforming furnace side, showing a conventional combustion device for a reformer. In the figure, (6) is an ignition means, (402) is a flame hole,
(403) is a flame, and reference 1) is an ignition means. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  改質反応管が収納される改質炉に供給される燃料に火
炎により着火する着火手段を有する改質装置用燃焼装置
において、上記着火手段の火炎孔近傍に配設され、上記
着火手段の複数の火炎孔に同時に点火する点火手段を備
えたことを特徴とする改質装置用燃焼装置。
In a combustion device for a reformer having an ignition means for igniting fuel supplied to a reforming furnace in which a reforming reaction tube is housed with a flame, the ignition means is disposed near a flame hole of the ignition means, and a plurality of the ignition means are arranged near a flame hole of the ignition means. A combustion device for a reformer, characterized in that it is equipped with ignition means for simultaneously igniting the flame holes of the reformer.
JP1073108A 1989-03-23 1989-03-23 Combustion device of fuel reformer for fuel cell power generator Expired - Lifetime JP2581208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1073108A JP2581208B2 (en) 1989-03-23 1989-03-23 Combustion device of fuel reformer for fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1073108A JP2581208B2 (en) 1989-03-23 1989-03-23 Combustion device of fuel reformer for fuel cell power generator

Publications (2)

Publication Number Publication Date
JPH02252605A true JPH02252605A (en) 1990-10-11
JP2581208B2 JP2581208B2 (en) 1997-02-12

Family

ID=13508763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1073108A Expired - Lifetime JP2581208B2 (en) 1989-03-23 1989-03-23 Combustion device of fuel reformer for fuel cell power generator

Country Status (1)

Country Link
JP (1) JP2581208B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008500258A (en) * 2004-05-17 2008-01-10 ヌヴェラ・フュエル・セルズ・インコーポレーテッド Starting burner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577539A (en) * 1980-06-17 1982-01-14 Aisan Ind Co Ltd Apparatus for detecting and preventing separation of fluid mixture
JPS61119918A (en) * 1984-11-16 1986-06-07 Babcock Hitachi Kk Direct igniting type burner device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577539A (en) * 1980-06-17 1982-01-14 Aisan Ind Co Ltd Apparatus for detecting and preventing separation of fluid mixture
JPS61119918A (en) * 1984-11-16 1986-06-07 Babcock Hitachi Kk Direct igniting type burner device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008500258A (en) * 2004-05-17 2008-01-10 ヌヴェラ・フュエル・セルズ・インコーポレーテッド Starting burner

Also Published As

Publication number Publication date
JP2581208B2 (en) 1997-02-12

Similar Documents

Publication Publication Date Title
US7096670B2 (en) Method for igniting the combustion chamber of a gas turbine unit and an ignition device for carrying out the method
KR100599885B1 (en) How to Start a Combustor, Fuel Reformer, Fuel Cell System, and Fuel Reformer System
JP2009162478A (en) Premixed, preswirled plasma-assisted pilot
US6863522B2 (en) Method for introducing fuel and/or thermal energy into a gas stream
JP6615461B2 (en) Igniter and method for operating a burner with igniter
JPH03221703A (en) steam generator
JP2014222123A (en) Combustion device
JP2004156895A (en) Burner, hydrogen generating device and fuel battery power generating system
US6718773B2 (en) Method for igniting a thermal turbomachine
JP4051035B2 (en) Hydrogen supply device used in fuel cells
JP3765989B2 (en) Reformer heating method and heating apparatus
JPH02252605A (en) Combustion equipment for reformer
CA2427888A1 (en) Method of operating a furnace
JP3054533B2 (en) Fuel cell system
JPH02252606A (en) Combustion equipment for reformer
JP2003074804A (en) Combustion device
JPH02252607A (en) Combustion equipment for reformer
JPH02251010A (en) Flame detection device of burner for modification device
JPH06294517A (en) Premixing combustor
JPH0639221Y2 (en) Burner for hydrocarbon reformer
JPH01283773A (en) Combustion device for fuel battery modifier
JP5831380B2 (en) Combustion device
JP3595404B2 (en) Gasifier solid fuel burner
JPS5926201B2 (en) Two-fluid vaporization co-firing burner
JPH01249601A (en) Combustion device for reformer to be used in generating set for fuel cell