JPH02245624A - Radiation temperature measuring apparatus - Google Patents
Radiation temperature measuring apparatusInfo
- Publication number
- JPH02245624A JPH02245624A JP6638489A JP6638489A JPH02245624A JP H02245624 A JPH02245624 A JP H02245624A JP 6638489 A JP6638489 A JP 6638489A JP 6638489 A JP6638489 A JP 6638489A JP H02245624 A JPH02245624 A JP H02245624A
- Authority
- JP
- Japan
- Prior art keywords
- radiation
- temperature
- distance
- measuring
- measurement object
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Radiation Pyrometers (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野コ
この発明は搬送経路上で測定物体が移動する時の測定物
体の放射温度を計測するのに適した放射温度測定装置に
関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a radiation temperature measuring device suitable for measuring the radiation temperature of a measurement object when the measurement object moves on a conveyance path.
[従来の技術]
第4図は特開昭61−210921号公報に見られる出
願人が開発した従来の放射温度測定装置の一例を示す図
である。図において、1は測定物体、2は測定物体1に
放射エネルギーを放射する放射源、3は放射源2が測定
物体1に放射する放射エネルギーを変化させる寄与率変
化手段としてのシャッタ手段、4は放射源2の開孔2a
を介して測定物体1からの放射エネルギーを検出する放
射検出器、5は放射検出器4の出力信号、放射源2の温
度を検出する温度検出器20の出力信号、シャッタ手段
3の近傍における雰囲気中の温度を検出する温度検出器
30の出力信号が供出されるアナログ回路、マイクロコ
ンピュータ等からなる演算手段である。[Prior Art] FIG. 4 is a diagram showing an example of a conventional radiation temperature measuring device developed by the applicant and found in Japanese Patent Laid-Open No. 61-210921. In the figure, 1 is a measuring object, 2 is a radiation source that emits radiant energy to the measuring object 1, 3 is a shutter means as a contribution rate changing means for changing the radiant energy that the radiation source 2 radiates to the measuring object 1, and 4 is a shutter means. Aperture 2a of radiation source 2
5 is an output signal of the radiation detector 4, an output signal of a temperature detector 20 that detects the temperature of the radiation source 2, and an atmosphere in the vicinity of the shutter means 3. It is an arithmetic means consisting of an analog circuit, a microcomputer, etc., to which an output signal of the temperature detector 30 for detecting the temperature inside is provided.
次に、上記放射温度測定装置の動作について説明する。Next, the operation of the radiation temperature measuring device will be explained.
図示のようにシャッタ手段3をほぼ閉とし、測定物体1
からの放射エネルギーのみが通過できるようにした状態
、半開状態、全開状態の各々の状態における放射検出l
I4の出力信号EO,El。As shown in the figure, the shutter means 3 is almost closed, and the measurement object 1 is
Radiation detection l in the state where only the radiant energy from the
Output signals EO and El of I4.
E2を求め、演算手段5を用いて所定の演算を施こし、
測定物体の放射温度を求める。Find E2, perform a predetermined calculation using the calculation means 5,
Find the radiation temperature of the measuring object.
この時の演算の仕方については特開昭61−21092
1号公報に述べられているので、その詳細は省略する。The method of calculation at this time is disclosed in Japanese Patent Application Laid-Open No. 61-21092.
Since it is described in Publication No. 1, its details will be omitted.
[発明が解決しようとする課題]
しかしながら、上述した従来の放射温度測定装置では、
測定物体lがコンベア等の搬送経路上で移動していると
、その時の状況に応じて測定装置と測定物体との間の距
離が変化し、その結果、正確に測定物体の放射温度の測
定ができないという問題点があった。[Problem to be solved by the invention] However, in the conventional radiation temperature measuring device described above,
When the measurement object l is moving on a conveyance path such as a conveyor, the distance between the measurement device and the measurement object changes depending on the situation at that time, and as a result, it is difficult to accurately measure the radiation temperature of the measurement object. The problem was that it couldn't be done.
この発明は上記問題点を解消するためになされたもので
、測定物体と測定装置との間の距離が変化するような条
件の下においても正確な温度の測定ができる放射温度測
定装置を得ることを目的としている。This invention was made to solve the above problems, and provides a radiation temperature measuring device that can accurately measure temperature even under conditions where the distance between the measuring object and the measuring device changes. It is an object.
[課題を解決するための手段]
このためこの発明に係る放射温度測定装置は、測定物体
に放射エネルギーを放射する放射源と、前記測定物体か
らの放射エネルギーを検出する放射検出器と、前記放射
源が測定物体に放射する放射エネルギーの寄与率を変化
させる寄与率変化手段とを有し、上記寄与率変化手段の
異なった状態における上記放射検出器の出力に基づいて
上記測定物体の温度を測定する放射温度計において、
前記測定物体とある特定された場所との間の距離を計る
距離測定手段を備え、この距離計の計測した距離によっ
て前記測定物体の温度補正を行うことを特徴としている
。[Means for Solving the Problems] Therefore, the radiation temperature measuring device according to the present invention includes a radiation source that emits radiant energy to a measurement object, a radiation detector that detects radiant energy from the measurement object, and a radiation temperature measurement device that emits radiant energy to a measurement object. and a contribution rate changing means for changing the contribution rate of the radiant energy emitted by the source to the measuring object, and measuring the temperature of the measuring object based on the output of the radiation detector in different states of the contribution rate changing means. The radiation thermometer is characterized in that it includes distance measuring means for measuring the distance between the measuring object and a certain specified location, and the temperature of the measuring object is corrected based on the distance measured by the distance meter.
[作 用]
この発明における距離測定手段は測定物体とある特定さ
・れな場所との間の距離を測定する。[Function] The distance measuring means in the present invention measures the distance between the measuring object and a certain specific place.
そして、測定された距離に基づいて温度の近似補正を行
う。Then, approximate correction of temperature is performed based on the measured distance.
[実施例]
以下、この発明による放射温度測定装置の一実施例を図
面に基づいて説明する。[Example] Hereinafter, an example of the radiation temperature measuring device according to the present invention will be described based on the drawings.
第1図(a)はこの発明による放射温度測定装置の一実
施例を示す図、第1図(b)は同装置の一部省略による
側面図である0図において、IAは測定物体とある特定
された場所(例えば距離計の先等)との間の距離を測定
する距離測定手段としての距離計、2Aは放射源2の温
度をコントロールする温度コントローラ、3Aは放射検
出器4の出力信号、放射源2の温度検出器20の出力信
号、シャッタ手段3の温度を検出する温度検出器30の
出力信号、距離計IAの出力信号を各々アナログ信号か
らデジタル信号に変換するA/Dコンバータ、4AはA
/Dコンバータ3Aから出力されるデジタル信号に対し
て所定の演算を施こし、測定物体1の温度を得る演算手
段としてのマイクロコンピュータである。FIG. 1(a) is a diagram showing an embodiment of the radiation temperature measuring device according to the present invention, and FIG. 1(b) is a partially omitted side view of the same device. In FIG. 0, IA is a measurement object. 2A is a temperature controller that controls the temperature of the radiation source 2, and 3A is the output signal of the radiation detector 4. , an A/D converter that converts the output signal of the temperature detector 20 of the radiation source 2, the output signal of the temperature detector 30 that detects the temperature of the shutter means 3, and the output signal of the distance meter IA from analog signals to digital signals, respectively; 4A is A
The microcomputer serves as a calculation means for performing predetermined calculations on the digital signal output from the /D converter 3A and obtaining the temperature of the measuring object 1.
ここで、距離計IAは例えばレーザー光発光源と光受光
源によって構成され、光発光源から発光され、測定物体
!で反射される光を光受光源で受光することによって測
定物体1までの距離を測定する。Here, the distance meter IA is constituted by, for example, a laser light emitting source and a light receiving source. The distance to the measurement object 1 is measured by receiving the light reflected by the light receiving source.
次に、上述した構成による放射温度測定装置の動作につ
いて説明する。Next, the operation of the radiation temperature measuring device having the above-described configuration will be explained.
従来と同様、シャッタ手段3を閉とし、測定物体1から
の放射エネルギーのみが通過できるようにした状態、半
開状態、全開状態の各々の状態における放射検出器4の
出力信号Eo 、E+ 、E2を求め、演算手段5に相
当するマイクロコンピュータ4Aに出力する。As in the conventional case, the output signals Eo, E+, and E2 of the radiation detector 4 are obtained in the following states: when the shutter means 3 is closed and only the radiation energy from the measurement object 1 can pass through, when it is half-open, and when it is fully open. It is calculated and output to the microcomputer 4A corresponding to the calculation means 5.
同時に距離測定手段としての距離計IAは、測定物体1
とある基準となる特定の位置との間の距離を測定し、そ
の結果をマイクロコンピュータ4Aに出力している。At the same time, the distance meter IA as a distance measuring means measures the object 1 to be measured.
The distance to a specific reference position is measured and the result is output to the microcomputer 4A.
ここにおいてマイクロコンピュータ4Aは、放射検出器
4のb力信号、距離計IAから出力される距JIILに
基づいて次のような計算を行う。Here, the microcomputer 4A performs the following calculation based on the b force signal of the radiation detector 4 and the distance JIIL output from the distance meter IA.
測定物体1の温度をT、放射率をε、放射源2の温度を
Tr、放射率をεr、温度温度当相当射エネルギーをE
(T)、シャッタ手段3の温度Taとすれば、シャッタ
手段3が全閉、半開、全開状態の放射検出器4の出力信
号E。、EIE2は各々次のようになる。The temperature of the measuring object 1 is T, the emissivity is ε, the temperature of the radiation source 2 is Tr, the emissivity is εr, and the radiation energy equivalent to temperature is E
(T) and the temperature Ta of the shutter means 3 is the output signal E of the radiation detector 4 when the shutter means 3 is fully closed, half open, or fully open. , EIE2 are each as follows.
E o −s E(T) + (1−ε)E(Ta)
−(1)Et=gE(T)+(1−g)gr
E(Tr)F+ −<2)” (1−g )E(T
a) (1−Fl)Ez=gE(T)+(1−g)gr
E(Tr)F2−(3)+ (f −6)ET(Ta)
(1−F2)ここでF、、F2は、放射源2からの放
射エネルギーが測定物体lを反射して放射検出器4に入
射する寄与率でF l< F 2である。E o -s E(T) + (1-ε)E(Ta)
-(1)Et=gE(T)+(1-g)gr
E(Tr)F+ −<2)” (1-g)E(T
a) (1-Fl)Ez=gE(T)+(1-g)gr
E(Tr)F2-(3)+ (f-6)ET(Ta)
(1-F2) Here, F,, F2 are the contribution factors of the radiation energy from the radiation source 2 reflecting off the measurement object l and entering the radiation detector 4, and F l < F 2 .
(2)式より(1)式を減算し、(3)式より(1)式
を減算し、その比Rをとると次式が得られる。By subtracting equation (1) from equation (2), subtracting equation (1) from equation (3), and taking the ratio R, the following equation is obtained.
また、(2)式、(3)式を各々差し引いてεを求める
と次式となる。ここで寄与率の差をD=F2−F、とし
たゆ
また、(1)式より次式が求まる。Further, when ε is obtained by subtracting equations (2) and (3), the following equation is obtained. Here, assuming that the difference in contribution rate is D=F2-F, the following equation can be obtained from equation (1).
E (ア、、= E o−1−g) E (’
ra) 、、、 (6)ε
ここで、RとDとは所定の関数関係
o=s0+S、R−(7)
に近似でき、RからDが求まり、上式を利用して放射率
ε、温度Tが求まる。E (a,, = E o-1-g) E ('
ra) ,,, (6)ε Here, R and D can be approximated by the predetermined functional relationship o=s0+S,R-(7), D is found from R, and the emissivity ε, Temperature T is found.
しかしながら従来の方法では、(7)式は一定の距離に
おける関数であり、測定対象迄の距離が変動した場合は
誤差を生じていた。However, in the conventional method, equation (7) is a function at a constant distance, and an error occurs when the distance to the measurement target changes.
以上の問題を解決する為、測定距離を変化させた場合の
S、、S、を実験的に求めると第2図の関係が得られた
。In order to solve the above problem, we experimentally determined S, , S, when the measurement distance was changed, and the relationship shown in Figure 2 was obtained.
係数S、、S、は、第2図で分るように測定物体1と放
射検出器4との測定距111Lの関数で、たとえば次式
に近似できる。As can be seen in FIG. 2, the coefficients S, , S, are functions of the measurement distance 111L between the measurement object 1 and the radiation detector 4, and can be approximated, for example, by the following equation.
So (L)=aOL2+bot、+c0−(e)S
、(L)=a、L” +b、L+C,−(9)二コテ、
a O+ A I + bO+ b+は定数である。So (L)=aOL2+bot,+c0-(e)S
, (L)=a,L"+b,L+C,-(9) Two pieces,
a O+ A I + bO+ b+ is a constant.
従ワて、距離りから、(8)。(9)式を利用して、S
O(L)、st (L)を求めて(7)式よりDを求
めることにより、距離変動を受けずに放射率ε、湿温度
を求めることができる。From the following distance, (8). Using equation (9), S
By determining O(L) and st (L) and determining D from equation (7), the emissivity ε and the humidity temperature can be determined without being subject to distance fluctuations.
第3図に示すように距離変動しに対する寄与率の差りは
、従来例に比べ、本発明では、誤差が非常に少くなって
いる。As shown in FIG. 3, the error in the difference in contribution rate to distance variation is much smaller in the present invention than in the conventional example.
[発明の効果]
以上説明したように、この発明の放射温度測定装置によ
れば、測定物体とある特定された場所との間の距離を計
る距離測定手段を設け、この距離計の計測した距離によ
って前記測定物体の形状係数の差りに基く温度補正を行
うようにしたので、製造ライン等のように距離変動のあ
る測定物体でも誤差を少なくして温度の測定が行なえる
効果がある。[Effects of the Invention] As explained above, according to the radiation temperature measuring device of the present invention, a distance measuring means for measuring the distance between a measurement object and a certain specified place is provided, and the distance measured by the distance meter is provided. Since the temperature correction is performed based on the difference in the shape coefficient of the measurement object, the temperature can be measured with less error even when the measurement object has distance fluctuations, such as on a production line.
第1図(a)はこの発明による放射温度測定装置の一実
施例を示す図、第1図(b)は同装置の一部省略による
側面図、第2図は実験的に定められる係数S2.S+と
測定物体までの距離との間の関係を示す図、第3図は補
正を行った測定物体の放射温度の測定のバラツキを示す
図、第4図は従来の放射温度測定装置の一例を示す図で
ある。
1−測定物体、2・−放射源、3・−シャッタ手段(寄
与率変化手段) 、 4−・放射検出器、5・−・演算
手段、I A−・・距離計(距離測定手段)、2A−温
度コントローラ、3 A−A / Dコンバータ、4A
・・・マイクロコンピュータ。FIG. 1(a) is a diagram showing an embodiment of the radiation temperature measuring device according to the present invention, FIG. 1(b) is a partially omitted side view of the same device, and FIG. 2 is an experimentally determined coefficient S2. .. A diagram showing the relationship between S+ and the distance to the measurement object, Figure 3 is a diagram showing the variation in the measurement of the radiation temperature of the measurement object after correction, and Figure 4 is an example of a conventional radiation temperature measuring device. FIG. 1-Measurement object, 2--Radiation source, 3--Shutter means (contribution rate changing means), 4--Radiation detector, 5--Calculating means, IA--Distance meter (distance measuring means), 2A-temperature controller, 3A-A/D converter, 4A
...Microcomputer.
Claims (1)
定物体からの放射エネルギーを検出する放射検出器と、
前記放射源が測定物体に放射する放射エネルギーの寄与
率を変化させる寄与率変化手段とを有し、上記寄与率変
化手段の異なった状態における上記放射検出器の出力に
基づいて上記測定物体の温度を測定する放射温度計にお
いて、 前記測定物体とある特定された場所との間の距離を計る
距離測定手段を備え、この距離計の計測した距離によっ
て前記測定物体の温度補正を行うことを特徴とする放射
温度測定装置。[Claims] A radiation source that emits radiant energy to a measurement object; a radiation detector that detects radiant energy from the measurement object;
and a contribution rate changing means for changing the contribution rate of the radiant energy emitted by the radiation source to the measurement object, the temperature of the measurement object being determined based on the output of the radiation detector in different states of the contribution rate changing means. A radiation thermometer for measuring , comprising a distance measuring means for measuring the distance between the object to be measured and a specified location, and correcting the temperature of the object to be measured based on the distance measured by the distance meter. Radiation temperature measurement device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6638489A JPH02245624A (en) | 1989-03-20 | 1989-03-20 | Radiation temperature measuring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6638489A JPH02245624A (en) | 1989-03-20 | 1989-03-20 | Radiation temperature measuring apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02245624A true JPH02245624A (en) | 1990-10-01 |
Family
ID=13314276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6638489A Pending JPH02245624A (en) | 1989-03-20 | 1989-03-20 | Radiation temperature measuring apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02245624A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6742927B2 (en) * | 1998-01-30 | 2004-06-01 | La Tecnica S.R.L. | Infrared thermometer |
US6786634B2 (en) * | 2001-10-10 | 2004-09-07 | Noritake Co., Limited | Temperature measuring method and apparatus |
US7164467B2 (en) * | 2004-02-10 | 2007-01-16 | Fluke Corporation | Method and apparatus for electronically generating an outline indicating the size of an energy zone imaged onto the IR detector of a radiometer |
JP2013200137A (en) * | 2012-03-23 | 2013-10-03 | Omron Corp | Infrared temperature measurement device, infrared temperature measurement method, and infrared temperature measurement device control program |
JP2013246002A (en) * | 2012-05-24 | 2013-12-09 | Kobe Steel Ltd | Temperature measuring device for plate to be measured and method for correcting measured temperature |
KR20140126767A (en) | 2012-04-13 | 2014-10-31 | 제이에프이 스틸 가부시키가이샤 | Temperature measurement method and temperature measurement device |
JP2015232418A (en) * | 2014-06-10 | 2015-12-24 | 株式会社Ihi | Boiler furnace interior measuring device |
US9696362B2 (en) | 2008-03-07 | 2017-07-04 | Milwaukee Electric Tool Corporation | Test and measurement device with a pistol-grip handle |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61210921A (en) * | 1985-03-15 | 1986-09-19 | Chino Works Ltd | Instrument for measuring emissivity and temperature of subject |
JPS63259427A (en) * | 1987-04-15 | 1988-10-26 | Kawasaki Steel Corp | Emissivity and temperature measuring apparatus |
-
1989
- 1989-03-20 JP JP6638489A patent/JPH02245624A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61210921A (en) * | 1985-03-15 | 1986-09-19 | Chino Works Ltd | Instrument for measuring emissivity and temperature of subject |
JPS63259427A (en) * | 1987-04-15 | 1988-10-26 | Kawasaki Steel Corp | Emissivity and temperature measuring apparatus |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6742927B2 (en) * | 1998-01-30 | 2004-06-01 | La Tecnica S.R.L. | Infrared thermometer |
US6786634B2 (en) * | 2001-10-10 | 2004-09-07 | Noritake Co., Limited | Temperature measuring method and apparatus |
US7164467B2 (en) * | 2004-02-10 | 2007-01-16 | Fluke Corporation | Method and apparatus for electronically generating an outline indicating the size of an energy zone imaged onto the IR detector of a radiometer |
US9696362B2 (en) | 2008-03-07 | 2017-07-04 | Milwaukee Electric Tool Corporation | Test and measurement device with a pistol-grip handle |
JP2013200137A (en) * | 2012-03-23 | 2013-10-03 | Omron Corp | Infrared temperature measurement device, infrared temperature measurement method, and infrared temperature measurement device control program |
KR20140126767A (en) | 2012-04-13 | 2014-10-31 | 제이에프이 스틸 가부시키가이샤 | Temperature measurement method and temperature measurement device |
JP2013246002A (en) * | 2012-05-24 | 2013-12-09 | Kobe Steel Ltd | Temperature measuring device for plate to be measured and method for correcting measured temperature |
JP2015232418A (en) * | 2014-06-10 | 2015-12-24 | 株式会社Ihi | Boiler furnace interior measuring device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR970707424A (en) | Calibrable Optical Disatance Sensing System and Method | |
JPH06237013A (en) | Emission spectrum control system | |
EP0801926A4 (en) | RADIATION MEDICAL THERMOMETER | |
US20100292951A1 (en) | Method and system for measuring thermal radiation to determine temperature and emissivity of an object | |
ATE115721T1 (en) | METHOD AND ARRANGEMENT FOR CALIBRATION OF AN OPTICAL PYROMETER AND STANDARD PLATES THEREFOR. | |
JPH02245624A (en) | Radiation temperature measuring apparatus | |
JP2604754B2 (en) | Spectrophotometer | |
EP3179233B1 (en) | Gas density detection device and gas density calculation method for gas density detection device | |
US3630085A (en) | Apparatus for measuring temperatures | |
JPS61210921A (en) | Instrument for measuring emissivity and temperature of subject | |
JP2000081328A (en) | Measurement method for running sheet-shaped object | |
JPS58113839A (en) | Detector for dew point | |
JP2002005631A (en) | Plate body characteristic measuring method and plate body characteristic measuring device | |
JPH08285767A (en) | Moisture meter | |
JP2018151354A (en) | Radiant temperature measurement apparatus and radiant temperature measurement method | |
JPH0499925A (en) | Infrared radiation measuring apparatus | |
JP2000205957A (en) | Color tone measuring method and color tone measuring device | |
JP2010175442A (en) | Thermopile type infrared detector | |
JP4882067B2 (en) | Absolute reflectance measuring method and measuring apparatus | |
JPH01235834A (en) | Signal processing method in laser gas sensor | |
JPH05172556A (en) | Method and apparatus for measuring thickness of dielectric material | |
JPH06307816A (en) | Non-contact plate width measuring device | |
JPH06147995A (en) | Infrared detecting device | |
GB2387650A (en) | Displacement sensors | |
JP3656877B2 (en) | Radiation thermometer |