[go: up one dir, main page]

JPH02241644A - Core for manufacturing hollow casting - Google Patents

Core for manufacturing hollow casting

Info

Publication number
JPH02241644A
JPH02241644A JP6256589A JP6256589A JPH02241644A JP H02241644 A JPH02241644 A JP H02241644A JP 6256589 A JP6256589 A JP 6256589A JP 6256589 A JP6256589 A JP 6256589A JP H02241644 A JPH02241644 A JP H02241644A
Authority
JP
Japan
Prior art keywords
core
resin
powder
temp
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6256589A
Other languages
Japanese (ja)
Inventor
Kaneo Hamashima
浜島 兼男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP6256589A priority Critical patent/JPH02241644A/en
Publication of JPH02241644A publication Critical patent/JPH02241644A/en
Pending legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To prevent gas defect caused by decomposed gas of resin by mixing metal powder, which is melted at higher temp. than softening temp. and lower temp. than the decomposed-gasifying temp. of the resin and generates endothermic reaction, with the thermosetting resin powder at the specific vol. ratio and compacting. CONSTITUTION:To the thermosetting resin powder, the metal powder of metal or alloy, a part of the whole of which is melted at higher temp. than the softening temp. of this resin and lower temp. than the decomposed-gasifying temp. of this resin to generate the endothermic reaction, is mixed in the range of 5-60vol.% and compacted. This core 1 is inserted into one pair of porous fibrous forming bodies 2 and set as pressing in the die 3, and by pouring molten metal 5, the high pressure casting is executed while quickly applying the pressure with a pressurizing plunger 4. A hole 8 penetrated to the internal chilling part of the core 1 from outside of a casting product (hollow casting) 7 manufactured in such a way, is opened and the heat treatment is executed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、内部に空洞を有する鋳物製品を加圧鋳造法に
より製造する際に用いる中子に関し、特に耐熱樹脂製の
中子に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a core used when manufacturing a cast product having an internal cavity by a pressure casting method, and particularly to a core made of heat-resistant resin.

〔従来の技術〕[Conventional technology]

従来、内部に空洞を有する製品、例えば、内部にオイル
冷却用クーリングチャネルが設けられるピストン等を加
圧鋳造法により製造する際の中子としては、塩中子、あ
るいは、Na  (ナトリウム)等の低融点金属をSO
Sパイプ(ステンレス製のパイプ)等に封入した中子、
あるいは、耐熱樹脂製の中子が用いられていた。
Conventionally, when manufacturing products with internal cavities, such as pistons with internal cooling channels for cooling oil, by pressure casting, the cores used were salt cores or Na (sodium) cores. SO low melting point metal
Core enclosed in S pipe (stainless steel pipe), etc.
Alternatively, a core made of heat-resistant resin was used.

前記中子のうち、塩中子を用いる加圧鋳造法としては、
例えば、特開昭60−119348号公報に開示された
内燃機関用ピストンの製造方法があり、耐熱樹脂製の中
子を用いる加圧鋳造法を開示した資料としては、例えば
、特開昭52−16865号公報に開示された中空鋳物
の製造方法がある。
Among the cores mentioned above, the pressure casting method using a salt core is as follows:
For example, there is a method for manufacturing a piston for an internal combustion engine disclosed in JP-A-60-119348, and documents disclosing a pressure casting method using a core made of heat-resistant resin include, for example, JP-A-52-1989. There is a method for manufacturing hollow castings disclosed in Japanese Patent No. 16865.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ここで、前記従来の中子のうち、塩中子は靭性が低いた
め、鋳型内へのセットする時の機械的応力、あるいは、
鋳造時に発生する熱応力により、亀裂が発生し易く、そ
の結果、溶湯の差込みが起こり、製品内部に所望する空
洞を形成で゛きない場合がある。
Here, among the conventional cores, the salt core has low toughness, so it is difficult to avoid mechanical stress when setting it in the mold, or
Due to the thermal stress generated during casting, cracks are likely to occur, and as a result, molten metal may be inserted into the product, making it impossible to form the desired cavity inside the product.

これに対し、NaをSUSバイブに封入した中子、ある
いは、耐熱樹脂製の中子は、靭性に冨んでおり、取扱い
性に優れるため、前記塩中子のような溶湯の差込みによ
る不良は発生しない。
On the other hand, cores made of SUS vibrator filled with Na or cores made of heat-resistant resin have high toughness and are easy to handle, so defects caused by insertion of molten metal like the salt cores mentioned above do not occur. do not.

しかしながら、前者の中子では、Naを包んでいるSU
Sパイプが鋳物中に鋳包まれた状態で残るため、冷却空
洞を必要とする場合には、SUSパイプの熱伝導性の低
さにより冷却効率が悪いといった問題がある。
However, in the former core, SU surrounding Na
Since the S-pipe remains encased in the casting, if a cooling cavity is required, there is a problem that the cooling efficiency is poor due to the low thermal conductivity of the SUS pipe.

そして、後者の耐熱樹脂製の中子では、前記塩中子ある
いはNaをSUSバイブに封入した中子のような問題は
生じないが、また、別の問題があった。すなわち、鋳造
時に中子の表面部にて、樹脂材の熱分解ガスが発生する
ため、鋳物中にガス欠陥が発生するという不具合がある
Although the latter core made of heat-resistant resin does not have the same problems as the salt core or the core in which Na is sealed in a SUS vibe, there is another problem. That is, since thermal decomposition gas of the resin material is generated on the surface of the core during casting, there is a problem that gas defects occur in the casting.

したがって、本発明は、前記耐熱樹脂製の中子の欠点を
防止するためのものであり、注湯時における中子の温度
上昇を抑制することにより、樹脂材の熱分解ガスの発生
を抑制することを目的とする。
Therefore, the present invention is intended to prevent the drawbacks of the heat-resistant resin core, and suppresses the generation of thermal decomposition gas from the resin material by suppressing the temperature rise of the core during pouring. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明は、熱硬化性の樹脂を主成分とする中空
鋳物鋳造用の中子であって、前記熱硬化性の樹脂粉末に
、この樹脂の軟化温度よりも高く、且つ、この樹脂の分
解気化温度よりも低い温度にて、一部または全部が溶融
して吸熱反応を生じる金属あるいは合金の金属粉末を、
体積率にして5〜60%の範囲で混合して、圧縮成形に
より形成したことを特徴とする。
Therefore, the present invention provides a core for hollow casting mainly composed of a thermosetting resin, in which the thermosetting resin powder is heated at a temperature higher than the softening temperature of the resin and A metal powder of a metal or alloy that partially or completely melts and causes an endothermic reaction at a temperature lower than the decomposition vaporization temperature.
It is characterized by being mixed in a volume ratio of 5 to 60% and formed by compression molding.

〔作用〕[Effect]

上記本発明によれば、鋳造時に熱硬化性の樹脂が分解す
る前に、中子内の金属粉末が融解し、その際に周囲より
奪う融解熱により中子の昇温が妨げられて、熱硬化性の
樹脂の分解温度以下に保たれる。その結果、鋳造時にお
ける熱硬化性の樹脂のガスの発生は生じなくなる。
According to the present invention, the metal powder inside the core melts before the thermosetting resin decomposes during casting, and at that time, the heat of fusion taken from the surroundings prevents the temperature of the core from increasing. Maintained below the decomposition temperature of the curable resin. As a result, no gas is generated from the thermosetting resin during casting.

〔実施例〕〔Example〕

次に、本発明を次の実施例および比較例により説明する
Next, the present invention will be explained using the following examples and comparative examples.

夫差号L」− まず、本発明の実施例に係わる中子のサンプルについて
第1図乃至第3図に基づいて説明する。
First, a core sample according to an embodiment of the present invention will be explained based on FIGS. 1 to 3.

第1図は中子を、溶湯金属中に鋳込む繊維成形体で包ん
だ状態を示す中子セットの模式断面図である。
FIG. 1 is a schematic sectional view of a core set showing a state in which the core is wrapped in a fiber molded body to be cast into molten metal.

サンプルの中子1は、平均粒径0.5mmのエポキシ樹
脂粉末(ρ−1,2)と、平均粒径0.1m1lのSn
粉末Cp=1.3)とを、重量比で1:2.61、体積
比では7:3の割合で混合して総量29.7gとし、十
分に掻き混ぜてからこれを150℃の金型内で圧縮成形
し、直径50mm、長さ5mmの円板形状に成形した。
The core 1 of the sample is made of epoxy resin powder (ρ-1,2) with an average particle size of 0.5 mm and Sn with an average particle size of 0.1 ml.
Powder Cp=1.3) was mixed at a weight ratio of 1:2.61 and a volume ratio of 7:3 to give a total amount of 29.7g, and after stirring thoroughly, this was placed in a mold at 150°C. It was compression-molded in a vacuum chamber to form a disk shape with a diameter of 50 mm and a length of 5 mm.

この円板状の中子1は、エポキシ樹脂中にSn粉末が体
積率で30%だけ分散した状態となっている。
This disk-shaped core 1 has Sn powder dispersed in an epoxy resin at a volume ratio of 30%.

この中子1を、第1図に示すように、外径80am、厚
さ8mmで、中央部に直径50nm、深さ2゜5111
1の凹部を有した一対の多孔質繊維成形体2で挟み込ん
だ。この多孔質繊維成形体2は、AI。
As shown in FIG.
It was sandwiched between a pair of porous fiber molded bodies 2 having one recess. This porous fiber molded body 2 is made of AI.

0s−52%5ift(イソライト工業株式会社製の「
アルシロン」)であり、体積率7%のものを使用した。
0s-52%5ift ("
Arsilon") with a volume percentage of 7% was used.

この多孔質繊維成形体2は、鋳物製品中に鋳包んで金属
を強化して繊維強化金属とするためのものである。
This porous fiber molded body 2 is intended to be cast into a cast product to strengthen the metal and make it into a fiber-reinforced metal.

次に、本中子1を挾み込んだ多孔質繊維成形体2を、高
圧鋳造の模式断面図である第2図に示すように、室温の
まま金型3内へ圧入セットし、溶湯温度740℃のJI
S  AC8A(Aj2−12%5i−1%Cu−1%
Mg)の溶湯5を注湯して、加圧プランジャ4で速やか
に1000Kg/−の圧力を加えながら高圧鋳造を行っ
た。そして、鋳造後、ノックアウトビン6で鋳物製品を
金型3から押し出して取り出す。
Next, as shown in FIG. 2, which is a schematic cross-sectional view of high-pressure casting, the porous fiber molded body 2 with the core 1 sandwiched therein is press-fitted into a mold 3 at room temperature, and the temperature of the molten metal is JI at 740℃
S AC8A (Aj2-12%5i-1%Cu-1%
A molten metal 5 of Mg) was poured and high-pressure casting was performed while immediately applying a pressure of 1000 kg/- with a pressurizing plunger 4. After casting, the cast product is pushed out from the mold 3 using a knockout bin 6 and taken out.

第3図の鋳物製品の断面図に示すように、このようにし
て製造した鋳物製品7の外側から、中子1の鋳包み部へ
貫通する直径10mmの穴8を開けた後、熱処理を行っ
た。熱処理は、通常のAC8AC10安定化処理いわゆ
るTn処理であり、溶体化処理を490℃で3時間で行
い、その後水焼入れ、さらに、時効を220℃で6時間
で行い、その後空冷という工程を経て処理する。
As shown in the cross-sectional view of the cast product in FIG. 3, a hole 8 with a diameter of 10 mm is made from the outside of the cast product 7 manufactured in this way to the ingot part of the core 1, and then heat treatment is performed. Ta. The heat treatment is the usual AC8AC10 stabilization treatment, so-called Tn treatment, which includes solution treatment at 490°C for 3 hours, followed by water quenching, aging at 220°C for 6 hours, and then air cooling. do.

そして、熱処理後の鋳物製品7を調査したところ、中子
1の部分は空洞となっており、鋳物製品7中にはエポキ
シ樹脂の分解ガス発生による巣等の欠陥は見られなかっ
た。
When the cast product 7 after the heat treatment was examined, it was found that the core 1 was hollow, and no defects such as cavities due to the generation of decomposed gas from the epoxy resin were found in the cast product 7.

ところで、前記空洞形成は、溶体化処理時にエポキシ樹
脂を分解気化除去して行う。その際、Sn粉末は酸化し
てSnO□となり、粉末固体として空洞中に残留し、水
焼入れ時に流水により洗い流す。
Incidentally, the cavity formation is performed by decomposing and vaporizing the epoxy resin during solution treatment. At this time, the Sn powder is oxidized to become SnO□, which remains in the cavity as a solid powder, and is washed away with running water during water quenching.

本実施例1においては、中子1を形成するエポキシ樹脂
粉末にSn粉末を混入しているが、このSn粉末の融点
は232℃であり、中子1の主材質であるエポキシ樹脂
の分解点250℃よりも低いため、中子1を加熱昇温さ
せると、エポキシ樹脂が分解する以前の段階で、中子1
内のSn粉末が融解する。その際に、Sn粉末は周囲よ
り多量の融解熱を奪うため、中子1の昇温が妨げられて
、この中子1の主材質であるエポキシ樹脂が分解するの
を防ぐ働きをする。
In Example 1, Sn powder is mixed into the epoxy resin powder that forms the core 1, and the melting point of this Sn powder is 232°C, which is the decomposition point of the epoxy resin that is the main material of the core 1. Since the temperature is lower than 250°C, when the temperature of core 1 is increased, the temperature of core 1 is increased before the epoxy resin decomposes.
The Sn powder inside is melted. At this time, the Sn powder absorbs a large amount of heat of fusion from the surroundings, which prevents the temperature of the core 1 from rising, and serves to prevent the epoxy resin, which is the main material of the core 1, from decomposing.

したがって、従来のエポキシ樹脂のみの中子を使用した
場合に、注湯時に表面部が分解してガスを発生していた
のに対し、本実施例1の中子1の場合は、注湯時におい
てエポキシ樹脂がその分解温度以下の温度に保たれるた
め、分解ガスの発生がなく、健全な鋳物製品を製造でき
る。
Therefore, when a conventional core made of epoxy resin was used, the surface part decomposed and gas was generated during pouring, whereas in the case of core 1 of this example 1, when pouring Since the epoxy resin is kept at a temperature below its decomposition temperature, no decomposition gas is generated and healthy cast products can be manufactured.

このような効果は、Sn粉末に限らず、種々の金属粉末
を使用しても得ることができる。また、中子の主成分で
ある樹脂もエポキシ樹脂に限定されるものではなく、耐
熱性の高い熱硬化性の樹脂を用い、この樹脂の分解温度
よりも融点の低い金属粉末との組合せであれば良い。
Such an effect can be obtained not only by using Sn powder but also by using various metal powders. Furthermore, the resin that is the main component of the core is not limited to epoxy resin, but can also be made by using a highly heat-resistant thermosetting resin and combining it with a metal powder whose melting point is lower than the decomposition temperature of this resin. Good.

そこで、中子の主成分であるエポキシ樹脂粉末に混合す
る金属粉末(試料)を、前記Sn粉末(以下の試料6に
当たる)に代えて、 試料1: 粉末直径が0.5mm、融点419℃のZn粉末試料2
: 粉末直径が0.5+nm、融点410℃(固相線温度3
15℃)のPb−10wt%Zn粉末、試料3: 粉末直径がQ、1mm、融点370℃(固相線温度19
5℃)のZ n−30wt%Sn粉末、試料4: 粉末直径が0.3mm、融点340℃のMg−5011
1t%Zn粉末、 試料5: 粉末直径が0.1mm、融点327℃のPb粉末試料6
: 粉末直径がQ、1mm、融点232℃のSn粉末(前述
したSn粉末)、 試料7:粉末直径がQ、1mrn、融点228℃のSn
−1wt%Al粉末 の7種類を用い、 さらに、試料7の粉末を用いた場合、主材質であるポリ
イミド樹脂の粉末に対する体積%を、30%だけでなく
、 (A)  3%、(B)5%、(C)10%。
Therefore, the metal powder (sample) to be mixed with the epoxy resin powder, which is the main component of the core, was replaced with the Sn powder (corresponding to sample 6 below): Sample 1: Powder diameter is 0.5 mm, melting point is 419 ° C. Zn powder sample 2
: Powder diameter is 0.5+nm, melting point is 410℃ (solidus temperature 3
Pb-10 wt% Zn powder at 15°C), sample 3: powder diameter Q, 1 mm, melting point 370°C (solidus temperature 19
Sample 4: Mg-5011 with a powder diameter of 0.3 mm and a melting point of 340°C
1t% Zn powder, sample 5: Pb powder sample 6 with a powder diameter of 0.1 mm and a melting point of 327°C
: Sn powder with a powder diameter of Q, 1 mm, and a melting point of 232°C (the Sn powder described above), Sample 7: Sn powder with a powder diameter of Q, 1 mrn, and a melting point of 228°C
- When using seven types of 1 wt% Al powder and further using the powder of sample 7, the volume % of the polyimide resin powder, which is the main material, was not only 30% but also (A) 3%, (B) 5%, (C) 10%.

(D)30%、(E)60%、(F)70%と変えて、
圧縮成形温度を180℃とした以外は、前記3n粉末の
場合と同じ条件で、中子1を成形した。
(D) 30%, (E) 60%, (F) 70%,
Core 1 was molded under the same conditions as for the 3n powder, except that the compression molding temperature was 180°C.

そして、前記Sn粉末を用いた場合と同じ鋳物材料、鋳
造条件で、鋳物製品7を製造した。
Then, a cast product 7 was manufactured using the same casting material and casting conditions as when using the Sn powder.

その結果、表1に示すように、エポキシ樹脂に混合する
金属粉末としては、前記Sn粉末以外では、試料3の金
属粉末にて、また、試料7の金属粉末の場合エポキシ樹
脂に対する体積比が(C)〜(E)で表わされる混合比
率で混合した場合に、好結果が得られた。
As a result, as shown in Table 1, the metal powder to be mixed with the epoxy resin other than the Sn powder was the metal powder of sample 3, and the metal powder of sample 7 had a volume ratio of ( Good results were obtained when mixing at the mixing ratios shown in C) to (E).

正殿■−1 次に、比較例として、エポキシ樹脂のみを使った中子1
を用い、前記実施例1の中子1を使った鋳造の場合と同
じ方法、同じ条件にして鋳物製品7を製造し、第3図の
ように、貫通穴8を設け、T7処理を施した。
Seiden ■-1 Next, as a comparative example, core 1 using only epoxy resin
A cast product 7 was manufactured using the same method and under the same conditions as in the case of casting using the core 1 of Example 1, and as shown in FIG. 3, a through hole 8 was provided and a T7 treatment was performed. .

この鋳物製品7を調査したところ、第4図に示すように
、内部に空洞部9を形成できたが、鋳物製品7の一部に
エポキシ樹脂分解ガスによる巣10の発生が認められた
When this cast product 7 was investigated, as shown in FIG. 4, although a cavity 9 was formed inside, it was found that cavities 10 were formed in a part of the cast product 7 due to epoxy resin decomposition gas.

itu さらに、実施例2として、実施例1において、エポキシ
樹脂の代わりに、分解気化温度が350℃であるポリイ
ミド樹脂を中子1の主材質として使い、前記実施例1と
同様に金属粉末を種々変えて中子を成形した。
Further, as Example 2, in Example 1, instead of the epoxy resin, polyimide resin having a decomposition vaporization temperature of 350° C. was used as the main material of the core 1, and as in Example 1, various metal powders were used. I changed it and molded the core.

本実施例2におけるポリイミド樹脂は、粉末直径が1.
0mmのものを使い、このポリイミド樹脂の粉末に混ぜ
る金属粉末(試料)としては、前記実施例1と同じく、
試料1〜試料7の7種類の金属粉末を用い、 さらに、試料7の粉末を用いた場合、主材質であるポリ
イミド樹脂の粉末に対する体積%も、前記実施例1と同
じように、30%だけでなく、(A)〜(F)で表され
る7段階に変えた場合の試験例を、圧縮成形温度を18
0℃とした以外は、前記実施例1と同じ条件で、中子1
を成形した。
The polyimide resin in Example 2 has a powder diameter of 1.
The metal powder (sample) to be mixed with this polyimide resin powder was the same as in Example 1.
When using seven types of metal powders from Samples 1 to 7, and further using the powder from Sample 7, the volume percentage of the polyimide resin, which is the main material, relative to the powder was only 30%, as in Example 1. In this test example, the compression molding temperature was changed to 7 stages (A) to (F).
Core 1 was prepared under the same conditions as in Example 1 except that the temperature was 0°C.
was molded.

そして、実施例1の中子lを使った鋳造の場合と同じ鋳
物材料、鋳造条件で、鋳物製品7を製造した。
Then, a cast product 7 was manufactured using the same casting material and casting conditions as in the case of casting using the core 1 of Example 1.

その結果、表1に示すように、ポリイミド樹脂に体積比
で30%の試料2〜6の金属粉末を混ぜた中子1の場合
、鋳物製品7に良好な空洞を形成でき、且つ巣等のガス
欠陥も生じなかった。
As a result, as shown in Table 1, in the case of core 1 made of polyimide resin mixed with 30% by volume of the metal powder of Samples 2 to 6, good cavities could be formed in the cast product 7, and no cavities etc. No gas defects occurred.

また、試料7の金属粉末を使った場合、ポリイミド樹脂
に対する体積比が前記(B)〜(E)で表わされる混合
比率の中子1においては、同様に良好な鋳物製品7が得
られた。
Furthermore, when the metal powder of Sample 7 was used, similarly good casting products 7 were obtained in the cores 1 whose volume ratios to the polyimide resin were expressed by the above (B) to (E).

此敦眉−1 次に、比較例2として、ポリイミド樹脂のみを使って、
前記実施例2と同じ条件で中子】を成形し、さらに、実
施例2の中子1を使った鋳造の場合と同じ鋳物材料およ
び鋳造条件で鋳物製品7を製造した結果、やはり、製品
内部に、第4図に示すようにポリイミド樹脂分解ガスに
よる巣10の発生が認められた(表1に記載)。
This Atsumei-1 Next, as Comparative Example 2, using only polyimide resin,
As a result of molding a core] under the same conditions as in Example 2, and manufacturing a cast product 7 using the same casting material and casting conditions as in the case of casting using core 1 of Example 2, the inside of the product also As shown in FIG. 4, the occurrence of cavities 10 due to polyimide resin decomposition gas was observed (described in Table 1).

皇隻拠−エ さらに、実施例3として、前記実施例2において、ポリ
イミド樹脂の代わりに分解気化温度320℃のフェノー
ル樹脂を用い、圧縮成形温度を150℃とした以外は、
前記実施例2と同じ条件で、中子1を成形した。
Furthermore, as Example 3, in Example 2, except that a phenol resin with a decomposition vaporization temperature of 320°C was used instead of the polyimide resin, and the compression molding temperature was 150°C.
Core 1 was molded under the same conditions as in Example 2 above.

但し、試料7の金属粉末を使った場合、他の試料1〜6
を使った場合と同じく、フェノール樹脂に対する体積比
を30%のみの混合比率で中子1を成形した。
However, when using the metal powder of sample 7, other samples 1 to 6
As in the case of using the phenol resin, the core 1 was molded with a volume ratio of only 30% to the phenol resin.

そして、前記実施例2の中子1を使った鋳造の場合と同
じ鋳物材料および鋳造条件で、第3図に示すように形状
の鋳物製品7を製造した。
Then, using the same casting material and casting conditions as in the case of casting using the core 1 of Example 2, a cast product 7 having a shape as shown in FIG. 3 was manufactured.

その結果、表1に示すように、フェノール樹脂に混合す
る金属粉末としては、試料2,3.6゜7の金属粉末に
て好結果が得られた。
As a result, as shown in Table 1, good results were obtained with sample 2, a metal powder of 3.6°7, as the metal powder to be mixed with the phenol resin.

正殿A−主 次に、比較例3として、フェノール樹脂のみを使って、
前記実施例3と同じ条件で中子を成形し、さらに、実施
例3の中子1を使った鋳造の場合と同じ鋳物材料および
鋳造条件で鋳物製品7を製造した結果、やはり、製品内
部にフェノール樹脂分解ガスによる巣の発生が認められ
たく表1に記sり。
Seiden A-Main Next, as Comparative Example 3, using only phenolic resin,
As a result of molding a core under the same conditions as in Example 3, and manufacturing a cast product 7 using the same casting material and casting conditions as in the case of casting using core 1 of Example 3, the inside of the product also The occurrence of cavities due to phenol resin decomposition gas was observed in Table 1.

裏止五−土 さらに、実施例4として、前記実施例3において、フェ
ノール樹脂の代わりに、分解気化温度200℃と前記樹
脂に比べ一番分解気化温度の低い不飽和ポリエステル樹
脂を用い、圧縮成形温度を80℃とした以外は、前記実
施例3と同じ条件で、中子1を成形した。
Further, as Example 4, in Example 3, an unsaturated polyester resin having a decomposition and vaporization temperature of 200°C, the lowest decomposition and vaporization temperature compared to the above resin, was used instead of the phenol resin, and compression molding was performed. Core 1 was molded under the same conditions as in Example 3 except that the temperature was 80°C.

そして、実施例3の中子1を使った鋳造の場合と同じ鋳
物材料および鋳造条件で鋳物製品7を製造した結果、表
1に示すように、樹脂に混合する金属粉末としては、試
料3のZn−30%wtSn粉末の場合のみ、好結果が
得られた。
A cast product 7 was manufactured using the same casting material and casting conditions as in the case of casting using the core 1 of Example 3. As shown in Table 1, the metal powder mixed with the resin was the same as that of sample 3. Good results were obtained only with Zn-30%wtSn powder.

北皿五−↓ 次に、比較例4として、不飽和ポリエステル樹脂のみを
使って、前記実施例4と同じ条件で中子1を成形し、さ
らに、実施例4の中子1を使った鋳造の場合と同じ鋳物
材料および鋳造条件で鋳物製品7を製造した結果、やは
り、製品内部に不飽和ポリエステル樹脂分解ガスによる
巣の発生が認められた(表1に記載)。
Kitasarago - ↓ Next, as Comparative Example 4, a core 1 was molded using only unsaturated polyester resin under the same conditions as in Example 4, and further, casting using core 1 of Example 4 was performed. As a result of manufacturing casting product 7 using the same casting material and casting conditions as in the case of Example 1, the occurrence of cavities due to unsaturated polyester resin decomposition gas was also observed inside the product (listed in Table 1).

以下、余白 △・・良好な空洞を形成できたが、巣が発生。Below is the margin △: A good cavity was formed, but a nest occurred.

×・・ガス発生が多く、所望形状の空洞が得られない。×: Much gas is generated, and a cavity of the desired shape cannot be obtained.

・・・その他の不良が発生。...Other defects have occurred.

以上、試験結果かられかるように、熱硬化性樹脂を主材
質とする中子1に金属粉末を添加しない場合、主材質で
ある熱硬化性樹脂が、エポキシ樹脂、ポリイミド樹脂、
フェノール樹脂、あるいは、不飽和ポリエステル樹脂の
いずれであっても、鋳物製品7の内部に、第4図に示す
ようなガス欠陥10が発生する。
As can be seen from the above test results, when no metal powder is added to the core 1 whose main material is a thermosetting resin, the thermosetting resin, which is the main material, is made of epoxy resin, polyimide resin,
Whether phenolic resin or unsaturated polyester resin is used, gas defects 10 as shown in FIG. 4 occur inside the cast product 7.

これに対し、金属粉末を添加した中子lでは、ガス欠陥
を防止できることがわかる。
On the other hand, it can be seen that gas defects can be prevented in the core 1 to which metal powder is added.

例えば、中子lの主成分がポリイミド樹脂の場合、この
ポリイミド樹脂の分解温度である350℃よりも高い融
点を有するZn粉末の場合を除いては、良好な結果が得
られることがわかる。このZn粉末の場合、419℃ま
で熔融せず安定であるため、融解時の吸熱による樹脂の
分解抑止効果が得られない。
For example, when the main component of the core I is a polyimide resin, good results are obtained except in the case of Zn powder having a melting point higher than 350° C., which is the decomposition temperature of the polyimide resin. In the case of this Zn powder, since it does not melt and is stable up to 419° C., the effect of inhibiting the decomposition of the resin due to heat absorption during melting cannot be obtained.

一方、試料2 : Pb−10%Z n ’−あるいは
、試料3 : Z n−30%Snなる合金は、それぞ
れの融点が410℃、370℃であり、いずれも、ポリ
イミド樹脂の分解温度以上であるが、これらの場合、3
15℃あるいは195℃にて、一部融解(状態図におけ
る固相線温度に相当)が生じるため、吸熱反応により温
度上昇の抑制されて、樹脂分解が抑止される。
On the other hand, the alloys Sample 2: Pb-10%Zn'- or Sample 3: Zn-30%Sn have melting points of 410°C and 370°C, respectively, and both melt at temperatures higher than the decomposition temperature of polyimide resin. However, in these cases, 3
Partial melting (corresponding to the solidus temperature in the phase diagram) occurs at 15° C. or 195° C., so an endothermic reaction suppresses the temperature rise and inhibits resin decomposition.

これらのことは、ポリイミド樹脂以外の他の樹脂にも当
てはまり、中子の主成分の樹脂の分解温度以下の温度で
全部又は一部が融解して吸熱反応を生じる金属粉末を用
いた場合に有効となることが分かる。
These things apply to other resins other than polyimide resins, and are effective when using metal powder that melts in whole or in part and causes an endothermic reaction at a temperature below the decomposition temperature of the resin that is the main component of the core. It turns out that

ここで、金属粉末の融点は低ければ良いかというと、そ
うではなく、低すぎる場合、例えば樹脂成形温度以下に
て溶融する場合には、中子成形時に溶融した金属が凝集
し、後で鋳物製品7の内部の空洞部9から取り出せなく
なるため、金属粉末の融点は、樹脂の軟化点以上の温度
でなければならないと言える。
Here, the lower the melting point of the metal powder, the better.This is not the case; if it is too low, for example, if it melts below the resin molding temperature, the molten metal will aggregate during core molding, and later the casting Since the metal powder cannot be removed from the cavity 9 inside the product 7, it can be said that the melting point of the metal powder must be higher than the softening point of the resin.

次に、金属粉末の添加量であるが、その必要量は、実施
例2のポリイミド樹脂と試料7(Sn−1%AI!粉末
)の組合せ、および、実施例1のエポキシ樹脂と試料7
の組合せの結果より、樹脂の耐熱性に差があり、実施例
2のポリイミド樹脂を主材質とした場合は、体積比5%
以上で良好な結果が得られることが、また、実施例1の
エポキシ樹脂の場合は、体積比10%以上で良好な結果
が得られること分かる。中子1の主材質の樹脂と混合す
る金属粉末の組合せにより適宜、混合比率を調整すれば
良い。
Next, regarding the amount of metal powder added, the required amount is the combination of the polyimide resin of Example 2 and Sample 7 (Sn-1% AI! powder), and the combination of the epoxy resin of Example 1 and Sample 7.
From the results of the combinations, there is a difference in heat resistance of the resins, and when the polyimide resin of Example 2 is used as the main material, the volume ratio is 5%.
It can be seen that good results can be obtained with the above conditions, and in the case of the epoxy resin of Example 1, good results can be obtained with a volume ratio of 10% or more. The mixing ratio may be adjusted as appropriate depending on the combination of the resin, which is the main material of the core 1, and the metal powder to be mixed.

なお、体積比で70%以上の混合比率の場合、ガスの発
生は全く無く、中子lを良好に鋳包むことができるが、 1)金属粉末の量が多いため、鋳物製品の熱処理時の樹
脂成分除去に長時間を要する、あるいは、2)前記樹脂
除去の後に金属粉末同志が焼結状態となって、鋳物製品
7の空洞部9から抜は取れなくなる等々の不具合が起こ
るので、樹脂に対する金属粉末の混合比率(体積比で)
は60%以下であることが望ましい。
Note that when the mixing ratio is 70% or more by volume, no gas is generated and the core can be cast well. Problems such as requiring a long time to remove the resin component, or 2) the metal powder becoming sintered together after the resin removal and making it impossible to remove it from the cavity 9 of the cast product 7 may occur. Mixing ratio of metal powder (in volume ratio)
is preferably 60% or less.

また、中子1の樹脂粉末に添加する金属粉末の大きさは
特に制約されるものではないが、細か過ぎると、金属粉
末同志が凝集して焼結しやすく、逆に大き過ぎると、樹
脂粉末に混合した時に均一に分散できず、注湯時、金属
粉末の無い部分で樹脂が分解気化することから、この添
加する金属粉末の大きさは、粒径が10μm〜1wm+
の範囲であることが好ましい。
Additionally, the size of the metal powder added to the resin powder of core 1 is not particularly restricted, but if it is too small, the metal powder tends to aggregate and sinter, and if it is too large, the resin powder The size of the metal powder to be added is 10 μm to 1 wm+ because the resin cannot be dispersed uniformly when mixed with the metal powder and the resin decomposes and vaporizes in areas where there is no metal powder during pouring.
It is preferable that it is in the range of .

以上、本発明の実施例に係わる中子1を適用した鋳物製
品として、JIS  AC8A(AI−12%5t−1
%Cu−1%Mg)なるアルミニウム合金を使用した鋳
物製品について述べたが、本発明の中子は、前記アルミ
ニウム合金製の鋳物製品だけでなく、マグネシウム合金
、亜鉛合金等種々の金属の鋳物製品の製造に通用可能で
ある。要は、鋳造の熱処理温度にてガス化除去できる樹
脂であれば良い。
As described above, JIS AC8A (AI-12%5t-1) is a cast product to which the core 1 according to the embodiment of the present invention is applied.
%Cu-1%Mg), the core of the present invention can be used not only for cast products made of the aluminum alloy, but also for cast products made of various metals such as magnesium alloys and zinc alloys. It can be used for manufacturing. In short, any resin may be used as long as it can be gasified and removed at the heat treatment temperature for casting.

〔効果〕〔effect〕

以上述べたように、本発明によれば、鋳造時に中子の主
材質である熱硬化性の樹脂が分解する前に、中子内の金
属粉末が融解し、その際に周囲より奪う融解熱により中
子の昇温が妨げられて、熱硬化性の樹脂の分解温度以下
に保たれるので、樹脂の分解ガスによるガス欠陥の発生
を防止できるという優れた効果を奏する。
As described above, according to the present invention, the metal powder inside the core melts before the thermosetting resin, which is the main material of the core, decomposes during casting, and the heat of fusion is absorbed from the surroundings at that time. This prevents the temperature of the core from rising and keeps it below the decomposition temperature of the thermosetting resin, which has the excellent effect of preventing the occurrence of gas defects due to resin decomposition gas.

また、耐熱樹脂を使って中子を成形できるので、取扱性
に優れ、安価かつ生産性が高いという優れた効果を奏す
る。
In addition, since the core can be molded using heat-resistant resin, it has the advantage of being easy to handle, inexpensive, and highly productive.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係わる中子を溶湯金属中に鋳
込む繊維成形体で包んだ状態を示す中子セットの模式断
面図、第2図は本発明の実施例に係わる中子を使って高
圧鋳造を行う状態を示す模式断面図、第3図は本発明の
実施例に係わる中子を使って製造した鋳物製品の断面図
、第4図は従来の中子を使って製造した鋳物製品の断面
図である。 1 ・・・・中子 7 ・・・・鋳物製品(中空鋳物)
FIG. 1 is a schematic sectional view of a core set showing a state in which a core according to an embodiment of the present invention is wrapped in a fiber molded body to be cast into molten metal, and FIG. 2 is a schematic cross-sectional view of a core set according to an embodiment of the present invention. Fig. 3 is a cross-sectional view of a cast product manufactured using a core according to an embodiment of the present invention, and Fig. 4 is a schematic cross-sectional view showing a state in which high-pressure casting is performed using a core. FIG. 1 ... Core 7 ... Casting product (hollow casting)

Claims (1)

【特許請求の範囲】[Claims] (1)熱硬化性の樹脂を主成分とする中空鋳物製造用の
中子であって、前記熱硬化性の樹脂粉末に、この樹脂の
軟化温度よりも高く、且つ、この樹脂の分解気化温度よ
りも低い温度にて、一部または全部が溶融して吸熱反応
を生じる金属粉末あるいは合金粉末を、体積率にして5
〜60%の範囲で混合して、圧縮成形により形成したこ
とを特徴とする中空鋳物製造用の中子。
(1) A core for manufacturing hollow castings whose main component is a thermosetting resin, wherein the thermosetting resin powder has a temperature higher than the softening temperature of the resin and a decomposition vaporization temperature of the resin. Metal powder or alloy powder that partially or completely melts and causes an endothermic reaction at a temperature lower than
1. A core for manufacturing hollow castings, characterized in that the mixture is mixed in a range of 60% and formed by compression molding.
JP6256589A 1989-03-15 1989-03-15 Core for manufacturing hollow casting Pending JPH02241644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6256589A JPH02241644A (en) 1989-03-15 1989-03-15 Core for manufacturing hollow casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6256589A JPH02241644A (en) 1989-03-15 1989-03-15 Core for manufacturing hollow casting

Publications (1)

Publication Number Publication Date
JPH02241644A true JPH02241644A (en) 1990-09-26

Family

ID=13203940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6256589A Pending JPH02241644A (en) 1989-03-15 1989-03-15 Core for manufacturing hollow casting

Country Status (1)

Country Link
JP (1) JPH02241644A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6718094B1 (en) * 1997-09-12 2004-04-06 Avanex Corporation Large surface amplifier with multimode interferometer
CN114192746A (en) * 2020-09-18 2022-03-18 通用汽车环球科技运作有限责任公司 High heat absorption core for manufacturing casting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6718094B1 (en) * 1997-09-12 2004-04-06 Avanex Corporation Large surface amplifier with multimode interferometer
CN114192746A (en) * 2020-09-18 2022-03-18 通用汽车环球科技运作有限责任公司 High heat absorption core for manufacturing casting

Similar Documents

Publication Publication Date Title
US5803151A (en) Soluble core method of manufacturing metal cast products
US5385195A (en) Nickel coated carbon preforms
JPH09122887A (en) Production of light alloy composite material and apparatus for production therefor
DE10104339A1 (en) Process for the production of metal foam and metal body produced thereafter
BR0015951B1 (en) combination of lubricant and preparation process.
JPS6029431A (en) Production of alloy
US6024157A (en) Method of casting hypereutectic aluminum-silicon alloys using an evaporable foam pattern and pressure
JPH02241644A (en) Core for manufacturing hollow casting
JP2004091815A (en) Porous metal structure
JP3978492B2 (en) Method for producing semi-solid metal and metal material having fine spheroidized structure
JPS6021306A (en) Manufacture of composite reinforced member
JP2005163145A (en) Composite casting, iron based porous body for casting, and their production method
KR100325421B1 (en) Apparatus for manufacturing amorphous magnesium-based alloy
JPH039821B2 (en)
JP2872863B2 (en) Method for producing billet for thixocast
JP3167854B2 (en) Pressure casting method and pressure casting apparatus for aluminum alloy
JP7035549B2 (en) Complex molding method
JPS6216865A (en) Production of hollow casting
JP2005081426A (en) Method for casting aluminum alloy casting
JPH0890152A (en) Production of high strength aluminum alloy casting
US3528806A (en) Method for producing binary aluminium-niobium alloys
JPS6411384B2 (en)
JPS6224853A (en) Production of casting member having heat insulating part
JP2000271728A (en) Manufacturing method of composite material by pressureless impregnation infiltration method
JP6823311B2 (en) Chill-free spheroidal graphite cast iron semi-solidified mold casting