[go: up one dir, main page]

JPH0224127A - Optical shaping method - Google Patents

Optical shaping method

Info

Publication number
JPH0224127A
JPH0224127A JP63172689A JP17268988A JPH0224127A JP H0224127 A JPH0224127 A JP H0224127A JP 63172689 A JP63172689 A JP 63172689A JP 17268988 A JP17268988 A JP 17268988A JP H0224127 A JPH0224127 A JP H0224127A
Authority
JP
Japan
Prior art keywords
light
shrinkage stress
resin
thermosetting resin
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63172689A
Other languages
Japanese (ja)
Inventor
Katsuhide Murata
勝英 村田
Shigeru Nagamori
茂 永森
Yoshinao Hirano
平野 義直
Katsumi Sato
勝美 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP63172689A priority Critical patent/JPH0224127A/en
Publication of JPH0224127A publication Critical patent/JPH0224127A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/003Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PURPOSE:To mitigate shrinkage stress of cure, by a method wherein thermosetting resin is used together with photosetting resin and a process of the cure is divided into two stages of photosetting and thermosetting ones. CONSTITUTION:A mixture of thermosetting resin and photosetting resin 12 is held into a vessel 11 and a light transmission window 13, a light emission part 15 applying light flux to the window 13, an optical fiber 16, an X-Y moving device 17 of the light emission part and a light source 20 are provided on the bottom of the vessel. Only photosetting resin is cured with irradiation with light, to begin with, shrinkage stress is absorbed through dispersion and a primary cured body which hardly generates the shrinkage stress is obtained. Then the same is taken out of a device, the primary cured body is heated by oven heating or arranging a heater around the some and uncured thermosetting resin is cured. This shrinkage stress hardly occurs even in the second curing process so long as the uncured resin exist on the circumference at the time of spreading of cure. The shrinkage stress is generated in an extremely short period of time at the last stage of a curing process and shrinkage stress itself also becomes extremely little.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光硬化性樹脂に光を照射して目的形状の硬化体
を製造する光学的造形法に係り、特に熱硬化性樹脂を併
用し、硬化の工程を光硬化及び熱硬化の2段階に分ける
ことにより硬化の収縮応力を緩和するようにした光学的
造形法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical modeling method for manufacturing a cured body of a desired shape by irradiating a photocurable resin with light, and particularly relates to an optical modeling method that uses a thermosetting resin in combination. , relates to an optical modeling method in which shrinkage stress during curing is alleviated by dividing the curing process into two stages: photocuring and thermosetting.

[従来の技術] 光硬化性樹脂等の光硬化性流動物質に光束を照射して、
該照射部分を硬化させ、この硬化部分を水平方向に連続
させると共に、さらにその上側に光硬化性流動物質を供
給して同様にして硬化させることにより上下方向にも硬
化体を連続させ、これを繰り返すことにより目的形状の
硬化体を製造する光学的造形法は特開昭60−2475
15号、62−35966号、62−101408号な
どにより公知である。また、目的形状の硬化体の一断面
に相当するスリットを有する造形用マスクを通して光を
照射して硬化させ、次に硬化層の上に未硬化の光硬化性
流動物質を存在させると共にこの造形用マスクを目的形
状の硬化体の高さ方向に隣接する一断面に相当するスリ
ットに有するものに交換し、再び光を照射する工程を繰
り返すことにより目的形状の硬化体を製造する光学的造
形法も公知である(例えば、上記特開昭62−3596
6号)。
[Prior art] A light beam is irradiated onto a photocurable fluid material such as a photocurable resin,
The irradiated part is cured, and this cured part is made to continue in the horizontal direction, and a photocurable fluid material is further supplied above it and cured in the same way, thereby making the cured body continuous in the vertical direction. An optical modeling method for manufacturing a cured body of a desired shape by repeating the process is disclosed in Japanese Patent Application Laid-Open No. 60-2475.
No. 15, No. 62-35966, No. 62-101408, etc. In addition, light is irradiated through a modeling mask having a slit corresponding to one cross section of the cured object in the desired shape to cure the material, and then an uncured photocurable fluid material is placed on the cured layer and the material is used for modeling. There is also an optical modeling method in which a cured body of the desired shape is manufactured by replacing the mask with one that has a slit corresponding to one cross section adjacent to the height direction of the cured body of the desired shape, and repeating the process of irradiating light again. publicly known (for example, the above-mentioned Japanese Patent Application Laid-Open No. 62-3596)
No. 6).

し発明が解決しようとする課題] 光硬化性樹脂は、その硬化時に収縮を起すので、この収
縮応力を小さくすることが造形体の精度向上及び亀裂防
止のために重要である。
[Problems to be Solved by the Invention] Since the photocurable resin shrinks during curing, it is important to reduce this shrinkage stress in order to improve the precision of the shaped object and prevent cracks.

[課題を解決するための手段] 本発明の光学的造形法は、光硬化性樹脂と熱硬化性樹脂
との混合物に光を照射し、照光の照射された部分の光硬
化性樹脂を硬化させると共に、該硬化物を積み重ねてほ
ぼ目的形状の立体とする第1の硬化工程と、該立体を加
熱して立体に含有される熱硬化性樹脂を硬化させる第2
の硬化工程と、を備えることを特徴とする。
[Means for Solving the Problems] The optical modeling method of the present invention irradiates a mixture of a photocurable resin and a thermosetting resin with light, and hardens the photocurable resin in the portion irradiated with the light. In addition, a first curing step in which the cured product is stacked to form a three-dimensional object approximately in the desired shape, and a second curing step in which the three-dimensional object is heated to harden the thermosetting resin contained in the three-dimensional object.
A curing step.

[作 用] 本発明においては、第1の硬化工程において得られる立
体は、光の照射により、光硬化性樹脂を硬化されたもの
である。このように、光硬化性樹脂のみを硬化させると
、硬化による収縮応力は分散されると共に、未硬化の熱
硬化性樹脂の部分で吸収されるようになるため、第1の
硬化工程においては、全体として収縮応力は殆ど発生し
ない硬化立体(以下「1次硬化体」ということがある。
[Function] In the present invention, the three-dimensional object obtained in the first curing step is obtained by curing a photocurable resin by irradiating light. In this way, when only the photocurable resin is cured, the shrinkage stress due to curing is dispersed and absorbed by the uncured thermosetting resin, so in the first curing step, The cured solid body (hereinafter sometimes referred to as "primary cured body") generates almost no shrinkage stress as a whole.

)となる。).

第2の硬化工程においては、第1の硬化工程にて得られ
た1次硬化体に熱を加えて未硬化の熱硬化性樹脂を硬化
させる。この第2の硬化工程を経ることにより、強度の
高い硬化立体が得られる。
In the second curing step, heat is applied to the primary cured product obtained in the first curing step to harden the uncured thermosetting resin. By going through this second curing step, a hardened solid with high strength is obtained.

この第2の硬化工程においても、硬化が伝播する際に、
その周囲に未硬化の熱硬化性樹脂が存在している限り、
硬化進行領域に収縮応力は殆ど発生しない。このように
、本発明方法によれば収縮応力が発生するのは硬化工程
の末期の極めて短い期間であり、収縮応力自体も極めて
小さな値となる。
Also in this second curing step, when curing propagates,
As long as there is uncured thermosetting resin around it,
Almost no shrinkage stress occurs in the hardening progressing region. As described above, according to the method of the present invention, shrinkage stress occurs during an extremely short period at the end of the curing process, and the shrinkage stress itself has an extremely small value.

[実施例] 第1図〜第4図は各々本発明の第1の硬化工程を実施す
るための装置の一例を示す断面図である。
[Example] FIGS. 1 to 4 are cross-sectional views showing an example of an apparatus for carrying out the first curing step of the present invention.

第1図の装置においては、攪拌機10を備える容器】1
内には熱硬化性樹脂と光硬化性樹脂との混合物12が収
容されている。容器11の底面にはガラス等の透光板よ
りなる透光窓13が設けられており、該透光窓13に向
けて光束14を照射するように、レンズを内蔵した光出
射部15、光ファイバー16、光出射部15を水平面内
のX−Y方向(X、Yは直交する2方向)に移動させる
X−Y9動装置17、光源20等よりなる光学系が設け
られている。
In the apparatus shown in FIG. 1, a container equipped with a stirrer 10]1
A mixture 12 of thermosetting resin and photocuring resin is housed inside. A light transmitting window 13 made of a light transmitting plate such as glass is provided on the bottom of the container 11, and a light emitting section 15 with a built-in lens and an optical fiber 16. An optical system including an X-Y9 moving device 17 for moving the light emitting section 15 in the X-Y direction (X and Y are two orthogonal directions) in a horizontal plane, a light source 20, etc. is provided.

容器11内にはベース21が設置され、該ベース21は
エレベータ22により昇降可能とされている。これらx
 −y ′8動装置17、エレベータ22はコンピュー
タ23により制御される。
A base 21 is installed inside the container 11, and the base 21 can be raised and lowered by an elevator 22. These x
-y'8 The moving device 17 and the elevator 22 are controlled by a computer 23.

上記装置により硬化体を製造する場合、まずベース21
を透光窓13よりもわずか下方に位置させ、光束14を
目的形状物の水平断面に倣って走査させる。この走査は
コンピュータ制御されたX−Y移動装置17により行な
われる。
When producing a cured body using the above device, first the base 21
is positioned slightly below the transparent window 13, and the light beam 14 is scanned along the horizontal cross section of the target object. This scanning is performed by a computer-controlled X-Y movement device 17.

目的形状物の一つの水平断面(この場合は底面又は上面
に相当する部分)のすべてに光を照射した後、ベース2
1をわずかに上昇させ、硬化物24とベース21との間
に未硬化の熱硬化性樹脂と光硬化性樹脂との混合物を流
人させた後、上記と同様の光照射を行う。この手順を繰
り返すことにより、はぼ目的形状の1次硬化体が多層積
層体として得られる。
After irradiating the entire horizontal cross section of the target shape (in this case, the part corresponding to the bottom or top surface), the base 2
1 is slightly raised to flow the mixture of uncured thermosetting resin and photocurable resin between the cured product 24 and the base 21, and then the same light irradiation as above is performed. By repeating this procedure, a primary cured product having an objective shape can be obtained as a multilayer laminate.

上記実施例は、透光窓を容器底面に設け、光を容器の下
方から照射するようにしているが、本発明においては容
器11の側面に透光窓を設け、該容器11の側面から光
を照射する・ようにしても良い。この場合、ベースは成
形過程において徐々に、側方に移動させれば良い。
In the above embodiment, a transparent window is provided on the bottom of the container so that light is irradiated from below the container, but in the present invention, a transparent window is provided on the side of the container 11, and light is emitted from the side of the container 11. It is also possible to irradiate. In this case, the base may be gradually moved laterally during the molding process.

上記実施例では、光ファイバーをX−Y方向に移動させ
ることにより光を走査しているが、後述の第3図に示す
如く、光源からの光をミラーで反射させた後、レンズで
収束させて光硬化性樹脂に照射する光学系を採用しても
良い。この場合はミラーを回転させることにより光束を
走査できる。
In the above embodiment, the light is scanned by moving the optical fiber in the X-Y direction, but as shown in Figure 3 below, the light from the light source is reflected by a mirror and then converged by a lens. An optical system that irradiates the photocurable resin may also be used. In this case, the light beam can be scanned by rotating the mirror.

また、本発明を公知のマスク法に適用し、例えば第2図
に示す如く目的形状物の断面に相当するスリット25を
有したマスク26を用いても良い。符号27は平行光束
を示す、第2図のその他の符号は第1図と同一部材を示
している。
Further, the present invention may be applied to a known mask method, and a mask 26 having a slit 25 corresponding to the cross section of the target shape may be used, for example, as shown in FIG. Reference numeral 27 indicates a parallel light beam, and other reference numerals in FIG. 2 indicate the same members as in FIG. 1.

第1図及び第2図に示す装置は、容器の下方から光を照
射するように構成されているが、本発明においては、容
器の上部開口から光を照射するようにしても良い。′s
3図及び第4図に示す装置は容器上方から光を照射する
形式の装置である。
Although the apparatus shown in FIGS. 1 and 2 is configured to irradiate light from below the container, in the present invention, light may be irradiated from the upper opening of the container. 's
The apparatus shown in FIGS. 3 and 4 is of a type that irradiates light from above the container.

第3図の装置においては、熱硬化性樹脂と光硬化性樹脂
との混合物12の液面12aに向けて光束14を照射す
るようにレンズ28、ミラー29、ミラー回転駆動装置
29a、光源20等よりなる光学系が設けられている。
In the apparatus shown in FIG. 3, a lens 28, a mirror 29, a mirror rotation drive device 29a, a light source 20, etc. are used to irradiate the light beam 14 toward the liquid surface 12a of the mixture 12 of thermosetting resin and photocurable resin. An optical system consisting of the following is provided.

容器11内にはテーブル21が設置され、該ベース21
はエレベータ22により昇降可能とされている。これら
ib装置29a、エレベータ22はコンピュータ23に
より制御される。
A table 21 is installed inside the container 11, and the base 21
can be raised and lowered by an elevator 22. These ib device 29a and elevator 22 are controlled by a computer 23.

上記装置により1次硬化体を製造する場合、まずベース
21上の基板21aを液面12aよりもわずか下方に位
置させ、光束14を目的形状物の水平断面に倣って走査
させる。この走査はコンピュータ制御されたミラー29
の回転により行われる。
When producing a primary cured body using the above-mentioned apparatus, first, the substrate 21a on the base 21 is positioned slightly below the liquid level 12a, and the light beam 14 is scanned along the horizontal cross section of the target shape. This scanning is performed using a computer-controlled mirror 29.
This is done by rotating the

目的形状物の一つの水平断面(この場合は底面に相当す
る部分)のすべてに光を照射した後、ベース21をわず
かに下降させ、硬化物24の上に未硬化の熱硬化性樹脂
と光硬化性樹脂との混合物を流入させた後、上記と同様
の光照射を行う。この手順を繰り返すことにより、はぼ
目的形状の1次硬化体が得られる。
After irradiating the entire horizontal cross section of the target shape (in this case, the part corresponding to the bottom surface), the base 21 is lowered slightly, and the uncured thermosetting resin and the light are placed on the cured material 24. After flowing the mixture with the curable resin, the same light irradiation as above is performed. By repeating this procedure, a primary cured product having the desired shape can be obtained.

上記実施例では、ベース21を徐々に下降させているが
、逆に熱硬化性樹脂と光硬化性樹脂との混合物を注ぎ足
すことにより、液面12aを徐々に上昇させても良い。
In the above embodiment, the base 21 is gradually lowered, but on the other hand, the liquid level 12a may be gradually raised by adding a mixture of a thermosetting resin and a photocurable resin.

第4図に示す装置は、目的形状物の断面に相当するスリ
ット25を有したマスク26を用いたものである。符号
27は平行光束を示す。第4図のその他の符号は第3図
と同一部材を示している。
The apparatus shown in FIG. 4 uses a mask 26 having a slit 25 corresponding to the cross section of the object. Reference numeral 27 indicates a parallel light beam. Other symbols in FIG. 4 indicate the same members as in FIG. 3.

本発明においては、このような第1の硬化工程において
、光の照射により光硬化性樹脂のみを硬化させてほぼ目
的形状の1次硬化体を製造する。
In the present invention, in such a first curing step, only the photocurable resin is cured by irradiation with light to produce a primary cured product having approximately the desired shape.

従って、熱硬化性樹脂と光硬化性樹脂との混合割合は、
光硬化性樹脂のみの硬化により、得られる立体がその形
状を保持できるような割合であることが必要とされる。
Therefore, the mixing ratio of thermosetting resin and photocuring resin is
It is necessary that the ratio be such that the three-dimensional shape obtained by curing only the photocurable resin can maintain its shape.

この混合割合は、用いる熱硬化性樹脂、光硬化性樹脂の
物性や、立体の形状、大きさ等を考慮して、適宜決定さ
れるが、通常の場合、光硬化性樹脂100重量部に対し
て、熱硬化性樹脂3〜40重量部とするのが好ましい。
This mixing ratio is determined as appropriate, taking into account the physical properties of the thermosetting resin and photocurable resin used, as well as the three-dimensional shape and size, but in normal cases, it is based on 100 parts by weight of the photocurable resin. The thermosetting resin is preferably 3 to 40 parts by weight.

このようにして第1の硬化工程においてほぼ目的形状の
1次硬化体を得た後は、これを装置から取り出し、第2
の硬化工程にて、1次硬化体の全体に熱を加え、未硬化
の熱硬化性樹脂を硬化させる。
After obtaining the primary cured product having almost the desired shape in the first curing step in this way, it is taken out of the device and the second cured product is removed.
In the curing step, heat is applied to the entire primary cured body to cure the uncured thermosetting resin.

この場合、加熱方法には特に制限はなく、1次硬化体が
小さいものであれば、1次硬化体をオーブンに入れて加
熱したり、また、大きい1次硬化体であれば、その周囲
にヒータ等の加熱具を配して加熱する方法等を採用する
ことができる。
In this case, there are no particular restrictions on the heating method; if the primary cured product is small, the primary cured product may be heated in an oven, or if it is large, the primary cured product may be heated by heating it. A method of heating by disposing a heating device such as a heater can be adopted.

加熱温度は用いる熱硬化性樹脂の硬化温度とされ、加熱
時間は、その立体の大きさ、形状や熱硬化性樹脂の混合
割合等に応じて適宜決定される。
The heating temperature is the curing temperature of the thermosetting resin used, and the heating time is appropriately determined depending on the size and shape of the three-dimensional object, the mixing ratio of the thermosetting resin, and the like.

第2の硬化工程により、硬化の終了した立体は、硬化収
縮応力が小さく、しかも収縮応力が立体の全体に均一に
分散したものとなっており、寸法安定性、形状安定性に
優れる。
As a result of the second curing step, the cured three-dimensional solid has a small curing shrinkage stress, and the shrinkage stress is evenly distributed throughout the solid, and has excellent dimensional stability and shape stability.

本発明において、前記光硬化性樹脂としては、光照射に
より硬化する種々の物質を用いることができ、例えば変
性ポリウレタンメタクリレート、オリゴエステルアクリ
レート、ウレタンアクリレート、エポキシアクリレート
、感光性ポリイミド、アミノアルキドを挙げることがで
きる。
In the present invention, various substances that are cured by light irradiation can be used as the photocurable resin, such as modified polyurethane methacrylate, oligoester acrylate, urethane acrylate, epoxy acrylate, photosensitive polyimide, and amino alkyd. I can do it.

前記光としては、使用する光硬化性樹脂に応じ、可視光
、紫外光等積々の光を用いることができる。照光は通常
の光としてもよいが、レーザ光とすることにより、エネ
ルギーレベルを高めて造形時間を短縮し、良好な集光性
を利用して造形精度を向上させ得るという利点を得るこ
とができる。
As the light, various types of light such as visible light and ultraviolet light can be used depending on the photocurable resin used. The illumination may be regular light, but laser light has the advantage of increasing the energy level, shortening the molding time, and improving the molding accuracy by utilizing good light focusing. .

光硬化性樹脂に混合する熱硬化性樹脂としては特に制限
はなく、エポキシ樹脂、メラミン樹脂、尿素樹脂、フェ
ノール樹脂、ウレタン樹脂、アルキド樹脂、不飽和ポリ
エステル等を用いることができる。本発明においては、
光硬化性樹脂との相溶性等の面で、エポキシ樹脂が好適
である。
The thermosetting resin to be mixed with the photocurable resin is not particularly limited, and epoxy resins, melamine resins, urea resins, phenol resins, urethane resins, alkyd resins, unsaturated polyesters, and the like can be used. In the present invention,
Epoxy resins are preferred in terms of compatibility with photocurable resins.

これらの熱硬化性樹脂は一般に光硬化性樹脂に比し安価
であることから、本発明においては熱硬化性樹脂の併用
により相対的に光硬化性樹脂の使用量を減らし、材料コ
ストを低減することができるという効果も奏される。
Since these thermosetting resins are generally cheaper than photocuring resins, in the present invention, by using thermosetting resins in combination, the amount of photocuring resins used is relatively reduced, thereby reducing material costs. It also has the effect of being able to.

[発明の効果] 以上の通り、本発明によれば、光学的造形法において硬
化体に発生する収縮応力を減少させると共に、収縮応力
を硬化体の全体に均一に分散させることができる。従っ
て、亀裂がなくしかも収縮による寸法の誤差も殆どない
高精度のモデルを製作できる。
[Effects of the Invention] As described above, according to the present invention, it is possible to reduce the shrinkage stress generated in the cured body in the optical modeling method and to uniformly disperse the shrinkage stress throughout the cured body. Therefore, it is possible to produce a highly accurate model without cracks and with almost no dimensional errors due to shrinkage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は各々実施例方法に採用される装置
の縦断面図である。 2・・・熱硬化性樹脂と光硬化性樹脂との混合物、4・
・・光束、   16・・・光ファイバー0・・・光源
、   21・・・ベース、2・・・エレベータ。 代理人  弁理士  重 野  剛 第3図 zl 第4図 フq
1 to 4 are longitudinal sectional views of the apparatus employed in the embodiment method. 2...Mixture of thermosetting resin and photocurable resin, 4.
...Light flux, 16...Optical fiber 0...Light source, 21...Base, 2...Elevator. Agent Patent Attorney Tsuyoshi Shigeno Figure 3 zl Figure 4 Fq

Claims (1)

【特許請求の範囲】[Claims] (1)光硬化性樹脂と熱硬化性樹脂との混合物に光を照
射し、該光の照射された部分の光硬化性樹脂を硬化させ
ると共に、該硬化物を積み重ねてほぼ目的形状の立体と
する第1の硬化工程と、該立体を加熱して立体に含有さ
れる熱硬化性樹脂を硬化させる第2の硬化工程と、 を備えることを特徴とする光学的造形法。
(1) A mixture of a photocurable resin and a thermosetting resin is irradiated with light to harden the photocurable resin in the irradiated areas, and the cured product is stacked to form a three-dimensional object with approximately the desired shape. An optical modeling method comprising: a first curing step of heating the three-dimensional object to harden a thermosetting resin contained in the three-dimensional object.
JP63172689A 1988-07-13 1988-07-13 Optical shaping method Pending JPH0224127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63172689A JPH0224127A (en) 1988-07-13 1988-07-13 Optical shaping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63172689A JPH0224127A (en) 1988-07-13 1988-07-13 Optical shaping method

Publications (1)

Publication Number Publication Date
JPH0224127A true JPH0224127A (en) 1990-01-26

Family

ID=15946533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63172689A Pending JPH0224127A (en) 1988-07-13 1988-07-13 Optical shaping method

Country Status (1)

Country Link
JP (1) JPH0224127A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104626A (en) * 1989-08-24 1991-05-01 E I Du Pont De Nemours & Co Stereoscopic model formation method utilizing composition composed of material able to thermally aggregate
WO1996008360A1 (en) * 1994-09-16 1996-03-21 Eos Gmbh Electro Optical Systems Process for producing a three-dimensional object
WO1996014203A1 (en) * 1994-11-02 1996-05-17 Eos Gmbh Electro Optical Systems Process and device for producing a three-dimensional object
WO1996029192A1 (en) * 1995-03-20 1996-09-26 Eos Gmbh Electro Optical Systems Device and process for producing a three-dimensional object by laser sintering
WO2009116448A1 (en) * 2008-03-19 2009-09-24 コニカミノルタオプト株式会社 Method for producing molded body or wafer lens
CN104249455A (en) * 2013-06-27 2014-12-31 视立方有限公司 Method and device for synthesizing 3D photos
JP2016060058A (en) * 2014-09-16 2016-04-25 コニカミノルタ株式会社 Three-dimensional molding method, three-dimensional molded article, and three-dimensional molding apparatus
US20180015662A1 (en) * 2015-03-05 2018-01-18 Carbon, Inc. Fabrication of three dimensional objects with variable slice thickness
JP2018504300A (en) * 2015-02-05 2018-02-15 カーボン,インコーポレイテッド Additive manufacturing method by intermittent exposure
JP2018528107A (en) * 2015-09-09 2018-09-27 カーボン,インコーポレイテッド Epoxy double-cured resin for additive manufacturing
WO2019167895A1 (en) * 2018-03-01 2019-09-06 コニカミノルタ株式会社 Resin composition and production method for three dimensional shaped object using same, and three dimensional shaped object
WO2019193961A1 (en) * 2018-04-02 2019-10-10 コニカミノルタ株式会社 Resin composition, method for manufacturing three-dimensionally shaped article using same, and three-dimensionally shaped article

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104626A (en) * 1989-08-24 1991-05-01 E I Du Pont De Nemours & Co Stereoscopic model formation method utilizing composition composed of material able to thermally aggregate
WO1996008360A1 (en) * 1994-09-16 1996-03-21 Eos Gmbh Electro Optical Systems Process for producing a three-dimensional object
WO1996014203A1 (en) * 1994-11-02 1996-05-17 Eos Gmbh Electro Optical Systems Process and device for producing a three-dimensional object
WO1996029192A1 (en) * 1995-03-20 1996-09-26 Eos Gmbh Electro Optical Systems Device and process for producing a three-dimensional object by laser sintering
WO2009116448A1 (en) * 2008-03-19 2009-09-24 コニカミノルタオプト株式会社 Method for producing molded body or wafer lens
US8679379B2 (en) 2008-03-19 2014-03-25 Konica Minolta Opto, Inc. Method for producing molded body or wafer lens
CN104249455A (en) * 2013-06-27 2014-12-31 视立方有限公司 Method and device for synthesizing 3D photos
CN104249455B (en) * 2013-06-27 2019-06-11 视立方有限公司 Method and apparatus for synthesizing 3D photographs
JP2016060058A (en) * 2014-09-16 2016-04-25 コニカミノルタ株式会社 Three-dimensional molding method, three-dimensional molded article, and three-dimensional molding apparatus
JP2018504300A (en) * 2015-02-05 2018-02-15 カーボン,インコーポレイテッド Additive manufacturing method by intermittent exposure
US20180015662A1 (en) * 2015-03-05 2018-01-18 Carbon, Inc. Fabrication of three dimensional objects with variable slice thickness
JP2018528107A (en) * 2015-09-09 2018-09-27 カーボン,インコーポレイテッド Epoxy double-cured resin for additive manufacturing
WO2019167895A1 (en) * 2018-03-01 2019-09-06 コニカミノルタ株式会社 Resin composition and production method for three dimensional shaped object using same, and three dimensional shaped object
JPWO2019167895A1 (en) * 2018-03-01 2021-02-25 コニカミノルタ株式会社 A resin composition, a method for manufacturing a three-dimensional model using the resin composition, and a three-dimensional model.
WO2019193961A1 (en) * 2018-04-02 2019-10-10 コニカミノルタ株式会社 Resin composition, method for manufacturing three-dimensionally shaped article using same, and three-dimensionally shaped article

Similar Documents

Publication Publication Date Title
JPH0342233A (en) Optical shaping method
KR100257135B1 (en) 3D object forming method and apparatus using stereolithography including support
JPH0224127A (en) Optical shaping method
JPH04366617A (en) Optical shaping method
JP3167821B2 (en) Stereolithography
Bongiovanni et al. Vat Photopolymerization
JP3782049B2 (en) Stereolithography method and apparatus therefor
JPH0523588B2 (en)
JPH0834063A (en) Optical shaping method and apparatus and resin molded object
JPH0224122A (en) Treatment for making optical shaped body transparent
CN204736443U (en) Light curing 3D molding machine
JP3578590B2 (en) Stereolithography equipment using lamps
JP2551110B2 (en) Optical modeling
JPH0514839Y2 (en)
JPH0224124A (en) Optical shaping method
JPH058307A (en) Optically shaping method
JP2970300B2 (en) 3D modeling method
JP2586953Y2 (en) Stereolithography
JPH01232026A (en) Optical modeling method using a porous mask
JPH0224126A (en) Optical shaping method
JP2861321B2 (en) Method of forming three-dimensional object
JPH0452042Y2 (en)
JPH05261830A (en) Optical modeling method
JPH01232025A (en) Optical shaping method
KR19990012615A (en) Pressurized liquid level regulating device and method