[go: up one dir, main page]

JPH02252284A - Semiconductor laser array and manufacture thereof - Google Patents

Semiconductor laser array and manufacture thereof

Info

Publication number
JPH02252284A
JPH02252284A JP7531289A JP7531289A JPH02252284A JP H02252284 A JPH02252284 A JP H02252284A JP 7531289 A JP7531289 A JP 7531289A JP 7531289 A JP7531289 A JP 7531289A JP H02252284 A JPH02252284 A JP H02252284A
Authority
JP
Japan
Prior art keywords
substrate
layer
array
mesastripes
oscillation wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7531289A
Other languages
Japanese (ja)
Other versions
JPH0770781B2 (en
Inventor
Masato Ishino
正人 石野
Yoichi Sasai
佐々井 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1075312A priority Critical patent/JPH0770781B2/en
Publication of JPH02252284A publication Critical patent/JPH02252284A/en
Publication of JPH0770781B2 publication Critical patent/JPH0770781B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To prevent the deterioration in the laser characteristics due to the slips in the oscillation wavelength and the gain peak from occurring by a method wherein mesastripes in different widths are formed on multiple regions on a substrate while active layers etc., including quantum well layers are formed cn the mesastripes by specific process. CONSTITUTION:A diffraction lattice 100 in specific thickness is formed on an n-type InP substrate 11. Next, multiple mesa stripes 35, 36 in different widths of S1, S2 are formed by photolithography in the perpendicular direction to the lattice 100. Next, an InGaAsP photowaveguide layer 12, an InGaASPMQW active layers 31, 32 and a P-InP layer 14 are successively formed on the mesa substrate by liquid epitaxial deposition process. At this time, the thickness of the layers on the mesastripes 35, 36 thinner than that of flat parts is notably dependent upon the widths of the mesastripes 35, 36 while the thickness of the quantum well layers included in the active layers is also differentiated in respec tive regions on the substrate 11. Through these procedures. the slips in the oscillation wavelength and the gain peak can be prevented from occurring so that the laser array in the least dispersion in characteristics may be displayed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は波長多重光通信に必要な光源である集積化多波
長分布帰還型半導体レーザアレイおよびその製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an integrated multi-wavelength distributed feedback semiconductor laser array, which is a light source necessary for wavelength division multiplexing optical communication, and a method for manufacturing the same.

従来の技術 近年、大容量光通信として、光多重通信が盛んに研究開
発されている。このような波長多重通信用光源には、異
なる発振波長の複数の半導体レーザが必要となるが、光
源の小型化、光軸の調整等の立場から同一基板上に異な
る発振波長のレーザを集積化した多波長集積化レーザア
レイの研究開発も盛んになっている。このような多波長
光源では多重密度を上げるためにも高速変調時において
も安定な単一軸モード発振を有する分布帰還型半導体レ
ーザ(以下DFB−LD)で構成されることが好ましい
2. Description of the Related Art In recent years, optical multiplex communication has been actively researched and developed as a high-capacity optical communication. Such light sources for wavelength division multiplexing communication require multiple semiconductor lasers with different oscillation wavelengths, but in order to miniaturize the light source and adjust the optical axis, it is necessary to integrate lasers with different oscillation wavelengths on the same substrate. Research and development of multi-wavelength integrated laser arrays is also gaining momentum. In order to increase the multiplexing density, such a multi-wavelength light source is preferably configured with a distributed feedback semiconductor laser (hereinafter referred to as DFB-LD) that has stable single-axis mode oscillation even during high-speed modulation.

DFB−LDプレイにおいて、各LDの発振波長を変化
させる比較的容易な方法としては各LDを構成する回折
格子のピッチ71を各LDで変化すせる方法がある〔参
考文献H,0kuda 、 et 、 aj。
In DFB-LD play, a relatively easy method for changing the oscillation wavelength of each LD is to change the pitch 71 of the diffraction grating that constitutes each LD [References H, 0kuda, et. aj.

ジャパン ジェイ アプライド フィジックス(J I
)n 、 J、 Appl 、Phys、 ) 23 
(1984) L9o4)。
Japan J Applied Physics (JI
)n, J, Appl, Phys, ) 23
(1984) L9o4).

第6図Aは同一基板上に複数のLDを集積したLDアレ
イの平面構造図である。ここでは代表的な2つのLD(
1,2)のみ示しである。第6図B、CはそれぞれのL
Dl、2のキャピテイ方向の断面a −a’ 、 b 
−b’のエピタキシャル構造図である。ここで11はn
型InP基板、12はn−InGaAsP光導波層(バ
ンドギャップ波長λ = 1.1 μm)、13はIn
GaAsP活性層(λ9=1.3μm)、14はp型I
nPクラッド層である。
FIG. 6A is a plan view of an LD array in which a plurality of LDs are integrated on the same substrate. Here, two representative LDs (
Only 1 and 2) are shown. Figure 6 B and C are each L
Cross section a-a', b in the capitivity direction of Dl, 2
-b' is an epitaxial structure diagram. Here 11 is n
InP type substrate, 12 is an n-InGaAsP optical waveguide layer (bandgap wavelength λ = 1.1 μm), 13 is In
GaAsP active layer (λ9=1.3 μm), 14 is p-type I
It is an nP cladding layer.

n型InP基板11上にはそれぞれピッチ/f1=39
40人およびA2=3860への回折格子20.21が
形成されている。
On the n-type InP substrate 11, there is a pitch/f1=39.
Diffraction gratings 20.21 to 40 and A2=3860 are formed.

LDの発振波長λは”offを実効屈折率、Nを回折次
数とすると、 λ= 2 n   −Δ7メN   ・甲・・・・印・
・・・(1)ff で決定される。ここでN=2 、 ”offを3゜3o
とすると、LDの発振波長はそれぞれλ1=1.30μ
m。
The oscillation wavelength λ of the LD is ``If off is the effective refractive index and N is the diffraction order, λ = 2 n - Δ7menN ・A...・mark・
...(1) Determined by ff. Here, N=2, "off" is 3°3o
Then, the oscillation wavelength of each LD is λ1=1.30μ
m.

λ2=1.27μmと2つのLDで30 n mの発振
波長差を得ることができる。このように各LDでの回折
格子のピッチを変化させることによpDFB−LDの発
振波長は変化されることができる。
With λ2=1.27 μm, an oscillation wavelength difference of 30 nm can be obtained with two LDs. In this way, by changing the pitch of the diffraction grating in each LD, the oscillation wavelength of the pDFB-LD can be changed.

しかしながら、このDFB−LDアレイの各LD1  
;2の活性層13のバンドギャップ波長λ9゜すなわち
ゲインビークは1.3μmと同一であるので、発振波長
とゲインビークのずれが問題となってくる。すなわち第
7図A、BにLDl、LD2の発振スペクトルを示すが
、LDlにおいては発振波長はゲインビークに対応して
いるのに対し、LD2においては回折格子ピッチで決ま
る発振波長はゲインビークに対して大きく短波長側にシ
フトしていることがわかる。このようなずれは発振しき
い値電流の上昇9発光効率の低下および温度特性の劣化
を生じることになる。さらに両者のずれが大きくなると
、もはやDFBモードで発振しなくなる。
However, each LD1 of this DFB-LD array
; Since the bandgap wavelength λ9°, that is, the gain peak, of the active layer 13 in No. 2 is the same as 1.3 μm, the deviation between the oscillation wavelength and the gain peak becomes a problem. In other words, Figures 7A and 7B show the oscillation spectra of LD1 and LD2. In LD1, the oscillation wavelength corresponds to the gain peak, whereas in LD2, the oscillation wavelength determined by the diffraction grating pitch is much larger than the gain peak. It can be seen that there is a shift to the shorter wavelength side. Such a deviation causes an increase in the oscillation threshold current, a decrease in the luminous efficiency, and a deterioration in the temperature characteristics. Furthermore, when the difference between the two becomes larger, oscillation in the DFB mode no longer occurs.

また作製上の問題として、同一基板上の異なる領域にピ
ッチの異なる回折格子を一般に用いられている二光束干
渉露光法で作製するには選択領域以外のマスキング工程
および二光束干渉露光工程を多段階でくり返して作製し
なければならないことがめる。このような複雑な工程は
歩留シの低下のみならずデバイス特性の劣化、ばらつき
の原因となるものである。
In addition, as a manufacturing problem, in order to fabricate diffraction gratings with different pitches in different areas on the same substrate using the commonly used two-beam interference exposure method, a multi-step masking process for areas other than the selected area and a two-beam interference exposure process are required. This means that it has to be made repeatedly. Such a complicated process not only reduces yield but also causes deterioration and variation in device characteristics.

発明が解決しようとする課題 以上、従来例における回折格子ピッチを変化させて発振
波長差を得る方法でのDFB−LDアレイにおいては、
回折格子ピッチによって決まるLDの発振波長と活性層
バンドギャップによって決まるゲインビークのずれによ
り、アレイを構成するLD特性の低下やばらつきが問題
となる。さらに選択領域にピッチの異なる回折格子を形
成するだめには非常に複雑な工程を必要とし、歩留りの
低下や特性の劣化を来たすことになる。
Problems to be Solved by the Invention In the DFB-LD array using the conventional method of changing the diffraction grating pitch to obtain the oscillation wavelength difference,
Due to the deviation between the oscillation wavelength of the LD determined by the diffraction grating pitch and the gain peak determined by the active layer bandgap, deterioration and variation in the characteristics of the LDs forming the array become a problem. Furthermore, forming diffraction gratings with different pitches in selected areas requires a very complicated process, resulting in lower yields and deterioration of characteristics.

課題を解決するだめの手段 上述の課題を解決すべく、本発明は第1の導電型の同一
半導体基板主面上のアレイ状の複数領域に、各領域で実
効屈折率およびバンドギャップエネルギーの異なる量子
井戸層を含む活性層、回折格子および第2の導電型のク
ラッド層をそれぞれ有することを特徴とする半導体レー
ザアレイであるメサストライプをアレイ状に形成したの
ち前記メサアレイ基板上にMQW層を含むエピタキシャ
ル層を形成する工程を含むことを特徴とする半導体レー
ザアレイの製造方法である。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a plurality of regions in an array on the main surface of the same semiconductor substrate of the first conductivity type, each region having a different effective refractive index and bandgap energy. After forming mesa stripes in an array, which is a semiconductor laser array, each having an active layer including a quantum well layer, a diffraction grating, and a cladding layer of a second conductivity type, an MQW layer is formed on the mesa array substrate. A method of manufacturing a semiconductor laser array is characterized in that it includes a step of forming an epitaxial layer.

作  用 上述の手段により、プレイを構成する各分布帰還型レー
ザキャビティにおける実効屈折率差により発振波長差を
得るとともに、量子サイズ効果によりゲインビークも発
振波長シフトと同様のシフトを示し、発振波長とゲイン
ビークのずれによるレーザ特性劣化を抑えた分布帰還型
レーザアレイを非常に容易な手段で提供できるものであ
る。
Operation By using the above-mentioned means, the oscillation wavelength difference is obtained by the effective refractive index difference in each distributed feedback laser cavity constituting the play, and the gain peak also shows a shift similar to the oscillation wavelength shift due to the quantum size effect, and the oscillation wavelength and gain peak Therefore, it is possible to provide a distributed feedback laser array that suppresses deterioration of laser characteristics due to deviation of the laser beam by a very simple means.

実施例 以下、本発明による分布帰還型(DFB)LDアレイを
I nGaAs P / InP系材系材用いた実施例
について説明する。第1図はこのアレイ構造を示すもの
で、A−Cは従来例を示す第6図の場合と同様、2つの
LD(LDl、LD2)についての平面図Aおよびキャ
ビティ方向の断面基本構造図B、Cである。従来例と同
じ(n−InP基板11上に回折格子100 、InG
aAsP光導波層12゜活性層31 、32 、 p 
−InPクラッド層で主に構成される。ここで従来例と
の違いは、従来例においては回折格子20.21のピッ
チが/11..42と異なり活性層13の組成および層
厚は同一であったのに対し、本実施例においては活性層
はそれぞれ層厚の異なる、InGaAsP井戸層(λ9
=1.3μm)とInGaAsP障壁層(λ =1.Q
5μm)から成る多重量子井戸(MQW)構造活性層3
1゜32である。ここでMQW活性層31は第1図りに
その拡大図を示すように60人の井戸層33と50人の
障壁層3406対から成り、MOW活性層32は第1図
Eにその拡大図を示すように100人の井戸層36と1
00への障壁層3605対から成る。回折格子のピッチ
はこの場合両者ともAo=4000人で同じである。
EXAMPLE Hereinafter, an example will be described in which a distributed feedback (DFB) LD array according to the present invention is made of InGaAsP/InP material. FIG. 1 shows this array structure, and A-C is a plan view A of two LDs (LDl, LD2) and a cross-sectional basic structure diagram B in the cavity direction, as in the case of FIG. 6 showing the conventional example. ,C. Same as the conventional example (diffraction grating 100 on n-InP substrate 11, InG
aAsP optical waveguide layer 12° active layer 31, 32, p
-Mainly composed of an InP cladding layer. Here, the difference from the conventional example is that in the conventional example, the pitch of the diffraction gratings 20 and 21 is /11. .. Unlike No. 42, the composition and thickness of the active layer 13 were the same, whereas in this example, the active layer was composed of InGaAsP well layers (λ9
= 1.3 μm) and InGaAsP barrier layer (λ = 1.Q
A multi-quantum well (MQW) structured active layer 3 consisting of
It is 1°32. Here, the MQW active layer 31 consists of 60 well layers 33 and 50 barrier layers 3406 pairs, as shown in an enlarged view in Figure 1, and the MOW active layer 32 is shown in an enlarged view in Figure 1E. Like 100 well layers 36 and 1
It consists of 3605 pairs of barrier layers to 00. The pitch of the diffraction gratings is the same in both cases, Ao=4000.

DFB−LDにおける発振波長は従来例における(1)
式に従い、LDの導波モードの実効屈折率に依存する(
第2図A)。第1図において、LDlのn。ffは3.
18であるのに対し、LD2においては3.26である
。このn。ffO差により第2図へに示すようにそれぞ
れの発振波長はそれぞれLDlでは1.27 μm 、
 I、D2では1.30μmと30 n mの差が得ら
れている。
The oscillation wavelength in DFB-LD is (1) in the conventional example.
According to the formula, it depends on the effective refractive index of the guided mode of the LD (
Figure 2A). In FIG. 1, n of LDl. ff is 3.
18, whereas in LD2 it is 3.26. This n. Due to the ffO difference, the respective oscillation wavelengths are 1.27 μm for LDl and 1.27 μm for LDl, as shown in Figure 2.
For I and D2, a difference of 1.30 μm and 30 nm was obtained.

一方、本発明の構造においてはLDl、LD2の活性層
31.32はそれぞれ井戸層厚50Aおよび100への
MQW層であるので、両者のバンドギャップエネルギー
すなわちゲインビークは第2図Bに示すように量子サイ
ズ効果により異なる。
On the other hand, in the structure of the present invention, the active layers 31 and 32 of LDl and LD2 are MQW layers with well layer thicknesses of 50A and 100A, respectively, so the band gap energy, that is, the gain peak of both, is as shown in FIG. 2B. Depends on size effect.

すなわちLDlにおいては1.27μmであるのに対し
LD2においては1.30μmとなる。第3図に本発明
の2つのLDの発振ヌベクトルを示す。
That is, while it is 1.27 μm in LD1, it is 1.30 μm in LD2. FIG. 3 shows the oscillation vectors of two LDs of the present invention.

AはLDl、BはLD2に対応する。ゲインピークは発
振波長にほぼ一致しており、第、5図に示した従来例の
ような両者のずれはほとんどない。これは井戸層厚の変
化に対して、”5sff変化による発振波長シフトと量
子サイズ効果によるゲインピークシフトは同一方向に生
じるからである。
A corresponds to LD1, and B corresponds to LD2. The gain peak almost coincides with the oscillation wavelength, and there is almost no deviation between the two as in the conventional example shown in FIG. This is because the oscillation wavelength shift due to the 5sff change and the gain peak shift due to the quantum size effect occur in the same direction with respect to a change in the well layer thickness.

このように本発明のDFB−LDアレイでは発振波長と
ゲインピークのずれが小さく、アレイ中の各LDの特性
のばらつきは小さく、すべて良好な電流−光出力特性、
温度特性を示す。
As described above, in the DFB-LD array of the present invention, the deviation between the oscillation wavelength and the gain peak is small, the variation in characteristics of each LD in the array is small, and all have good current-light output characteristics.
Indicates temperature characteristics.

次に、本発明の構造のDFB−LDアレイを作製プロセ
スについて説明する。まず第4図Aに示すようにn型I
nP基板上に二光束干渉露光法によりビッチΔ。=40
00人の回折格子を形成する。
Next, a process for manufacturing a DFB-LD array having the structure of the present invention will be described. First, as shown in Figure 4A, the n-type I
Bitch Δ on nP substrate by two-beam interference exposure method. =40
Form a diffraction grating of 00 people.

次に第4図Bに示すようにこの基板上に、回折格子と垂
直の方向に幅s1.S2の異なる複数のメサストライプ
35.36を通常のフォトリソグラフィーで形成する。
Next, as shown in FIG. 4B, a width s1. A plurality of mesa stripes 35 and 36 with different S2 are formed by normal photolithography.

このメサ基板上に液相エピタキシャル成長法で第3図C
に示す↓うに、InGaAsP光導波層11 、InG
aAsP MQW活性層(31゜32)、p−InP層
14を順次形成する。液用成長法によると、メサストラ
イプ上のエピタキシャル層の厚さは平坦部よシ薄く、か
つメサストライプの幅に大きく依存する。第6図にMQ
W活性層の井戸層Lzおよび実効屈折率のメサストライ
プ幅S依存性を示す。メサストライプ幅の減少とともに
井戸層厚および実効屈折率はともに減少する。
On this mesa substrate, the liquid phase epitaxial growth method is applied to
As shown in ↓, InGaAsP optical waveguide layer 11, InG
An aAsP MQW active layer (31°32) and a p-InP layer 14 are sequentially formed. According to the liquid growth method, the thickness of the epitaxial layer on the mesa stripe is thinner than on the flat part and largely depends on the width of the mesa stripe. MQ in Figure 6
The dependence of the well layer Lz of the W active layer and the effective refractive index on the mesa stripe width S is shown. As the mesa stripe width decreases, both the well layer thickness and the effective refractive index decrease.

S を10μm、S2を20μm とすると第1図り。If S is 10 μm and S2 is 20 μm, the first diagram.

Eに示すMQW層31,3≧における井戸層厚33.3
5はそれぞれ60人および100人となり、活性層の実
効屈折率n。ffはそれぞれ3.1B。
Well layer thickness 33.3 in MQW layer 31,3≧ shown in E
5 are 60 and 100, respectively, and the effective refractive index n of the active layer. ff is 3.1B each.

3.26と異なる。第2図、第3図に従い、この実効屈
折率差による発振波長シフトと、井戸層厚差によるゲイ
ンピークシフトは同様の挙動を示すので、発振波長とゲ
インビークのずれの小さい良好な特性の多波長DFB−
LDアレイを得ることができる。
3.26 is different. According to Figures 2 and 3, the oscillation wavelength shift due to the difference in effective refractive index and the gain peak shift due to the difference in well layer thickness exhibit similar behavior. DFB-
An LD array can be obtained.

このように本作製法においては一回の回折格子形成プロ
セスと基本的に一回のエピタキシャル成長という非常に
簡単なプロセスにより、特性のばらつきの小さい集積化
多波長DFB−LDアレイを得ることができる。
As described above, in this manufacturing method, an integrated multi-wavelength DFB-LD array with small variations in characteristics can be obtained by a very simple process of one diffraction grating formation process and basically one epitaxial growth process.

ところで本実施例においては簡単のだめ、2波長集積素
子を例にとって説明したが、3波長以上の多波長LDア
レイの場合も全く同様である。またDFB−LDの構造
は活性層の下に回折格子が存在する構造であったが、活
性層上に回折格子を有するDFB−4D構造においても
全く同じである。またエピタキシャル成長法としては液
相法について説明したが、MOVPE法やMBE法等の
他の方法においても条件を選べば同様の効果を得ること
ができる。さらに材料としてInGaAsP/InP系
について説明したがAlGaAs/GaAs、1%等の
他の■−v族半導体についても同様に適用できるもので
ある。
By the way, in this embodiment, for the sake of simplicity, a two-wavelength integrated device has been described as an example, but the same applies to a multi-wavelength LD array having three or more wavelengths. Furthermore, although the structure of the DFB-LD has a diffraction grating under the active layer, the DFB-4D structure having a diffraction grating on the active layer is exactly the same. Although the liquid phase method has been described as an epitaxial growth method, similar effects can be obtained by other methods such as MOVPE and MBE if conditions are selected. Further, although the InGaAsP/InP system material has been described, other 2-v group semiconductors such as AlGaAs/GaAs, 1%, etc. can be similarly applied.

発明の効果 以上、本発明は第1の導電型の同一半導体基板主面上の
アレイ状の複数領域に、各領域で層厚が異なる量子井戸
層を含む活性層、回折格子および第2の導電型のクラッ
ド層をそれぞれ有することを特徴とする半導体レーザア
レイであり、各I、Dテ発振波長のゲインピークのずれ
が小さいことによる特性のばらつきの小さい、良好な単
一軸モード発振を有する集積化多波長LDアレイを提供
できるものである。また半導体基板上に回折格子を形成
する工程と、基板上の複数の領域にそれぞれ幅の異なる
メサストライプをアレイ状、に形成したのち液相エピタ
キシャル成長法によfiMQW層を含む成長層を形成す
る工程を含むことを特徴とする半導体レーザアレイの製
造方法であり、基本的に一回の回折格子形成と一回のエ
ピタキシャル成長という非常に簡単な製造プロセスによ
り前述の集積化素子を得ることができるものである。
More than the effects of the invention, the present invention provides an active layer including a quantum well layer having a different layer thickness in each region, a diffraction grating, and a second conductive layer in a plurality of regions in an array on the main surface of the same semiconductor substrate of the first conductivity type. It is an integrated semiconductor laser array characterized by having a cladding layer of the same type, and has good single-axis mode oscillation with little variation in characteristics due to small deviation of the gain peak of each I and D oscillation wavelength. It is possible to provide a multi-wavelength LD array. There is also a step of forming a diffraction grating on a semiconductor substrate, and a step of forming an array of mesa stripes with different widths in multiple regions on the substrate, and then forming a growth layer including a fiMQW layer by liquid phase epitaxial growth. This is a method for manufacturing a semiconductor laser array characterized by including the above-mentioned integrated element by a very simple manufacturing process of basically forming a diffraction grating once and epitaxially growing it once. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のDFB−LDアレイの構造
を示し、同図Aはその平面図、同図B。 Cはその光軸方向a−a’、b−b’ 線での断面図、
同図り、Eはそれぞれ同図B、CにおけるMQW層の拡
大断面図である。第2図Aは発振波長の実効屈折率依存
性、Bはゲインピークの井戸層厚依存性を示す図、第3
図A、Bは本発明のアレイの代表的な2つのLDの発振
スペクトルを示す図、第4図A、B、Cは本発明による
DFB−LDアレイの製造プロセヌを示す斜視図、断面
図、第5図は実効屈折率および井戸層厚のメサストライ
プ幅依存性を示す図である。第6図は従来例のレーザに
おける構造を示し、同図Aはその平面図、同図B、Cは
同図Aのa−a’、b−b’ 線断面図、第7図A、B
は第6図の発振スペクトルを示す図である。 1・・・・・・LDl、2・・・・・・LD2.11・
・・・・・n型InP基板、12−・・−InGaAa
P光導波層、14・・・・・・p型InPクラッド層、
100・・・・・・回折格子、31.32・・・・・・
MQW活性層、33 ; 35・・・・・・井戸層。 代理人の氏名 弁理士 粟 野 重 孝 はか1名l−
・−LDI 2・−LD 2 第1図 1ρ0・−固肪l各子 pθ 31・−#jQV眉 33−井戸層 34−障硫層 32°・−/’iQW’層 35・・−什P7@ 36″−7II  M 、71 (β) lρθ 井7−層厚Lz(A) J、f5 大差びト香卑。 rL、eチチ /、2.5 /、3θ /、 3.f 集 図 富 図 pρ 35.3g−−メ丈ストライプ。 / 第 図 メ丈ストライプ°横 δ(P/WL) 第 図 (^ン /、 25 /、36 う皮  長 (I3) 1.35 (μ#L) 隈 長
FIG. 1 shows the structure of a DFB-LD array according to an embodiment of the present invention, and FIG. 1A is a plan view thereof, and FIG. 1B is a plan view thereof. C is a cross-sectional view along the optical axis direction a-a', bb'line;
In the same figure, E is an enlarged cross-sectional view of the MQW layer in B and C of the same figure, respectively. Figure 2A shows the dependence of the oscillation wavelength on the effective refractive index, B shows the dependence of the gain peak on the well layer thickness, and Figure 3 shows the dependence of the gain peak on the well layer thickness.
Figures A and B are diagrams showing the oscillation spectra of two typical LDs in the array of the present invention, and Figures 4A, B, and C are perspective views and cross-sectional views showing the manufacturing proscene of the DFB-LD array according to the present invention. FIG. 5 is a diagram showing the dependence of the effective refractive index and the well layer thickness on the mesa stripe width. FIG. 6 shows the structure of a conventional laser; FIG. 6A is a plan view thereof, FIGS.
is a diagram showing the oscillation spectrum of FIG. 6; 1...LDl, 2...LD2.11.
......n-type InP substrate, 12-...-InGaAa
P optical waveguide layer, 14... p-type InP cladding layer,
100... Diffraction grating, 31.32...
MQW active layer, 33; 35...Well layer. Name of agent: Patent attorney Shigetaka Awano (1 person)
・-LDI 2・-LD 2 FIG. @36″-7II M, 71 (β) lρθ I7-layer thickness Lz (A) J, f5 Large difference. Fig. pρ 35.3g - Medium length stripe. / Fig. Medium length stripe ° Width δ (P/WL) Fig. Kumacho

Claims (2)

【特許請求の範囲】[Claims] (1)第1の導電型の同一半導体基板上のアレイ状の複
数領域に、前記各領域で層厚の異なる量子井戸層を含む
活性層、回折格子および第2の導電型のクラッド層をそ
れぞれ有することを特徴とする半導体レーザアレイ。
(1) An active layer including a quantum well layer having a different layer thickness in each region, a diffraction grating, and a cladding layer of a second conductivity type are formed in a plurality of regions in an array on the same semiconductor substrate of a first conductivity type. A semiconductor laser array comprising:
(2)半導体基板もしくはエピタキシャル基板上に回折
格子を形成する工程と、前記半導体基板もしくはエピタ
キシャル基板上の複数の領域にそれぞれ幅の異なるメサ
ストライプをアレイ状に形成したのち、前記メサアレイ
基板上にエピタキシャル成長により量子井戸層で構成さ
れる活性層を含むエピタキシャル層を形成する工程を含
むことを特特とする半導体レーザアレイの製造方法。
(2) Forming a diffraction grating on a semiconductor substrate or epitaxial substrate, forming mesa stripes with different widths in an array in multiple regions on the semiconductor substrate or epitaxial substrate, and then epitaxially growing on the mesa array substrate. A method of manufacturing a semiconductor laser array, comprising the step of forming an epitaxial layer including an active layer constituted by a quantum well layer.
JP1075312A 1989-03-27 1989-03-27 Semiconductor laser array Expired - Fee Related JPH0770781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1075312A JPH0770781B2 (en) 1989-03-27 1989-03-27 Semiconductor laser array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1075312A JPH0770781B2 (en) 1989-03-27 1989-03-27 Semiconductor laser array

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP8153964A Division JP2746262B2 (en) 1996-06-14 1996-06-14 Method of manufacturing semiconductor laser array

Publications (2)

Publication Number Publication Date
JPH02252284A true JPH02252284A (en) 1990-10-11
JPH0770781B2 JPH0770781B2 (en) 1995-07-31

Family

ID=13572613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1075312A Expired - Fee Related JPH0770781B2 (en) 1989-03-27 1989-03-27 Semiconductor laser array

Country Status (1)

Country Link
JP (1) JPH0770781B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03225888A (en) * 1990-01-30 1991-10-04 Mitsubishi Electric Corp Semiconductor laser diode
JP2002223035A (en) * 2001-01-26 2002-08-09 Sanyo Electric Co Ltd Semiconductor light emitting element and method for manufacturing it
JP2010123643A (en) * 2008-11-18 2010-06-03 Opnext Japan Inc Semiconductor array element, laser module, optical transmitting module, and optical transmitting apparatus
CN114899697A (en) * 2022-07-13 2022-08-12 日照市艾锐光电科技有限公司 Dual-wavelength cascaded semiconductor laser and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5931088A (en) * 1982-08-14 1984-02-18 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device
JPS6045084A (en) * 1983-08-22 1985-03-11 Nec Corp Distributed feedback type semiconductor laser
JPS6079787A (en) * 1983-10-06 1985-05-07 Nec Corp Integration type semiconductor laser
JPS6332982A (en) * 1986-07-25 1988-02-12 Mitsubishi Electric Corp Semiconductor laser

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5931088A (en) * 1982-08-14 1984-02-18 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device
JPS6045084A (en) * 1983-08-22 1985-03-11 Nec Corp Distributed feedback type semiconductor laser
JPS6079787A (en) * 1983-10-06 1985-05-07 Nec Corp Integration type semiconductor laser
JPS6332982A (en) * 1986-07-25 1988-02-12 Mitsubishi Electric Corp Semiconductor laser

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03225888A (en) * 1990-01-30 1991-10-04 Mitsubishi Electric Corp Semiconductor laser diode
JP2002223035A (en) * 2001-01-26 2002-08-09 Sanyo Electric Co Ltd Semiconductor light emitting element and method for manufacturing it
JP2010123643A (en) * 2008-11-18 2010-06-03 Opnext Japan Inc Semiconductor array element, laser module, optical transmitting module, and optical transmitting apparatus
CN114899697A (en) * 2022-07-13 2022-08-12 日照市艾锐光电科技有限公司 Dual-wavelength cascaded semiconductor laser and preparation method thereof

Also Published As

Publication number Publication date
JPH0770781B2 (en) 1995-07-31

Similar Documents

Publication Publication Date Title
EP0836255B1 (en) Laser diode array and fabrication method thereof
US5770466A (en) Semiconductor optical integrated circuits and method for fabricating the same
US5250462A (en) Method for fabricating an optical semiconductor device
US7242699B2 (en) Wavelength tunable semiconductor laser apparatus
JPH0715000A (en) Constitution of integrated monolithic laser modulator of multiple quantum well structure
US6594298B2 (en) Multi-wavelength semiconductor laser array and method for fabricating the same
US6399404B2 (en) Fabricating method of optical semiconductor device
US6224667B1 (en) Method for fabricating semiconductor light integrated circuit
JP2937751B2 (en) Method for manufacturing optical semiconductor device
JP2701569B2 (en) Method for manufacturing optical semiconductor device
KR100582114B1 (en) Semiconductor device manufacturing method and semiconductor optical device
Kudo et al. Densely arrayed eight-wavelength semiconductor lasers fabricated by microarray selective epitaxy
JPH02252284A (en) Semiconductor laser array and manufacture thereof
JP3166836B2 (en) Semiconductor laser
Fujii et al. Wide-wavelength range membrane laser array using selectively grown InGaAlAs MQWs on InP-on-insulator
JPH03151684A (en) Manufacture of multi-wavelength integrated semiconductor laser
JP7265198B2 (en) Tunable DBR semiconductor laser
JP2746262B2 (en) Method of manufacturing semiconductor laser array
JP3189881B2 (en) Semiconductor laser and method of manufacturing the same
JP3149962B2 (en) Multi-wavelength semiconductor laser device and driving method thereof
JP7652261B2 (en) Semiconductor optical device and method for manufacturing the same
JP2771276B2 (en) Semiconductor optical integrated device and manufacturing method thereof
JP2004128372A (en) Distribution feedback semiconductor laser device
JP2770897B2 (en) Semiconductor distributed reflector and semiconductor laser using the same
Aoki et al. Multi-wavelength DFB laser arrays grown by in-plane thickness control epitaxy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees