JPH02249975A - Magnetic acceleration sensor - Google Patents
Magnetic acceleration sensorInfo
- Publication number
- JPH02249975A JPH02249975A JP7063289A JP7063289A JPH02249975A JP H02249975 A JPH02249975 A JP H02249975A JP 7063289 A JP7063289 A JP 7063289A JP 7063289 A JP7063289 A JP 7063289A JP H02249975 A JPH02249975 A JP H02249975A
- Authority
- JP
- Japan
- Prior art keywords
- leaf spring
- acceleration
- acceleration sensor
- movable part
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001133 acceleration Effects 0.000 title claims description 47
- 238000005192 partition Methods 0.000 claims 2
- 238000013016 damping Methods 0.000 description 21
- 238000010586 diagram Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 11
- 230000007423 decrease Effects 0.000 description 8
- 238000006073 displacement reaction Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 238000005530 etching Methods 0.000 description 6
- 238000007747 plating Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000001845 vibrational spectrum Methods 0.000 description 1
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、自動車の車体に取り付け1乗員の操従安定性
や乗り心地を改善するためのサスペンション、アンチロ
ックブレーキ、1〜ラクシヨンなどの制御システムに用
いられる加速度センサに関し、特に、高精度で信頼性が
あり、安価な組立て構造が得られる加速度センサの構造
に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a system for controlling suspensions, anti-lock brakes, traction systems, etc., which is attached to the body of an automobile and improves steering stability and riding comfort for one occupant. The present invention relates to an acceleration sensor used in a system, and particularly relates to an acceleration sensor structure that is highly accurate, reliable, and can be assembled at low cost.
実開昭63−111667号公報に知られるように、加
速度センサはその大小にかかわらず、板ばねに変位を与
えて、検出手段とする方式が知られている6〔発明が解
決しようとする課題〕
自動車の場合には、運転状態にある時には、常に、何ら
かの振動が発生しており、一般に、振動スペクトルは、
DC〜50Hzまでの頻度が高く、次に50〜100H
zと高周波数域に移行するに従って、その頻度は低くな
るものの、はぼ、DC〜I K !(Zまでの周波数帯
域は、常に、暗振動として、存在すると考えておかなけ
ればならない領域である。一般に、板ばねの長さが10
m前後で。As known from Japanese Utility Model Application Publication No. 63-111667, a method is known in which an acceleration sensor is used as a detection means by applying a displacement to a leaf spring, regardless of its size.6 [Problems to be Solved by the Invention] ] In the case of a car, some kind of vibration always occurs when it is in operation, and generally the vibration spectrum is
Frequency is high from DC to 50Hz, then 50 to 100H
Although the frequency decreases as we move to higher frequency ranges, DC~I K ! (The frequency band up to Z is a region that must always be considered to exist as dark vibration. Generally, if the length of the leaf spring is 10
Around m.
板ばねの変位をフルスケールで数ミリメートルから数十
ミクロンメートルの範囲で用いる場合、共振点は10〜
200Hzの範囲に入る。従って、共振周波数付近の振
幅をOdB以下に減衰させるための、減衰対策が必須で
ある。一般に、減衰対策の手段としては、引例からも明
らかなように、可動部の板ばねは、密閉室内に納め、密
閉室内にオイルを充填し、板ばねの動きをオイルの粘性
により、減衰させることを目的としたものである。When using the full scale displacement of a leaf spring in the range of several millimeters to several tens of micrometers, the resonance point is
It falls within the range of 200Hz. Therefore, it is essential to take measures to attenuate the amplitude near the resonance frequency to below O dB. Generally, as a measure against damping, as is clear from the references, the leaf spring of the movable part is housed in a sealed chamber, the sealed chamber is filled with oil, and the movement of the leaf spring is damped by the viscosity of the oil. The purpose is to
しかし、オイルの粘性係数は、温度と共に変化するため
、例えば自動車の環境温度−40℃〜110℃に変化し
た時、オイルの粘度は20℃を基準にすると低温側では
、例えば約3倍高くなり、高温側では約1/3に低くな
る。従って、常温付近で、共振点の振幅の利得がオイル
の粘性係数を適切に選定し1組合せて、下げられたとし
ても、低温側では、位相が著しく遅れ、信号の伝達に支
障をきたす。一方、高温側では、オイルの粘度が低下し
て、常温では、目立たなかった共振点の利得は、大きく
なり、自動車の暗振動の影響を受けて、板ばねの振幅は
常に拡大し、正確な加速度の信号が得られなくなる。ま
た、オイルの体積膨張率は大きく、約100℃の変化に
対して1体積は15%以上変化する。従って、温度上昇
と共に密閉容器内の内圧が、上昇し、オイルの漏洩対策
、例えばダイヤフラムによる体積膨張の吸収が必要とな
るなどの課題があった。However, the viscosity coefficient of oil changes with temperature, so for example, when the environmental temperature of a car changes from -40°C to 110°C, the viscosity of the oil will be about 3 times higher at low temperatures compared to 20°C. , it decreases to about 1/3 on the high temperature side. Therefore, even if the gain of the amplitude at the resonance point can be lowered by appropriately selecting and combining the viscosity coefficients of the oil at around room temperature, the phase will be significantly delayed at low temperatures, which will impede signal transmission. On the other hand, on the high temperature side, the viscosity of the oil decreases, and the gain at the resonance point, which was not noticeable at room temperature, increases. Under the influence of the dark vibration of the car, the amplitude of the leaf spring constantly expands, making it difficult to accurately Acceleration signals cannot be obtained. Further, the coefficient of volumetric expansion of oil is large, and one volume changes by 15% or more for a change of about 100°C. Therefore, as the temperature rises, the internal pressure inside the closed container increases, and there is a problem in that it is necessary to take measures against oil leakage, for example, to absorb volumetric expansion using a diaphragm.
本発明では板ばねの共振対策として、オイルダンパに変
わる温度依存性の小さいエアダンパを採用する。具体的
にはエアダンパは、例えば、ピストン構造の絞り効果で
作用させると仮定すると、れここで、k定数、μは粘性
減衰係数、aは隙間寸法、Qは隙間の長さ、Aはピスト
ンの断面積である。In the present invention, as a measure against resonance of the leaf spring, an air damper with low temperature dependence is used instead of an oil damper. Specifically, assuming that the air damper is operated by the throttling effect of the piston structure, where: k constant, μ is the viscous damping coefficient, a is the gap dimension, Q is the gap length, and A is the piston's It is the cross-sectional area.
粘性係数の小さい空気を利用するため、同じ減衰力を得
るためには、第1にピストンの断面積を大きくする。第
2にシリンダピストンの間の隙間を小さくする。第3に
隙間の長さを大きくするなどで対策することができる。Since air with a small viscosity coefficient is used, in order to obtain the same damping force, the first step is to increase the cross-sectional area of the piston. Second, reduce the gap between the cylinder pistons. Third, countermeasures can be taken such as increasing the length of the gap.
また、出来るだけ部品点数を減らして達成するために、
−枚板に例えば、コ字形の溝加工を施して、板ばねを形
成することにした。微少幅の溝加工の手段としては、エ
ツチング、エツチングと鍍金の組合せ、レーザ光線、プ
レスなどの加工方法によることができる。−枚板では溝
幅が広過ぎて効果が少ない場合には、複数枚重ねて、Ω
とaの相互関係を一定値内に納めることもできる。更に
、板ばねの板厚tは、溝幅Qhがt≧0.2であれば、
溝幅Qhとの関係がt / Q h≧4の時、減衰効果
が大きくなる。In addition, in order to reduce the number of parts as much as possible,
- It was decided to form a leaf spring by machining a U-shaped groove on a plate. As a means for processing a groove of minute width, processing methods such as etching, a combination of etching and plating, a laser beam, and pressing can be used. - If the groove width is too wide and the effect is low with single plates, stack multiple plates to
It is also possible to keep the correlation between and a within a certain value. Furthermore, if the groove width Qh is t≧0.2, the plate thickness t of the plate spring is
When the relationship with the groove width Qh is t/Q h≧4, the damping effect becomes large.
更に、可動部の重錘の外周と相対する対向壁面に窪みを
設けて、窪みの内壁間に微少な隙を形成することにより
、同様の減衰効果を得ることができる。また、可動側を
窪ませ、壁面1突き出すことによっても、同様の効果を
得ることができる。Furthermore, a similar damping effect can be obtained by providing a depression in the opposing wall surface facing the outer periphery of the weight of the movable part and forming a minute gap between the inner walls of the depression. Moreover, the same effect can be obtained by making the movable side hollow and making the wall surface 1 protrude.
更に、可動側にピストンに相当するものを固定して、壁
面側のシリンダ部に嵌合させることによっても同様の減
衰効果が得られる。Furthermore, a similar damping effect can be obtained by fixing something equivalent to a piston on the movable side and fitting it into the cylinder portion on the wall side.
本発明の磁気式加速度センサは、永久磁石とホール素子
集積回路を組合せた構造で、変位を磁束密度の変化に変
換し、さらに、電気変換する方式である。即ち、板ばね
の先端に慣性重錘を兼用する永久磁石を取り付け、他端
を支点として可動できる片持梁とする。可動部先端の永
久磁石は、移動方向にN−8の磁極を有し、加速度によ
る慣性力に伴い、永久磁石が移動することによって、発
生する磁束密度の変化を壁に固定されたホール素子また
はホール素子集積回路で検出し、磁電変換し、信号を取
り出す方式である。The magnetic acceleration sensor of the present invention has a structure that combines a permanent magnet and a Hall element integrated circuit, and converts displacement into a change in magnetic flux density, and further converts it electrically. That is, a permanent magnet that also serves as an inertial weight is attached to the tip of the leaf spring, and the other end is used as a cantilever beam that can be moved as a fulcrum. The permanent magnet at the tip of the movable part has N-8 magnetic poles in the direction of movement, and as the permanent magnet moves with the inertial force caused by acceleration, changes in magnetic flux density that occur are absorbed by a Hall element fixed to the wall or This method detects the signal using a Hall element integrated circuit, performs magnetoelectric conversion, and extracts the signal.
自動車の車体の振動は、急ブレーキや急加速などの場合
には、振動周波数はDC〜5Hzで加速度の大きさは9
、8 m / see”以内、また、ハンドルなど↓
こよる横方向の加速度はDC〜5Hzで9.8m/se
e”以内とされている。一方、車輪のばね上の振動は車
種によって違いがあるが、DC〜20 Hzで25
m/see”以内とされている。In the case of sudden braking or sudden acceleration, the vibration frequency of the car body is from DC to 5Hz, and the magnitude of acceleration is 9.
, within 8m/see”, or within the handlebar, etc.↓
The resulting lateral acceleration is 9.8 m/sec at DC ~ 5 Hz.
On the other hand, the vibration on the springs of the wheels varies depending on the car model, but it is said to be within 25 Hz at DC to 20 Hz.
m/see" or less.
これらの加速度の範囲を検出し、車体の姿勢を制御する
ことを目的とする加速度センサは、車体の暗振動の影響
を受けて、出力信号が移動しないように、仮ばねの動き
エアダンパを作用させる。即ち、板ばねが共振点に至り
振幅が拡大しようとした時、加速度による慣性力を受け
て移動する慣性重錘が一体となった板ばねの端部と静止
側壁面間の僅かな隙間を空気が移動する時の空気の粘性
による減衰力が作用し、振幅は抑えられ、低減される。The acceleration sensor, whose purpose is to detect these acceleration ranges and control the posture of the vehicle, uses a temporary spring to act as an air damper to prevent the output signal from shifting due to the influence of dark vibrations of the vehicle. . In other words, when the leaf spring reaches the resonance point and the amplitude is about to increase, the inertial weight, which moves under the inertial force caused by acceleration, fills the small gap between the end of the leaf spring and the stationary side wall with air. The damping force due to the viscosity of the air as it moves acts, suppressing and reducing the amplitude.
常用範囲の周波数帯域内の振幅レベルに納まらない場合
には、例えば、電子回路の最終段にローパスフィルタを
追加して減衰させることができる。If the amplitude level does not fall within the commonly used frequency band, for example, a low-pass filter can be added to the final stage of the electronic circuit to attenuate it.
以下に本発明の一実施例について図を用いて説明する。 An embodiment of the present invention will be described below with reference to the drawings.
第1図において、ばね1は、−枚板からなり、コ字形の
溝2を境に、静止側と可動側に分離しており、可動部側
には、永久磁石3を有する重錘4が固定する。一方、静
止側は板ばねのコ字形溝2の外側を両側から枠体5,5
′によって挾持する。In FIG. 1, the spring 1 is made of a negative plate and is separated into a stationary side and a movable side with a U-shaped groove 2 as a boundary, and a weight 4 having a permanent magnet 3 is attached to the movable side. Fix it. On the other hand, on the stationary side, the outside of the U-shaped groove 2 of the leaf spring is viewed from both sides by the frames 5, 5.
’ to hold it in place.
板ばねの支点6側には、小形のコ字形溝7が形成されて
おり、設定する変位に応じ、板ばね1の支点の幅が任意
に決められる。枠体5,5′と可動部との対向する壁面
間の距離は、可動部のス]ヘロークの異常な拡大による
板ばねlの許容応力以上の荷重がかかるのを防止する役
割がある。枠体5の反対の面には板ばね1の先端部の重
錘の中心部にあり、移動方向に磁極が一致した永久磁石
3と対向して、ホール素子8またはホール素子集積回路
8′が可撓性配線板9に固定され、一端はプリント板2
6に結線される。更に、プリント板26からはり−ド1
0により電力の供給、信号の引出しがなされる。尚、枠
体5側には、加速度センサの固定用の孔を有する。A small U-shaped groove 7 is formed on the side of the fulcrum 6 of the leaf spring, and the width of the fulcrum of the leaf spring 1 can be arbitrarily determined depending on the displacement to be set. The distance between the opposing walls of the frames 5, 5' and the movable part serves to prevent a load exceeding the allowable stress of the leaf spring 1 from being applied due to abnormal expansion of the sphere of the movable part. On the opposite surface of the frame 5, a Hall element 8 or a Hall element integrated circuit 8' is located at the center of the weight at the tip of the leaf spring 1, facing the permanent magnet 3 whose magnetic poles coincide in the direction of movement. It is fixed to a flexible wiring board 9, and one end is connected to the printed board 2.
6. Furthermore, the beam board 1 is removed from the printed board 26.
0 supplies power and extracts signals. Note that the frame body 5 side has a hole for fixing the acceleration sensor.
出力電圧は必要に応じて、ローパスフィルタ11を介在
させて、低周波数域にある共振点を消去する。The output voltage is filtered through a low-pass filter 11 as necessary to eliminate resonance points in the low frequency range.
板ばね1は、−枚の板から、作る場合、リン青銅やステ
ンレス板にマスクをかけ、エツチング液に浸漬して、コ
字形溝2,7、取付孔12tt溶解する方法がある。し
かし、溝2,7の幅をもつと小さくしようとする場合に
は、エツチングマスクをそのままにして、例えば銅やニ
ッケルなどの鍍金により、金属材料13を付着させるこ
ともある。When the leaf spring 1 is made from two plates, there is a method of masking a phosphor bronze or stainless steel plate and dipping it in an etching solution to dissolve the U-shaped grooves 2 and 7 and the mounting hole 12tt. However, if the widths of the grooves 2 and 7 are to be made smaller, the etching mask may be left as is and the metal material 13 may be deposited, for example, by plating with copper or nickel.
また、レーザ光線の熱を利用して溝を加工することもあ
る。溝幅を狭くする他の方法は、予め形成された板ばね
の溝部に樹脂の膜14を施す方法やゴム15を溝の辺縁
部に付着形成する方法もある。Additionally, grooves may be processed using the heat of laser beams. Other methods of narrowing the groove width include a method of applying a resin film 14 to the groove portion of a leaf spring formed in advance, and a method of attaching and forming rubber 15 to the edge portion of the groove.
あるいは、第6図に示す如く重錘の形状を平らにして、
溝部の辺縁−杯に形成すること16による場合もある9
このような僅少幅の溝2を有する板ばね1をプレス成形
することもできる。しかし溝幅2は、型の°寿命などの
点で制約を受けるのでさらに、溝幅を狭くしようとする
場合には1例えば、板ばねを三分割して、組合せた時に
所定の溝幅が得られる如く構成することによって、得策
になる場合もある。また、−枚の板ばねで、目的が達せ
られない場合には、板厚を薄くして、所定寸法の溝幅を
加工し易くして、同一形状の板ばねを複数枚重ね、一体
となして用いることもできる。Alternatively, as shown in Figure 6, the shape of the weight may be flattened,
Margin of groove - may be by forming cup 16 9
It is also possible to press-form the leaf spring 1 having such a groove 2 with a small width. However, the groove width 2 is limited by the lifespan of the mold, etc., so if you want to make the groove width narrower, for example, you can divide the leaf spring into three parts and combine them to obtain a predetermined groove width. In some cases, it may be advantageous to configure the system so that it can be used. In addition, if the purpose cannot be achieved with just one leaf spring, the thickness of the plate can be made thinner to make it easier to machine the groove width of the predetermined dimension, and multiple leaf springs of the same shape can be stacked together and made into one piece. It can also be used as
可動側板ばねの辺縁部と静止側との僅少隙間に頼らず、
他の方法、構造で、可動部と静止部との間の僅少隙間を
形成することもできる。第7図の場合には.重鍾4の外
周17と静止側窪み18の内周にできる隙間19を利用
する構造である。また、次の例は、可動側の重錘4部分
に所定の間隔で、2枚の板20.20’ を組込み、こ
の板の中央に静止側の板21が入るようにして、両者間
の隙間を小さくした構造である。第9図の例は、第7図
の逆の考え方で、可動側の重錘4部には窪み22を設け
、これと嵌合する静止部側の一部23を突き出させ、そ
れぞれの内周と外周間の隙間を小さくした構造である。without relying on the slight gap between the edge of the movable leaf spring and the stationary side.
The small gap between the movable part and the stationary part can also be formed using other methods and structures. In the case of Figure 7. This structure utilizes a gap 19 formed between the outer periphery 17 of the heavy peg 4 and the inner periphery of the stationary side recess 18. In addition, in the following example, two plates 20 and 20' are installed at a predetermined interval in the weight 4 part on the movable side, and the plate 21 on the stationary side is placed in the center of these plates, so that the space between them is It has a structure with small gaps. The example shown in FIG. 9 is the opposite of the concept shown in FIG. This structure has a smaller gap between the outer circumference and the outer circumference.
第10図は、可動部に一端が固定された円板24を静止
側壁面の窪み25に嵌合せしめたもので、嵌合部は、僅
かな隙間で対向する構造である1片持梁構造の板ばねの
他に重錘の周りに対称形をなす複数支持構造の板ばねに
ついても、同様、または類似の構造をとることにより、
可動側と静止側に微少間隔の隙間を形成して、同様の機
能を出さしめることができる。Fig. 10 shows a disc 24 with one end fixed to a movable part fitted into a recess 25 in a stationary side wall surface, and the fitted part has a single cantilever structure in which they face each other with a small gap. In addition to the leaf spring of , a leaf spring with a multiple support structure that is symmetrical around a weight can also have the same or similar structure.
A similar function can be achieved by forming a small gap between the movable side and the stationary side.
次に動作について説明する。第2図に示すように.重鍾
4が外部からの慣性力を受けると板ばねの支点6の周り
にモーメントが作用し、変位して。Next, the operation will be explained. As shown in Figure 2. When the heavy peg 4 receives an inertial force from the outside, a moment acts around the fulcrum 6 of the leaf spring, causing displacement.
例えばホール素子8、と永久磁石3との距離が離れると
第14図に示すグラフのVooからVowの位置に出力
電圧が減少する。即ち、加速度センサはマイナスの加速
度を検出したことになる。即ち。For example, when the distance between the Hall element 8 and the permanent magnet 3 increases, the output voltage decreases from Voo to Vow in the graph shown in FIG. In other words, the acceleration sensor has detected negative acceleration. That is.
永久磁石3とホール素子8の距離とホール素子の出力と
の関係は、第14図のグラフに於いて、プラスの加速度
側を距離が短い方に対応させるとやや下方に曲った曲線
となるしかし、測定加速度範囲に対応する、板ばねの変
位を小さく設定すると第14図に実線で、表わすように
距離に対する出力電圧も、加速度に対応する出力電圧も
直線に近づく。即ち、板ばねの変位に対して慣性重錘に
かかる加速度の関係は比例関係にある。従って、第14
図に示すように、板ばねの中立点の出力電圧Vooに対
して、板ばねが変位すると出力電圧が増減し、加速度の
大きさと方向がグラフ上から読み取ることができる。加
速度センサを自動車の車体に固定し、加速や減速時ある
いは旋回時の加速度を検出する場合には、例えば第14
図のグラフ上に於いて、加速時の加速度の大きさは、V
ooからマイナス方向の出力電圧の差で知ることができ
る。The relationship between the distance between the permanent magnet 3 and the Hall element 8 and the output of the Hall element is shown in the graph of Fig. 14. If the positive acceleration side corresponds to the shorter distance, the curve curves slightly downward. When the displacement of the leaf spring corresponding to the measured acceleration range is set small, the output voltage with respect to distance and the output voltage with respect to acceleration approach a straight line, as shown by the solid line in FIG. In other words, the acceleration applied to the inertial weight is proportional to the displacement of the leaf spring. Therefore, the fourteenth
As shown in the figure, when the leaf spring is displaced, the output voltage increases or decreases with respect to the output voltage Voo at the neutral point of the leaf spring, and the magnitude and direction of the acceleration can be read from the graph. When an acceleration sensor is fixed to the body of a car and detects acceleration during acceleration, deceleration, or turning, for example, the 14th
On the graph in the figure, the magnitude of acceleration during acceleration is V
It can be determined from the difference in output voltage in the negative direction from oo.
このような場合には、出力の周期的な変動も比較的小さ
く、DC〜5 I(z以内とされ、加速度の検出範囲も
最大±1.OX9.8m/5ee2以下とされている。In such a case, the periodic fluctuation of the output is also relatively small, within DC~5I(z), and the acceleration detection range is also set to be at most ±1.OX9.8m/5ee2 or less.
しかし、車体の上下方向の加速度は、その範囲も広くな
り、周波数はDC〜20 Hz、加速度は最大2.5X
9.8m’/5ec2とされている。エンジン動作時あ
るいは走行時の車体の上下方向加速度の周波数スペクト
ルは、DC〜IKHzに及ぶ、特に、DC〜50Hz、
20Hz〜1OOHz−の順に頻度が高い。However, the range of acceleration in the vertical direction of the vehicle body is wider, the frequency is DC ~ 20 Hz, and the acceleration is up to 2.5X.
It is said to be 9.8m'/5ec2. The frequency spectrum of the vertical acceleration of the vehicle body during engine operation or driving ranges from DC to IKHz, particularly from DC to 50Hz,
The frequency is higher in the order of 20 Hz to 100 Hz.
従って、この範囲に共振点を有する加速度センサは、こ
れらの暗振動の影響を受けない構造にしなければならな
い。−枚板に形成されたコ字形の微少隙間の溝は、空気
の存在する枠体に囲まれた密閉室内の中に配置されてい
る。この中で、外力により慣性力が作用した重錘と共に
板ばねが動く時、中立点となる板ばねを境にして、一方
の部屋は体積が縮少した分、圧力が上昇し、他方は体積
が大きくなるので、圧力は低下する。この圧力の高低差
で、板ばねの辺縁部の僅少な隙間を空気が移動すること
になる。この時、一般に空気の粘性係数、隙間の長さに
それぞれ比例し、隙間の三乗に反比例した粘性減衰力が
発生し、板ばねの振幅拡大の動きを抑制する。外力の動
きが速くなるとこの粘性減衰力もほぼ比例して増加する
ため、板ばねの共振点での振幅拡大も抑止することがで
きる。第15図aの如く完全に抑制できなければ、出力
信号の終段にローパスフィルタを配してbの如くおさえ
ることができる。従来、オイルダンパに比して第16図
に示すように、エアダンパの方が温度依存性が改善され
る。これは、空気の粘性係数が20℃で1.86X10
−8kgs/m”、100℃で2.23X10−6Js
/m2とその変化率は約20%でありオイルの場合の約
1/10と小さいためである。またオイルの場合には、
温度上昇と共に粘性係数は、減少する傾向であるが、空
気の場合は逆に温度上昇と共に増加する傾向がある。Therefore, an acceleration sensor having a resonance point in this range must have a structure that is not affected by these dark vibrations. - The U-shaped micro-gap groove formed in the plate is placed inside a closed chamber surrounded by a frame in which air exists. In this case, when a leaf spring moves together with a weight on which an inertial force is applied due to an external force, the pressure in one room increases as the volume decreases, and the pressure in the other room increases, with the leaf spring serving as the neutral point as a boundary. increases, so the pressure decreases. This difference in pressure causes air to move through the small gap at the edge of the leaf spring. At this time, a viscous damping force is generated that is generally proportional to the viscosity coefficient of the air and the length of the gap, and inversely proportional to the cube of the gap, and suppresses the movement of the leaf spring from increasing its amplitude. As the movement of the external force becomes faster, this viscous damping force increases almost proportionally, so it is possible to suppress the amplitude expansion at the resonance point of the leaf spring. If it cannot be suppressed completely as shown in FIG. 15a, it can be suppressed as shown in b by placing a low-pass filter at the final stage of the output signal. Conventionally, as shown in FIG. 16, an air damper has improved temperature dependence compared to an oil damper. This means that the viscosity coefficient of air is 1.86X10 at 20℃.
-8kgs/m”, 2.23X10-6Js at 100℃
/m2 and its rate of change is about 20%, which is about 1/10 of that of oil. Also, in the case of oil,
The viscosity coefficient tends to decrease as the temperature increases, but in the case of air, it tends to increase as the temperature increases.
本発明の一実施例によれば、次の効果を得ることができ
る。According to one embodiment of the present invention, the following effects can be obtained.
1、永久磁石を埋設した重錘が固定される板ばねは、板
ばねの辺縁部と静止側壁面との僅少隙間を利用して、エ
アダンピングを作用させ、共振点の振幅を減衰できるの
で、車体の暗振動の影響を受けず、高精度な加速度の検
出が可能である。1. A leaf spring to which a weight with a permanent magnet embedded can attenuate the amplitude of the resonance point by applying air damping using the small gap between the edge of the leaf spring and the stationary side wall. , it is possible to detect acceleration with high precision without being affected by background vibrations of the vehicle body.
2、エアダンピングが作用させられる板ばねを採用して
いるので、ダンピングの温度依存性が低下して、車体の
暗振動の影響を受けず、高精度な加速度の検出が可能で
ある。2. Since a leaf spring with air damping is used, the temperature dependence of the damping is reduced, making it possible to detect acceleration with high precision without being affected by dark vibrations of the vehicle body.
3、エアダンピングを作用させる板ばねは、−枚板にレ
ーザ光線による切削加工、またはエツチング加工、また
はエツチングと鍍金工程を組合せて僅少溝加工ができる
ので、ダンピングを左右する溝は、高精度に加工が可能
である。また安価にできる。3. The leaf spring that exerts air damping can be formed with a slight groove by laser beam cutting, etching, or a combination of etching and plating, so the grooves that affect damping can be formed with high precision. Processing is possible. It can also be done cheaply.
4、エアダンピングを作用させる板ばねの溝の辺縁部に
は、ゴムを焼付け、または接着して、溝内の空気の通る
通路の長さを長くして、ダンピングが作用し易くした。4. Rubber is baked or bonded to the edges of the grooves of the leaf spring where air damping is applied to increase the length of the passage through which air passes within the grooves, making it easier for damping to occur.
5、エアダンピングを作用させる板ばねは、−枚板にコ
字形溝を加工し、複数枚重ねて用いることに依って、エ
アダンピングが作用し易くした。5. The leaf spring that causes air damping is made easier to effect air damping by machining a U-shaped groove on the negative plate and using a plurality of leaf springs stacked one on top of the other.
6、エアダンピングを作用させる僅少隙間を有する板ば
ねは、複数に分割して、プレス成形し、組合せて用いる
ことにより、高精度なダンピング作用の溝加工が可能に
なる。6. A leaf spring having a small gap for air damping can be divided into a plurality of parts, press-formed, and used in combination, making it possible to form grooves with high precision for damping.
7、可動側の重錘の外周と壁面側窪みの組合せ、または
、可動側の窪みと壁面側の突き出し部との組合せ、また
は、可動側に固定された円板と壁面側の窪みとの組合せ
などにより、エアダンピングが作用させられるので、車
体の暗振動の影響を受けず、高精度な加速度の検出が可
能である。7. A combination of the outer periphery of the weight on the movable side and a recess on the wall side, or a combination of a recess on the movable side and a protrusion on the wall side, or a combination of a disk fixed on the movable side and a recess on the wall side. Since air damping is applied, it is possible to detect acceleration with high precision without being affected by background vibrations of the vehicle body.
8、予め、可動部端面と壁面間距離を既定値に設定し、
板ばねの支点にかかる応力を一定値レベル以下に抑える
ことができるので、板ばねの寿命が伸び、信頼性を向上
できる。8. Set the distance between the end of the movable part and the wall to the default value in advance,
Since the stress applied to the fulcrum of the leaf spring can be suppressed below a certain level, the life of the leaf spring can be extended and its reliability can be improved.
本発明によれば、高精度で、信頼性のある安価な加速度
センサが提供できる。According to the present invention, a highly accurate, reliable and inexpensive acceleration sensor can be provided.
第1図は本発明の実施例を示す断面構造図、第2図は第
1図の可動部の動作状況の説明図、第3図は第1図の可
動部の部組の詳細説明図、第4図は第3図の板ばねのQ
部拡大断面図、第5図は可動部の他の部組の詳細説明図
、第6図は可動部重錘の構成の説明図、第7図は重錘の
外周と壁面側の窪みの嵌合状態の説明図、第8図は重錘
側と静止側とから延びた板同志の隙間の作用の説明図、
第9図は重錘側窪みと壁面側突き出し部外周との嵌合状
態の説明図、第10図は重錘に固定された円板と壁面側
の窪みとの嵌合状態の説明図、第11図は複数に分離し
、プレス成形された板ばねの外観図、第12図は、第1
1図で説明した板ばねの分割単品図、第13図は加速度
センサの回路構成を示すブロックダイヤグラム、第14
図は加速センサの出力特性とダイナミックな出力との対
応関係を示すグラフ、第15図は周波数特性の減衰前後
の比較を示すグラフ、第16図は伝達特性の温度依存性
を示すグラフ、第17図は重錘の周りに対称形をなす板
ばねの一例を示す外観図である。
1・・・板ばね、2・・・溝、3・・・永久磁石、4・
・・重錘、5・・・枠体、5′・・・枠体、6・・・支
点、7・・・溝、8・・・ホール素子、8′・・・ホー
ル素子集積回路、9・・・配線板、10・・・リード、
11・・・ローパスフィルタ、12・・・取付孔、13
・・・金属材料、14・・・樹脂の膜、15・・ゴム、
16・・・偏平重錘、17・・・重錘外周、18・・・
窪み、19・・・隙間、20・・・板、20′・・・板
、21・・・板、22・・・窪み、23・・・突き出し
部、24・・円板、25・・・窪み、26・・・プリン
ト板。FIG. 1 is a cross-sectional structural diagram showing an embodiment of the present invention, FIG. 2 is an explanatory diagram of the operation status of the movable part in FIG. 1, and FIG. 3 is a detailed explanatory diagram of the parts of the movable part in FIG. 1. Figure 4 shows the Q of the leaf spring in Figure 3.
Figure 5 is a detailed explanatory diagram of other parts of the movable part, Figure 6 is an explanatory diagram of the configuration of the movable part weight, and Figure 7 is a diagram showing the fit between the outer periphery of the weight and the recess on the wall side. An explanatory diagram of the mating state, Figure 8 is an explanatory diagram of the effect of the gap between the plates extending from the weight side and the stationary side,
FIG. 9 is an explanatory diagram of the fitted state between the weight-side recess and the outer periphery of the protruding portion on the wall side. FIG. 10 is an explanatory diagram of the fitted state between the disc fixed to the weight and the wall-side recess. Figure 11 is an external view of a leaf spring separated into multiple parts and press-formed, and Figure 12 is an external view of a leaf spring separated into multiple parts and pressed.
Figure 1 is a divided single-piece diagram of the leaf spring explained in Figure 1, Figure 13 is a block diagram showing the circuit configuration of the acceleration sensor, and Figure 14 is a block diagram showing the circuit configuration of the acceleration sensor.
Figure 15 is a graph showing the correspondence between the output characteristics of the acceleration sensor and dynamic output, Figure 15 is a graph showing a comparison of frequency characteristics before and after attenuation, Figure 16 is a graph showing the temperature dependence of transfer characteristics, and Figure 17 is a graph showing the correspondence between the output characteristics of the acceleration sensor and dynamic output. The figure is an external view showing an example of a leaf spring that is symmetrical around a weight. 1... Leaf spring, 2... Groove, 3... Permanent magnet, 4...
... Weight, 5... Frame, 5'... Frame, 6... Fulcrum, 7... Groove, 8... Hall element, 8'... Hall element integrated circuit, 9 ... Wiring board, 10... Lead,
11...Low pass filter, 12...Mounting hole, 13
...Metal material, 14...Resin film, 15...Rubber,
16... Flat weight, 17... Weight outer circumference, 18...
Hollow, 19... Gap, 20... Board, 20'... Board, 21... Board, 22... Hollow, 23... Projection, 24... Disk, 25... Hollow, 26...Printed board.
Claims (2)
永久磁石の移動方向に対向する隔壁にホール素子を配置
して、自動車の車体の振動,急加減速,横滑り等によつ
て発生する加速度を検出する加速度センサに於いて、板
ばねは一枚板に微少幅の長溝を穿ち、前記長溝を境とし
て、静止部と可動部とに分離して、可動部側には重錘を
固定したことを特徴とする加速度センサ。1. A permanent magnet is fixed to the movable part of a leaf spring with a heavy stud,
In an acceleration sensor that detects acceleration caused by vehicle body vibration, sudden acceleration/deceleration, skidding, etc., by placing a Hall element on a partition wall facing the direction of movement of a permanent magnet, the leaf spring is a single plate. 1. An acceleration sensor characterized in that a long groove with a minute width is bored in the groove, the long groove is used as a boundary to separate a stationary part and a movable part, and a weight is fixed to the movable part.
永久磁石の移動方向に対向する隔壁にホール素子を配置
して、自動車の車体の振動,急加減速,横滑り等によつ
て発生する加速度を検出する加速度センサに於いて、板
ばねの中央周辺1ケ所または複数ケ所の細長い溝を形成
して、細長い溝の内側が重錘を有する可動部、外側が枠
体の挾持による静止部となることを特徴とする加速度セ
ンサ。2. A permanent magnet is fixed to the movable part of a leaf spring with a weight,
In an acceleration sensor that detects acceleration caused by vehicle body vibration, sudden acceleration/deceleration, skidding, etc., a Hall element is arranged on a partition wall facing the moving direction of a permanent magnet. An acceleration sensor characterized in that an elongated groove is formed at one or more places, and the inside of the elongated groove becomes a movable part having a weight, and the outside becomes a stationary part held by a frame.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7063289A JPH02249975A (en) | 1989-03-24 | 1989-03-24 | Magnetic acceleration sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7063289A JPH02249975A (en) | 1989-03-24 | 1989-03-24 | Magnetic acceleration sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02249975A true JPH02249975A (en) | 1990-10-05 |
Family
ID=13437210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7063289A Pending JPH02249975A (en) | 1989-03-24 | 1989-03-24 | Magnetic acceleration sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02249975A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002533721A (en) * | 1998-12-23 | 2002-10-08 | イメージ・ガイディッド・テクノロジーズ・インコーポレイテッド | Hybrid 3D probe tracked by multiple sensors |
-
1989
- 1989-03-24 JP JP7063289A patent/JPH02249975A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002533721A (en) * | 1998-12-23 | 2002-10-08 | イメージ・ガイディッド・テクノロジーズ・インコーポレイテッド | Hybrid 3D probe tracked by multiple sensors |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5453599B2 (en) | Improved suspension plate manufactured by micromachining and integrally formed with a proof mass for devices such as seismometers | |
US5277064A (en) | Thick film accelerometer | |
US4083433A (en) | Active vibration damper with electrodynamic sensor and drive units | |
JP2728807B2 (en) | Capacitive acceleration sensor | |
US5027657A (en) | Acceleration sensor with cantilevered bending beam | |
EP0386463A2 (en) | Capacitive accelerometer with mid-plane proof mass | |
JPH02271260A (en) | Closed loop solid accelerometer | |
EP3336559A1 (en) | Out-of-plane-accelerometer | |
EP2175284A1 (en) | Micro electro-mechanical systems (MEMS) force balance accelerometer | |
US10859593B2 (en) | Reducing thermal expansion induced errors in a magnetic circuit assembly | |
JPH02249975A (en) | Magnetic acceleration sensor | |
JP5101295B2 (en) | Super Invar magnetic return path for high performance accelerometers | |
US5748567A (en) | Acceleration sensor | |
EP3865882B1 (en) | Multilayer magnetic circuit assembly | |
EP3865881B1 (en) | Multilayer excitation ring | |
US6898972B2 (en) | Micromechanical speed sensor | |
US5856772A (en) | Low stress magnet interface | |
US5532665A (en) | Low stress magnet interface | |
JP2599558B2 (en) | Data storage device | |
EP3267069A1 (en) | Control system for an active powertrain mount | |
Wilner | A high performance, variable capacitance accelerometer | |
JP2002350459A (en) | Vibration sensor and method of manufacturing vibration sensor | |
JP3059662B2 (en) | Liquid sealing rubber device | |
RU2796125C1 (en) | Accelerometer | |
JPH073045Y2 (en) | Hydraulic servo valve |