[go: up one dir, main page]

JPH02247338A - Manufacture of nb-ti alloy - Google Patents

Manufacture of nb-ti alloy

Info

Publication number
JPH02247338A
JPH02247338A JP1068615A JP6861589A JPH02247338A JP H02247338 A JPH02247338 A JP H02247338A JP 1068615 A JP1068615 A JP 1068615A JP 6861589 A JP6861589 A JP 6861589A JP H02247338 A JPH02247338 A JP H02247338A
Authority
JP
Japan
Prior art keywords
powder
alloy
compacted body
reaction
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1068615A
Other languages
Japanese (ja)
Inventor
Toshio Usui
俊雄 臼井
Kazunori Onabe
和憲 尾鍋
Tsukasa Kono
河野 宰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP1068615A priority Critical patent/JPH02247338A/en
Publication of JPH02247338A publication Critical patent/JPH02247338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To easily obtain the homogeneous Nb-Ti alloy without producing the problem of segregation, mixing of impurities, etc., by igniting a compacted body formed from mixed powder of Nb powder and Ti powder, executing combustion synthesis based on the heat of formation and alloying the whole of the compacted body. CONSTITUTION:Mixed powder of Nb powder and Ti powder uniformly mixed so that its compositional ratio is regulated to the same as that of an Nb-Ti alloy to be manufactured is formed into a compacted body by cold isostatic pressing or the like. The central part of the upper part in the compacted body is heated to about 3000 deg.C and is ignited by heating means such as ignition by electric discharge heating, by which chemical reaction sets in at the ignited part and Nb and Ti are brought into reaction to form an Nb-Ti alloy and to release the heat of formation. By the heat of formation, the compacted body around the reacted part is heated to form the above alloy even onto this part. The above reaction is successively transferred and when the reaction is completed from the upper side to the bottom of the compacted body, the Nb-Ti alloy homogeneous in the proportion same as that of Nb and Ti mixed to the compacted body can be obtd.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は燃焼合成によるNb−Ti合金の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for producing Nb-Ti alloys by combustion synthesis.

「従来の技術」 一般に合金鋳塊を製造するには、合金成分の各元素を単
体であるいは複合状態で含有する地金あるいは鋳塊など
を用意し、これらを目的の組成比となるように所定の割
合で混合し、この混合体を加熱して溶融させ、溶融状態
で攪拌して成分の均一化を図った後に冷却して得るよう
にしている。
``Prior art'' Generally, in order to produce an alloy ingot, a base metal or an ingot containing each element of the alloy components singly or in a composite state is prepared, and these are mixed in a predetermined manner to achieve the desired composition ratio. The mixture is heated to melt it, stirred in the molten state to homogenize the components, and then cooled.

また、地金あるいは鋳塊の溶融混合状態において雰囲気
中の不純物やガスなどが混入すると合金成分に変動を来
し、純度が低下するので、真空雰囲気中などにおいて溶
解処理を行い、更に加熱効率の良好なアーク放電あるい
は電子ビーム溶解による加熱などを行って、不純物の少
ない良質の合金鋳塊を製造するようにしている。
In addition, if impurities or gases in the atmosphere enter the molten and mixed state of the ingot or ingot, the alloy composition will fluctuate and the purity will decrease. By performing heating using suitable arc discharge or electron beam melting, a high quality alloy ingot with few impurities is manufactured.

[発明が解決しようとする課題」 ところが、溶解法によって合金鋳塊を製造した場合、溶
湯を十分に攪拌して凝固させた場合であっても、溶湯内
の各合金成分の比重差などが原因となって溶湯内におい
て合金成分が不均一に混合された状態を生じる場合があ
るとともに、凝固時に生じる重力偏析などのために、所
望の組成比の均質な合金鋳塊を得ることが困難な問題が
あった。
[Problem to be solved by the invention] However, when an alloy ingot is manufactured by the melting method, even if the molten metal is thoroughly stirred and solidified, problems may arise due to differences in the specific gravity of each alloy component in the molten metal. As a result, the alloy components may be mixed non-uniformly within the molten metal, and due to gravity segregation that occurs during solidification, it is difficult to obtain a homogeneous alloy ingot with the desired composition ratio. was there.

ところで、超電導の応用分野に用いられている実用的な
超電導材料としてNb−Ti合金が知られているが、こ
の種の超電導材料においては、組成比が異なると、超電
導特性にも影響を生じるので、NbとTiの含有割合は
所望の組成比に合致するように調整されなくてはならな
い。ところが、この合金の成分元素であるNbとTiは
いずれも高融点金属であるために、高熱を発生させるた
めに特殊な溶解装置が必要であるとともに、両元素に比
重差があることなどから、均質な組成の合金鋳塊を得る
ことが困難なことがあり、従来から行なわれている溶解
鋳造法とは別種の新たな製造方法が種々試みられている
By the way, Nb-Ti alloy is known as a practical superconducting material used in the applied field of superconductivity, but in this type of superconducting material, if the composition ratio differs, it will affect the superconducting properties. , the content ratios of Nb and Ti must be adjusted to match the desired composition ratio. However, since the constituent elements of this alloy, Nb and Ti, are both high melting point metals, special melting equipment is required to generate high heat, and there is a difference in specific gravity between the two elements. Since it is sometimes difficult to obtain an alloy ingot with a homogeneous composition, various new manufacturing methods different from the conventional melting and casting method have been attempted.

本発明は前記課題を解決するためになされたもので、N
bとTiを所定の組成比で含有させることができ、偏析
の問題や不純物の混入の問題を生じることなく均質なN
b−Ti合金を製造する方法を提供することを目的とす
る。
The present invention was made to solve the above problems, and N
B and Ti can be contained in a predetermined composition ratio, and homogeneous N can be produced without causing problems of segregation or contamination of impurities.
It is an object of the present invention to provide a method for manufacturing a b-Ti alloy.

[課題を解決するための手段] 本発明は前記課題を解決するために、Nb粉末とTi粉
末を混合して得た混合粉末を加圧して圧密体を形成し、
次にこの圧密体の一部に点火して点火部分を化学反応に
より燃焼させるとともに、この化学反応により生じる生
成熱によって化学反応部分に隣接する部分を加熱し、順
次化学反応部分を圧密体の他の部分に広げて圧密体の全
体を化学反応させることにより圧密体の全体を合金化す
るものである。
[Means for Solving the Problems] In order to solve the above problems, the present invention presses a mixed powder obtained by mixing Nb powder and Ti powder to form a consolidated body,
Next, a part of the compact is ignited to cause the ignited part to burn through a chemical reaction, and the heat produced by this chemical reaction heats the part adjacent to the chemically reacting part, which sequentially moves the chemically reacting part to the other parts of the compact. The entire compacted body is alloyed by spreading it over the entire compacted body and subjecting the entire compacted body to a chemical reaction.

「作用」 NbとTiの合計エンタルピーとNb−Ti合金のエン
タルピーとの間に差があるので、Nb粉末とTi粉末の
圧密体に点火して部分的に合金を生成させた場合に反応
熱が生じ、この反応熱によって反応部分が自然に圧密体
の全体に広がり、Nb粉末とTi粉末からなる圧密体の
全体が順次自然にNb−Ti合金化する。また、反応熱
によって自身が合金化する圧密体の内部においては、溶
解法などに比較して大規模な原子の移動や偏析は生じな
いので、所望の組成でNb粉末とTi粉末を均一に混合
して圧密体を形成することで、反応後の圧密体の全体が
均一な組成のN b−T i合金化する。
"Effect" There is a difference between the total enthalpy of Nb and Ti and the enthalpy of the Nb-Ti alloy, so when a compacted body of Nb powder and Ti powder is ignited to partially form an alloy, the reaction heat is The reaction heat naturally spreads the reaction portion throughout the compacted body, and the whole compacted body made of Nb powder and Ti powder is sequentially and naturally turned into an Nb-Ti alloy. In addition, inside the compacted body, which is alloyed by the heat of reaction, large-scale movement and segregation of atoms does not occur compared to melting methods, so Nb powder and Ti powder are uniformly mixed with the desired composition. By doing this to form a compacted body, the entire compacted body after the reaction becomes an Nb-Ti alloy with a uniform composition.

「実施例」 第1図ないし第7図は本発明方法の一例を説明するため
のもので、この例の方法を実施してNb−Ti合金を製
造するには、第1図に示すNb粉粉末色第2図に示すT
i粉末2を用意する。これらの粉末は、高純度のTiあ
るいは高純度のNbからなるものであって、その粒径は
0,1〜20μm程度の十分に粒径の揃ったものを用い
ることが好ましい。
"Example" Figures 1 to 7 are for explaining an example of the method of the present invention.In order to carry out the method of this example to produce an Nb-Ti alloy, the Nb powder shown in Figure 1 is used. Powder color T shown in Figure 2
i Prepare powder 2. These powders are made of high-purity Ti or high-purity Nb, and preferably have sufficiently uniform particle sizes of about 0.1 to 20 μm.

次に前記Nb粉末lとTi粉末2を、製造するべきNb
−Ti合金の組成比と同一になるように秤量して第3図
に示すように所要量、攪拌容器3内に没入し、十分に攪
拌して均一に混合する。この混合処理の際に、Nb粉末
1とTi粉末2の粒径が異なるようであると、均一混合
が不十分になるので、Nb粉粉末色Ti粉末2の粒径を
できる限り揃えることが好ましい。
Next, the Nb powder 1 and Ti powder 2 are
-Weigh it so that the composition ratio is the same as that of the Ti alloy, put the required amount into the stirring vessel 3 as shown in FIG. 3, and thoroughly stir it to mix it uniformly. During this mixing process, if the particle sizes of Nb powder 1 and Ti powder 2 are different, uniform mixing will be insufficient, so it is preferable to make the particle sizes of Nb powder color Ti powder 2 as uniform as possible. .

次にこの混合粉末4を白金板などの薄肉金属板からなる
容器5に収納し、容器5を真空排気装置に接続して容器
5の内部を真空排気する。この真空排気処理により容器
5内の不要なガスを排除して不純物元素の混入を防止す
る。
Next, this mixed powder 4 is stored in a container 5 made of a thin metal plate such as a platinum plate, and the container 5 is connected to a vacuum evacuation device to evacuate the inside of the container 5. This vacuum evacuation process eliminates unnecessary gas within the container 5 to prevent contamination of impurity elements.

次いで第4図に示す如く前記容器5ごと冷間等方圧プレ
ス加工を行って混合粉末からなる圧密体7を形成する。
Next, as shown in FIG. 4, the container 5 is subjected to cold isostatic pressing to form a compacted body 7 made of mixed powder.

前記等方圧プレス加工法では冷間で静水圧によるプレス
法を行っても良い。この場合に加える加圧力は、0.5
〜5t/cm’程度が好ましい。
In the isostatic pressing method, a cold pressing method using hydrostatic pressure may be performed. The pressure applied in this case is 0.5
~5t/cm' is preferable.

プレス加工によって圧密体7を得たならば、この圧密体
7を容器5から分離して圧密体7を露出させ、第5図に
示すようにこの圧密体7の上部中央部分を放電加熱ある
いは電熱線による強熱などの加熱手段により3000℃
程度に加熱して点火する。以上のように点火された圧密
体7の上部においては、化学反応が始まり、NbとTi
とが反応してNb−Ti合金が生成されて生成熱が放出
される。そして、Nb−Ti合金が生成される際に放出
される生成熱により、反応部分の周囲の圧密体が加熱さ
れてこの部分にもNb−Ti合金が生成する。
Once the compacted body 7 is obtained by press working, the compacted body 7 is separated from the container 5 to expose the compacted body 7, and the upper central portion of the compacted body 7 is heated by discharge heating or electric current as shown in FIG. 3000℃ by heating means such as ignition with hot wire
Heat it up to a certain level and ignite it. A chemical reaction begins in the upper part of the compacted body 7 that has been ignited as described above, and Nb and Ti
A Nb-Ti alloy is produced by the reaction, and the heat of formation is released. Then, the heat of formation released when the Nb-Ti alloy is generated heats the compacted body around the reaction area, and the Nb-Ti alloy is also generated in this area.

このようにして圧密体7の上部側から下部側に順次反応
が伝達される結果、第6図に示すように圧密体7には上
部側から順次Nb−Ti合金が生成され、圧密体7の底
部まで反応が完了すると第7図に示すように全体がNb
−Ti合金からなる円柱状の合成品8を得ることができ
る。
As a result of the reaction being transmitted sequentially from the upper side to the lower side of the consolidated body 7 in this way, Nb-Ti alloy is sequentially generated in the consolidated body 7 from the upper side as shown in FIG. When the reaction is completed to the bottom, the whole becomes Nb as shown in Figure 7.
A cylindrical composite product 8 made of -Ti alloy can be obtained.

ここで第8図に、NbとTiの合計エンタルピー値とN
b−Ti合金のエンタルピー値を比較して示す。第8図
から両方のエンタルピーに差異があるので、前述のよう
に点火による燃焼合成方法によりNb−Ti合金を合成
できることが明らかである。
Here, Fig. 8 shows the total enthalpy value of Nb and Ti and N
The enthalpy values of b-Ti alloys are shown in comparison. From FIG. 8, it is clear that the Nb-Ti alloy can be synthesized by the combustion synthesis method using ignition, as described above, since there is a difference in both enthalpies.

前述のように製造された合成品8においては、均一に混
合したNb粉粉末色Ti粉末2の圧密体からなり、しか
も、点火されて燃焼合成される場合に圧密体7の内部で
は、溶解法の場合と異なり、固相反応に近い元素拡散が
なされ、偏析は生じないので、合成品8にはNbとTi
が均一に含有されている。従って組成比の整った均質な
Nb−Ti合金の合成品8を得ることができる。更に、
NbとTiの合計エンタルピー特性とNb−Ti合金の
エンタルピー特性の差異により生成熱が発生し、この生
成熱により燃焼合成が圧密体の全体に広がるので、特別
な熱源を用いることなく、最初の点火を行い、圧密体7
をtooo〜1700℃に加熱することで簡単に組成の
整ったN b−T i合金を製造することができる。
The composite product 8 manufactured as described above consists of a compacted body of uniformly mixed Nb powder and powder-colored Ti powder 2, and when ignited and synthesized by combustion, inside the compacted body 7, a melting process is performed. Unlike the case of , elemental diffusion similar to a solid phase reaction occurs and segregation does not occur, so composite product 8 contains Nb and Ti.
is uniformly contained. Therefore, a homogeneous composite product 8 of Nb-Ti alloy with a uniform composition ratio can be obtained. Furthermore,
Heat of formation is generated due to the difference between the total enthalpy characteristics of Nb and Ti and the enthalpy characteristics of the Nb-Ti alloy, and this heat of formation spreads the combustion synthesis throughout the compact, so the first ignition can be achieved without using a special heat source. The compacted body 7
A Nb-Ti alloy with a uniform composition can be easily produced by heating to 1,700°C to 1,700°C.

「実施例」 Nb粉末とTi粉末を混合する際に、Nb粉末の割合を
46原子%〜53原子%まで変化させて混合してなる混
合粉末を調製し、各混合粉末を冷間液圧プレスで2t/
c+s″の圧力を加えて直径201m。
"Example" When mixing Nb powder and Ti powder, mixed powders were prepared by varying the proportion of Nb powder from 46 at % to 53 at %, and each mixed powder was cold hydraulic pressed. 2t/
The diameter is 201 m by applying a pressure of c+s''.

高さ100a+iの円柱状に成型して複数の圧密体を得
た。次いでこれらの圧密体の上端部を、放電加熱により
3000℃に加熱して上端部に点火して燃焼合成を行い
、N b−T i合金製の円柱状の合成品を得た。
A plurality of compacted bodies were obtained by molding into a cylindrical shape with a height of 100a+i. Next, the upper end portions of these compacted bodies were heated to 3000° C. by discharge heating, and the upper end portions were ignited to perform combustion synthesis, thereby obtaining a cylindrical composite product made of Nb-Ti alloy.

得られた合成品におけるNbの含有量を化学分析した結
果、第9図に示すように粉末混合時に添加したNb量と
ほぼ等しくなっていることが判明した。
As a result of chemical analysis of the Nb content in the obtained composite product, it was found that the Nb content was approximately equal to the amount of Nb added at the time of powder mixing, as shown in FIG.

即ちこの発明の方法を実施することで所望の組成の均質
なNb−Ti合金の合成品を製造できることが判明した
That is, it has been found that by carrying out the method of the present invention, it is possible to produce a homogeneous Nb-Ti alloy composite having a desired composition.

「発明の効果」 以上説明したように本発明は、Nb粉末とTi粉末の混
合粉末から形成した圧密体に点火することにより、Nb
とTiの合計エンタルピー特性とNbTi合金のエンタ
ルピー特性の間のエンタルピー差を利用して生成熱によ
る燃焼合成を行い、NbTi合金を生成させるので、圧
密体の内部で固相反応に近い反応が進行し、圧密体の内
部で偏析などを起こすことなくNb−Ti合金化させる
ことができ、圧密体に混合させたNbとTiの割合と同
等の割合の均質なNb−Ti合金を得ることができる効
果がある。
"Effects of the Invention" As explained above, the present invention provides a method for producing Nb by igniting a compacted body formed from a mixed powder of Nb powder and Ti powder.
Since the enthalpy difference between the total enthalpy properties of Ti and Ti and the enthalpy properties of the NbTi alloy is used to perform combustion synthesis using the heat of formation to produce the NbTi alloy, a reaction similar to a solid phase reaction proceeds inside the compact. , it is possible to form a Nb-Ti alloy without causing segregation inside the compacted body, and it is possible to obtain a homogeneous Nb-Ti alloy with the same proportion as the ratio of Nb and Ti mixed in the compacted body. There is.

また、NbとTiの合計エンタルピー特性とNbTi合
金のエンタルピー特性の差異により生成熱が発生し、こ
の生成熱により燃焼合成が圧密体の全体に広がるので、
特別な熱源を用いることなく、最初の点火を行うのみの
操作で簡単にNb−Ti合金を製造することができる。
In addition, heat of formation is generated due to the difference between the total enthalpy characteristics of Nb and Ti and the enthalpy characteristics of the NbTi alloy, and this heat of formation spreads the combustion synthesis throughout the consolidated body.
Nb-Ti alloy can be easily produced by simply performing initial ignition without using a special heat source.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はNb粉末を示す側面図、第2図はTi粉末を示
す側面図、第3図はNb粉末とTi粉末の混合状態を示
す断面図、第4図は等方圧プレス状態を示す断面図、第
5図は圧密体に点火した状態を支援す断面図、第6図は
圧密体の燃焼合成途中の状態を示す断面図、第7図は合
成品の断面図、第8図はN b+ T iのエンタルピ
ー特性とNb−Ti合金のエンタルピー特性を示す図、
第9図は実施例で得られた合成品のNb含有量と混合粉
末中に含有させたNb量を比較して示す図である。 !・・・Nb粉末、2・・・Ti粉末、3・・・混合容
器、4・・・混合粉末、5・・・容器、7・・・圧密体
、8・・・合成品。
Fig. 1 is a side view showing Nb powder, Fig. 2 is a side view showing Ti powder, Fig. 3 is a sectional view showing a mixed state of Nb powder and Ti powder, and Fig. 4 is an isostatic press state. 5 is a sectional view supporting the state in which the compacted body is ignited, FIG. 6 is a sectional view showing the state in the middle of combustion synthesis of the compacted body, FIG. 7 is a sectional view of the composite product, and FIG. A diagram showing the enthalpy characteristics of Nb+Ti and the enthalpy characteristics of Nb-Ti alloy,
FIG. 9 is a diagram showing a comparison of the Nb content of the composite product obtained in the example and the amount of Nb contained in the mixed powder. ! ...Nb powder, 2...Ti powder, 3...mixed container, 4...mixed powder, 5...container, 7...consolidated body, 8...synthetic product.

Claims (1)

【特許請求の範囲】[Claims] Nb粉末とTi粉末を混合して得た混合粉末を加圧して
圧密体を形成し、次にこの圧密体の一部に点火して点火
部分を化学反応により燃焼させるとともに、この化学反
応により生じる生成熱によって化学反応部分に隣接する
部分を加熱し、順次化学反応部分を圧密体の他の部分に
伝播させて圧密体の全体を化学反応させることにより圧
密体の全体を合金化することを特徴とするNb−Ti合
金の製造方法。
The mixed powder obtained by mixing Nb powder and Ti powder is pressurized to form a compacted body, and then a part of this compacted body is ignited to burn the ignited part by a chemical reaction, and the The feature is that the entire compacted body is alloyed by heating the part adjacent to the chemically reacting part by the generated heat and sequentially propagating the chemically reacting part to other parts of the compacted body to cause a chemical reaction in the whole compacted body. A method for producing a Nb-Ti alloy.
JP1068615A 1989-03-20 1989-03-20 Manufacture of nb-ti alloy Pending JPH02247338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1068615A JPH02247338A (en) 1989-03-20 1989-03-20 Manufacture of nb-ti alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1068615A JPH02247338A (en) 1989-03-20 1989-03-20 Manufacture of nb-ti alloy

Publications (1)

Publication Number Publication Date
JPH02247338A true JPH02247338A (en) 1990-10-03

Family

ID=13378842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1068615A Pending JPH02247338A (en) 1989-03-20 1989-03-20 Manufacture of nb-ti alloy

Country Status (1)

Country Link
JP (1) JPH02247338A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995008654A1 (en) * 1993-09-24 1995-03-30 The Ishizuka Research Institute, Ltd. Composite material and process for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995008654A1 (en) * 1993-09-24 1995-03-30 The Ishizuka Research Institute, Ltd. Composite material and process for producing the same

Similar Documents

Publication Publication Date Title
Hey et al. Shape memory TiNi synthesis from elemental powders
Wang et al. Titanium aluminides from cold-extruded elemental powders with Al-contents of 25–75 at% Al
Wolff Synthesis of RuAl by reactive powder processing
US4985400A (en) Process for producing superconductive ceramics by atomization of alloy precurser under reactive atmospheres or post annealing under oxygen
US5015440A (en) Refractory aluminides
EP0250163B1 (en) A method for the preparation of an alloy of nickel and titanium
CA2127121C (en) Master alloys for beta 21s titanium-based alloys and method of making same
US3503738A (en) Metallurgical process for the preparation of aluminum-boron alloys
JPH02247338A (en) Manufacture of nb-ti alloy
DE3738738C1 (en) Powder-metallurgical process for producing targets
Povarova et al. NiAl powder alloys: I. Production of NiAl powders
RU2032496C1 (en) Method of obtaining aluminides of transition metals
US3288571A (en) Preparation of uranium aluminides ual3 and ual4.5
JPH02247339A (en) Manufacture of nb-ti superconducting wire
US3126279A (en) Powder-metallurgical production of
Dubois et al. Experimental evidence of the emptying core mechanism during combustion synthesis of TiC performed under isostatic gas pressure
SU829709A1 (en) Molybdenum-based alloy
JPH0525563A (en) Production of sintered zn-mn alloy
RU2132415C1 (en) Method of producing titanium nickelide and related alloys
Xu et al. Thermal reactivity of Al–Mg–Li alloy powders
RU2061949C1 (en) Process of preparation of samples of placer and cathode gold
RU2082559C1 (en) Method for producing titanium-nickel alloy close to equiatomic composition
JPH04371536A (en) Production of tial intermetallic compound powder
US4236924A (en) Production of single phase alloy parts by reduction of oxides
RU1770434C (en) Method for production of compositional boron-containing alloys for steel alloying