[go: up one dir, main page]

JPH02236938A - Image restoration method, scanning electron microscope, pattern appearance inspection device, and scanning image detection device - Google Patents

Image restoration method, scanning electron microscope, pattern appearance inspection device, and scanning image detection device

Info

Publication number
JPH02236938A
JPH02236938A JP1056304A JP5630489A JPH02236938A JP H02236938 A JPH02236938 A JP H02236938A JP 1056304 A JP1056304 A JP 1056304A JP 5630489 A JP5630489 A JP 5630489A JP H02236938 A JPH02236938 A JP H02236938A
Authority
JP
Japan
Prior art keywords
image
electron beam
scanning
circuit
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1056304A
Other languages
Japanese (ja)
Inventor
Hiroya Koshishiba
洋哉 越柴
Mitsuzo Nakahata
仲畑 光蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1056304A priority Critical patent/JPH02236938A/en
Publication of JPH02236938A publication Critical patent/JPH02236938A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Processing (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は画像検出系の応答遅れによる信号波形の劣化を
復元する画像復元方法並びに走査型電子顕微鏡及びパタ
ーン外観検査装置及び走査像検出装置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an image restoration method for restoring signal waveform deterioration due to response delay of an image detection system, a scanning electron microscope, a pattern appearance inspection device, and a scanning image detection device. .

〔従来の技術〕[Conventional technology]

従来の例えば走査型電子顕微鏡の電子線検出器は、特開
昭62− 260335号公報に記載のようにシンチレ
ータと光電子増倍管を使用したものなどが検出速度とS
/Nの点で他の検出器に比べてすぐれているため広く用
いられている。このシンチレータと光電子増倍管による
t子線検出器は,シンチレー夕の応答特性(残光時間)
と光電子増倍管の応答特性(立上り時間)によりその周
波数帯域幅がたかだか4 M H z程度に限られるた
め.10MHz程度を越えるサンプリング周波数で検出
すると信号波形が鈍り劣化した画像しか得られない。こ
のような走査型電子顕微鏡を使用したLSIのウエハ外
観検査装置やX線マスク外観検査装置などは,検査時間
を短縮するためにはパターンを高速に検出する必要があ
る。しかし上記のように電子線検出器の周波数帯域幅が
4 M H z程度に限られているため、10MHz以
上のサンプリング周波数で高速検出すると微少な欠陥が
検出てきなくなるので、従来のこの種の装置は検出速度
が遅くて検出時間が長かった. 〔発明が解決しようとする課題〕 上記従来技術は例えば電子線検出器の周波数帯域幅が狭
いため検出速度を上げると信号波形が鈍って画像が劣化
する問題があった。
Conventional electron beam detectors for scanning electron microscopes, for example, use a scintillator and a photomultiplier tube as described in Japanese Patent Application Laid-open No. 62-260335, which has improved detection speed and S.
It is widely used because it is superior to other detectors in terms of /N. This T-son beam detector using a scintillator and a photomultiplier tube has a response characteristic (afterglow time) of the scintillator.
This is because the frequency bandwidth is limited to about 4 MHz at most due to the response characteristics (rise time) of the photomultiplier tube. If detection is performed at a sampling frequency exceeding about 10 MHz, the signal waveform will become dull and only degraded images will be obtained. LSI wafer visual inspection equipment, X-ray mask visual inspection equipment, and the like that use such scanning electron microscopes need to detect patterns at high speed in order to shorten inspection time. However, as mentioned above, the frequency bandwidth of the electron beam detector is limited to about 4 MHz, so if high-speed detection is performed at a sampling frequency of 10 MHz or higher, minute defects cannot be detected. The detection speed was slow and the detection time was long. [Problems to be Solved by the Invention] The above-mentioned conventional technology has a problem in that, for example, the frequency band width of the electron beam detector is narrow, so that when the detection speed is increased, the signal waveform becomes dull and the image deteriorates.

本発明の目的は、画像検出系の応答遅れによる信号波形
の劣化を復元する画像復元方法,並びにその画像復元方
法を用いて電子線検出器の周波数帯域幅を越えて高速検
出しても劣化のない画像を得られる走査型電子顕微鏡、
及びその検出速度が速く検査時間の短い走査型電子顕微
鏡を用いたパターン外観検査装置、及び検出速度を上げ
た光電子増倍管などを検出器としているレーザ走査顕微
鏡や外観検査装置あるいは異物検査装置などの走査像検
出装置を提供するにある。
The object of the present invention is to provide an image restoration method for restoring signal waveform deterioration due to response delay in an image detection system, and to prevent deterioration even when high-speed detection exceeds the frequency bandwidth of an electron beam detector using the image restoration method. scanning electron microscope, which can obtain images without
and pattern visual inspection equipment using a scanning electron microscope that has a fast detection speed and short inspection time, and laser scanning microscopes, visual inspection equipment, or foreign matter inspection equipment that uses a photomultiplier tube or the like as a detector with increased detection speed. The present invention provides a scanning image detection device.

〔課題を解決するための手段〕 上記目的を達成するために、本発明の画像復元方法並び
に走査型電子顕微鏡及びパターン外観検査装置は、画像
検出系の応答遅れにより波形の鈍った劣化画像を復元す
るべく、まず画像検出系の伝達関数をモデル化し,ここ
で例えばシンチレータや光電子増倍管や半導体検出器な
どの電子線検出系の構成要素が1次返れ要素または1次
遅れ要素の和で精度よく近似できるので,電子線検出系
の伝達関数を1次遅れ要素の和と積で記述できこれらの
伝達関数の逆関数を逆ラプラス変換して得た微分式に従
い信号処理することにより、検出波形の鈍り劣化を復元
する.またこの信号処理により画像のノイズが増加する
ので,検出波形の復元に伴うノイズの増加を抑えるべく
、予め検出画像に対し平滑化処理を施し,ここで検出画
像のノイズの大半が画像検出系の前で発生しているため
ノイズの高周波成分が少なく高周波カットフィルタでノ
イズを除去できないので、該ノイズの振幅が小さいこと
に着目して局所領域内の信号レベルの変動が小さいとき
には平滑化フィルタを作用させ、信号レベルの変化の変
動が大きいときには原信号をそのまま出力させる平滑化
処理を検出画像に施すことができ,これらの平滑化処理
後の検出波形を復元処理することにより、ノイズの少な
い復元画像を得る。また本発明の点センサの撮像手段を
使用したレーザ走査顕微鏡や外観検査装置あるいは異物
検査装置などの走査像検出装置は,同様に光検出器また
は光電子増倍管などを含む画像検出系の伝達関数を予め
求め,その逆関数をラプラス変換して得た微分式に従い
信号処理することにより,検出波形の鈍り劣化を復元す
る。また検出信号のノイズを除去するには平滑化処理を
施した後に復元処理を行うように構成したものである。
[Means for Solving the Problem] In order to achieve the above object, the image restoration method, scanning electron microscope, and pattern appearance inspection apparatus of the present invention restore degraded images whose waveforms have become dull due to response delay of the image detection system. In order to do this, we first model the transfer function of the image detection system, and here we calculate the accuracy of the components of the electron beam detection system, such as scintillators, photomultiplier tubes, and semiconductor detectors, by the sum of first-order return elements or first-order delay elements. Since it can be approximated well, the transfer function of the electron beam detection system can be described as the sum and product of first-order lag elements, and the detected waveform can be determined by signal processing according to the differential equation obtained by inverse Laplace transform of the inverse function of these transfer functions. Restoring dullness and deterioration. In addition, this signal processing increases noise in the image, so in order to suppress the increase in noise due to restoration of the detected waveform, smoothing processing is applied to the detected image in advance, so that most of the noise in the detected image is removed by the image detection system. Because the noise is generated in the front, the high-frequency component of the noise is small and the high-frequency cut filter cannot remove the noise. Therefore, focusing on the small amplitude of the noise, a smoothing filter is applied when the fluctuation of the signal level within the local area is small. When the signal level changes are large, smoothing processing can be applied to the detected image to output the original signal as is.By restoring the detected waveform after these smoothing processes, a restored image with less noise can be created. get. Furthermore, a scanning image detection device such as a laser scanning microscope, visual inspection device, or foreign object inspection device using the point sensor imaging means of the present invention similarly uses the transfer function of an image detection system including a photodetector or a photomultiplier tube. is determined in advance, and the inverse function is Laplace-transformed to perform signal processing according to the differential equation obtained, thereby restoring the dullness and deterioration of the detected waveform. Further, in order to remove noise from the detection signal, the structure is such that a smoothing process is performed and then a restoration process is performed.

〔作用〕[Effect]

上記の画像復元方法並びに走査型電子顕微鏡及びパター
ン外観検査装置では,画像検出系の伝達関数をG(s)
とすると,劣化画像の信号y (t)のラプラス変換Y
 (s)は原画像の信号x (t)のラプラス変換X 
(s)を使って、 Y(s)=G(s) ・X(s)          
(1)と表される.G(s)の逆関数1/G(s)を使
うと、と劣化画像から原画像が復元できる。この復元処
理はラプラス変換面(フーリエ変換面)上での演算であ
り.  1 / G (s)は逆フィルタと呼ばれてい
る.逆フィルタによる復元は画像をフーリエ変換して逆
フィルタを作用させ,さらに逆フーリエ変換して画像に
もどす必要があるため、計算量が多くても実時間処理に
向かない.また逆フィルタのほかウィナーフィルタなど
多くのフィルタが提案されているが、全てフーリエ変換
面での演算であるため計算量が多い.また反復法による
画像復元が提案されているが,逐次近似法であるため計
算量が多くて実時間処理が困難である.式(2)は一般
に解析的な逆ラプラス変換ができないが,G(s)を積
分要素や微分要素や1次遅れ要素などの特定の形で表わ
すと逆ラプラス変換できる.そこで例えば電子線検出系
の措成要索であるシンチレータや光電子増倍管あるいは
半導体電子線検出器などの伝達関数を1次遅れ要素の和
で近似すると、電子線検出系全体の伝達関数は1次遅れ
要素の和と積となる.簡単な例として、 G (s) =     ,  τ:時定数    (
3)τ S ÷1 と1次遅れ要素と仮定し,式(2)を逆フーリエ変換す
ると, x(t)=τy’(t)+ y (t)       
 (4)と,劣化画像の微分信号と劣化画像の信号の和
で復元できる.この信号の微分は差分として計算すれば
よく,計算量が少なくて実時間処理が可能である.また
式(4)による復元は微分処理があるためノイズが増加
するので、このノイズの増加を抑えるためには予め劣化
画像に対し平滑化処理を施すことが有効である.ここで
劣化画像の画面全体に対して平均値フィルタまたは中央
値フィルタで平滑化するとノイズと共に有効な信号も弱
められるため、復元処理で完全に劣化のない原画像に復
元できない.また高周波カットフィルタではノイズの大
半が検出系の前で発生し,ノイズの高周波成分が少ない
ためノイズを除去できない.このためノイズの振幅が有
効な信号の振幅より小さいことに着目して、局所領域内
の信号レベルの変動が小さいときには平均値フィルタな
どの平滑化フィルタを作用させ,局所領域内の信号レベ
ルの変動が大きいときには原信号をそのまま出力される
非線形平滑化処理が有効となる。こうして走査型電子顕
微鏡及びパターン外観検査装置の電子線検出信号に対し
、非線形平滑化処理した後に式(4)に代表される復元
処理を行うことにより、ノイズの少ない復元画像を得る
ことができ、高速検出可能となる。また上記点センサの
撮像手段(検出手段)を使用したレーザ走査顕微鏡や外
観検査装置あるいは異物検査装置などの走査像検出装置
では、同様の非線形平滑化処理と復元処理を行うことに
より、ノイズの少ない復元画像を得て高速検出可能とな
る。
In the above image restoration method, scanning electron microscope, and pattern appearance inspection device, the transfer function of the image detection system is expressed as G(s).
Then, the Laplace transform Y of the degraded image signal y (t)
(s) is the Laplace transform X of the original image signal x (t)
Using (s), Y(s) = G(s) ・X(s)
It is expressed as (1). By using the inverse function 1/G(s) of G(s), the original image can be restored from the degraded image. This restoration process is an operation on the Laplace transform surface (Fourier transform surface). 1/G(s) is called an inverse filter. Restoration using an inverse filter requires Fourier transform of the image, applying the inverse filter, and then inverse Fourier transform to restore the image, so even though the amount of calculation is large, it is not suitable for real-time processing. In addition to inverse filters, many filters such as Wiener filters have been proposed, but all of them involve calculations on the Fourier transform surface, which requires a large amount of calculation. Image restoration using an iterative method has also been proposed, but since it is a successive approximation method, the amount of calculation is large and real-time processing is difficult. Equation (2) generally cannot be subjected to an analytical inverse Laplace transform, but it can be inversely Laplace transformed if G(s) is expressed in a specific form such as an integral element, a differential element, or a first-order lag element. Therefore, for example, if the transfer function of a scintillator, photomultiplier tube, or semiconductor electron beam detector, which is a key component of an electron beam detection system, is approximated by the sum of first-order delay elements, the transfer function of the entire electron beam detection system is 1. It is the sum and product of the next lag elements. As a simple example, G (s) = , τ: time constant (
3) Assuming τ S ÷ 1 and a first-order lag element, when formula (2) is inversely Fourier transformed, x (t) = τy' (t) + y (t)
(4) and the sum of the differential signal of the degraded image and the signal of the degraded image. The differential of this signal can be calculated as a difference, which requires less calculation and can be processed in real time. Furthermore, since the restoration using Equation (4) involves differential processing, noise increases, so in order to suppress the increase in noise, it is effective to perform smoothing processing on the degraded image in advance. If the entire screen of the degraded image is smoothed using an average value filter or a median value filter, effective signals as well as noise will be weakened, so the restoration process cannot completely restore the original image without deterioration. In addition, with a high frequency cut filter, most of the noise is generated in front of the detection system, and the high frequency components of the noise are small, so the noise cannot be removed. For this reason, focusing on the fact that the amplitude of the noise is smaller than the amplitude of the effective signal, when the fluctuations in the signal level within the local region are small, a smoothing filter such as an average value filter is applied to reduce the fluctuation of the signal level within the local region. When is large, nonlinear smoothing processing that outputs the original signal as is becomes effective. In this way, by performing nonlinear smoothing processing on the electron beam detection signal of the scanning electron microscope and pattern visual inspection device, and then performing restoration processing represented by equation (4), a restored image with less noise can be obtained. High-speed detection becomes possible. In addition, in scanning image detection devices such as laser scanning microscopes, visual inspection devices, and foreign object inspection devices that use the imaging means (detection means) of the point sensor described above, similar nonlinear smoothing processing and restoration processing are performed to reduce noise. A restored image is obtained and high-speed detection is possible.

〔実施例〕〔Example〕

以下に本発明の実施例を第1図から第20図により説明
する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 20.

第1図は本発明による画像復元方法を用いた走査型電子
顕微鏡の一実施例を示す構成図である.第1図において
、1は電子銃,2は走査コイル、3は電子レンズ,4は
試料、5はシンチレータ,6はライトガイド、7は光電
子増倍管、8は増幅器、9は偏向回路、10は同期回路
、1lはAD変換器、12は平滑化回路、13は復元回
路、14は表示回路、15は電子線である。本実施例は
本発明の画像復元方法を用いた走査型透過電子顕微鏡の
例であり、電子銃1で発生し加速された電子線15を電
子レンズ3により試料4上に集束させる(細く絞る)と
ともに,同期回路10に同期した偏向回路9の走査信号
で駆動される走査コイル2により試料4上の顕微鏡視野
内を偏向走査させる。この試料4を透過した電子線をシ
ンチレータ5で光に変換し,その光をライトガイド6で
光電子増倍管7の受光面に導き、さらにこの光電子増倍
管7で電気信号に変換する.この電子線検出器はシンチ
レータ5と光電子増倍管7で検出する橘成であるが,こ
れに限定されるものでなく例えば半導体検出器を使用す
ることも可能である。光電子増倍管7からの電気信号を
増幅器8で増幅し、同期回路10で上記偏向回路9の走
査信号と同期させながらAD変換器1lで量子化し、走
査透過電子像を得る.この走査透過電子像は主にシンチ
レータ5と光電子増倍管7の応答遅れのため走査方向に
像が流れている.この電子像(画像)の流れ(信号波形
の鈍り)を復元するのが本発明の画像復元方法の要旨で
ある.それにはまずAD変換器11で量子化された信号
を平滑化回路12でノイズ低減させてから、この平滑化
回路12の出力信号を復元回路13に入力し,その信号
波形の劣化を復元する。この復元回路13で復元した信
号を表示回路14によりDA変換しブラウン管に画像表
示する. 第2図は第1図の平滑化回路12の動作手順を表わす機
能ブロック図である。第2図において,20は入力画像
. 21は局所領域切出回路、22はレベル変動検出回
路、23は平均値フィルタ、24は出力画像である。第
2図において、第1図のAD変換器11の出力信号を入
力画像20とし、局所領域切出回路21で3×3画素の
局所領域を入力画像20から切り出す.この局所領域内
の信号レベル変動をレベル変動検出器22で検出し、こ
のレベル変動検出回路22は該局所領域内で最も明るい
濃度値と最も暗い濃度値との差を算出する。そしてこの
濃度差が予め決めておいたある所定値よりも小さいとき
には該局所領域内の信号レベルを平均値フィルタ23で
平滑化し,濃度差がある所定値よりも大きいときには入
力画像20の濃度(信号レベル)をそのまま出力するこ
とにより、非線形平滑化した出力画像24を得る.この
平均値フィルタ23は平滑化作用のあるフィルタであれ
ば他のフィルタたとえば中央値フィルタなどでもよい。
FIG. 1 is a configuration diagram showing an embodiment of a scanning electron microscope using the image restoration method according to the present invention. In FIG. 1, 1 is an electron gun, 2 is a scanning coil, 3 is an electron lens, 4 is a sample, 5 is a scintillator, 6 is a light guide, 7 is a photomultiplier tube, 8 is an amplifier, 9 is a deflection circuit, 10 11 is a synchronization circuit, 1l is an AD converter, 12 is a smoothing circuit, 13 is a restoration circuit, 14 is a display circuit, and 15 is an electron beam. This embodiment is an example of a scanning transmission electron microscope using the image restoration method of the present invention, in which an electron beam 15 generated and accelerated by an electron gun 1 is focused (narrowly narrowed) onto a sample 4 by an electron lens 3. At the same time, the scanning coil 2 driven by the scanning signal of the deflection circuit 9 synchronized with the synchronization circuit 10 causes the microscope field of view on the sample 4 to be deflected and scanned. The electron beam transmitted through the sample 4 is converted into light by a scintillator 5, guided by a light guide 6 to the light receiving surface of a photomultiplier tube 7, and further converted into an electrical signal by this photomultiplier tube 7. This electron beam detector is a type that uses a scintillator 5 and a photomultiplier tube 7 for detection, but is not limited thereto, and for example, a semiconductor detector may also be used. An electric signal from the photomultiplier tube 7 is amplified by an amplifier 8, and is quantized by an AD converter 1l while being synchronized with the scanning signal from the deflection circuit 9 by a synchronization circuit 10 to obtain a scanning transmission electron image. In this scanning transmission electron image, the image flows in the scanning direction mainly due to the response delay of the scintillator 5 and the photomultiplier tube 7. The gist of the image restoration method of the present invention is to restore the flow of this electronic image (image) (the dullness of the signal waveform). To do this, first, a signal quantized by an AD converter 11 is subjected to noise reduction in a smoothing circuit 12, and then the output signal of this smoothing circuit 12 is inputted to a restoration circuit 13 to restore the deterioration of the signal waveform. The signal restored by the restoration circuit 13 is converted from digital to analog by the display circuit 14 and displayed as an image on a cathode ray tube. FIG. 2 is a functional block diagram showing the operating procedure of the smoothing circuit 12 of FIG. 1. In Fig. 2, 20 is an input image. 21 is a local area extraction circuit, 22 is a level fluctuation detection circuit, 23 is an average value filter, and 24 is an output image. In FIG. 2, the output signal of the AD converter 11 shown in FIG. A signal level fluctuation within this local area is detected by a level fluctuation detector 22, and this level fluctuation detection circuit 22 calculates the difference between the brightest density value and the darkest density value within the local area. When this density difference is smaller than a predetermined value, the signal level in the local area is smoothed by the average value filter 23, and when the density difference is larger than a certain predetermined value, the density (signal level) of the input image 20 is smoothed. By outputting the level) as is, a nonlinearly smoothed output image 24 is obtained. This average value filter 23 may be any other filter, such as a median filter, as long as it has a smoothing effect.

上記の平滑化回路12の処理内容をまとめると次のよう
になる. A=max(in(i−1,j−1)win(i  L
jLin(i  Lj+ILtn(it.i−t)t 
in(i, j), in(i, j+1),in(1
+1,j−1), in(i+1,j), in(i+
l,j+1))B=min(    同   上   
             }if(A−B≦N) t
hen C=max(in(i−LjL in(iJ+ in(
t+t,j))一++in(in(i−Lj),in(
iyjL in(i+1,j))D=max(in(i
,j−1), tn(i,j),in(i, j+1)
)−win(in(Lj  t), in(iJ+ i
n(i,j+1))if(C≦D.AND.C≦N) 
thenelse  if(C>D. AND. D<
:N) thenellse out(i,j)=1n (ipj) end  if end  if ただし. in(i,j)は入力画像,out(i,j
)は出力画像、Nは定数(例えばN=8)である.第3
図は第1図の復元回路13の動作手順を表わす機能ブロ
ック図である.第3図において,30は入力信号,31
は2次微分回路,32は1次微分回路,33はコンボリ
ューション回路,34, 35, 36. 37は乗算
器,38は加算器、39は出力信号である.第1図の平
滑化回路12の出力信号を第3図の復元回路l3の入力
信号30として、2次微分回路31で入力信号30の2
次微分を計算し,1次微分回路32で入力信号30の1
次微分を計算し、コンボリューション回路33で入力信
号30のコンボリューションを計算し、それぞれ2次微
分を乗算器34でk.倍し,1次微分を乗算器34でk
2倍し、コンボリューションを乗算器36でk4倍し、
入力信号30を乗算器37でk3倍し、これらの4つの
信号を加算器38で加算し出力信号39を次のように得
る。
The processing contents of the smoothing circuit 12 described above are summarized as follows. A=max(in(i-1,j-1)win(i L
jLin(i Lj+ILtn(it.i-t)t
in(i, j), in(i, j+1), in(1
+1,j-1), in(i+1,j), in(i+
l, j + 1)) B = min (same as above)
}if(A-B≦N) t
hen C=max(in(i−LjL in(iJ+ in(
t+t,j))1++in(in(i-Lj),in(
iyjL in(i+1,j))D=max(in(i
, j-1), tn(i, j), in(i, j+1)
)−win(in(Lj t), in(iJ+ i
n(i,j+1))if(C≦D.AND.C≦N)
thenelse if(C>D.AND.D<
:N) thenellse out (i, j)=1n (ipj) end if end if However. in(i,j) is the input image, out(i,j
) is the output image, and N is a constant (for example, N=8). Third
The figure is a functional block diagram showing the operating procedure of the restoration circuit 13 shown in FIG. In Fig. 3, 30 is an input signal, 31
is a second-order differential circuit, 32 is a first-order differential circuit, 33 is a convolution circuit, 34, 35, 36. 37 is a multiplier, 38 is an adder, and 39 is an output signal. The output signal of the smoothing circuit 12 of FIG. 1 is used as the input signal 30 of the restoration circuit l3 of FIG.
The first-order differential circuit 32 calculates the first differential of the input signal 30.
A convolution circuit 33 calculates a convolution of the input signal 30, and a multiplier 34 calculates a second derivative. The multiplier 34 multiplies the first derivative by k
2, and the convolution is multiplied by k4 by multiplier 36,
The input signal 30 is multiplied by k3 in the multiplier 37, and these four signals are added in the adder 38 to obtain the output signal 39 as follows.

上記の復元回路l3による検出波形の劣化の復元は電子
線検出系の伝達関数の逆関数を用いる.第1図のシンチ
レータ5にYAPの単結晶を使用し,光電子増倍管7に
ヘッドオン型(浜松ホトニクスlIR 269)を使用
したときの電子線検出系の伝達関数G (s)は次式で
与えられることを実験で得てぃただし,AI =0.2
9, A4=0.24,τ, =0.02μS,τ2=
0.07μs,τ3=1.5μS,τp=0.15μS
よって復元の伝達関数すなわち電子線検出系(信号伝達
系)の伝達関数G (s)の逆関数H (s) = 1
/G(s)は, として求められる.ただし、 I(s)=(Azt+ t2+(1−AI−A4)tz
ts+A+tst+)s”+((A1+A2)tt+(
1−AI)tz+(1−A2)ts)s+1である.こ
れに数値を代入すれば、 となる.この入力信号30の劣化画像の信号y (t)
のラプラス変換をY(s),出力信号39の復元画像の
信号x (t)のラプラス変換をX (g)とすると、
X(s)=H(s) ・Y(s)          
(7)が成り立つ.式(7)に式(6)を代入して逆ラ
ブラス変換すると、 h (t)=−0.223e−’゜870t +11.
60−19゜7t  (8)/を得る.式(8)が求め
る復元式である.式(8)を離散形にするため微分を差
分に直し,積分を積和に直すと, +ksy(t)十年h(t−i●Δt)・y(i●Δt
)・Δtl:O ただし,Δt:信号のサンプリング間隔,n=一Δt である.ここでサンプリング周波数を15MHzすなわ
ちサンプリング間隔Δt=0.067μsとする.第4
図は第3図の復元回路13の上記の復元式(8)中の式
(8)′の関数h (t)のグラフであり,横軸は時間
t〔μS〕で,縦軸はh (t)の値である.第4図に
おいて,この関数h (t)の値はtが増加すると零に
漸近しているため,tがある値以上のときにh (t)
 = Oと近似できる.このため復元式(8)の第4項
のコンボリューションは積分間を限定できる.よって式
(9)はさらに、 ただし. k,=0.00540, k2=0.275
, k3=0.665倍し、1次微分回路32の出力を
乗算器35でk2倍し、コンボリューション回路33の
出力を乗算器36と変形できる。またコンボリューショ
ンの項を省略して、さらに1P一純化すると、 + k3y (t)                
     (11)となる。上記の復元式(10). 
(1.1)により劣化波形y (t)が復元波形x (
t)に復元できる。
The restoration of the deterioration of the detected waveform by the restoration circuit 13 described above uses an inverse function of the transfer function of the electron beam detection system. When a YAP single crystal is used as the scintillator 5 in Fig. 1 and a head-on type (Hamamatsu Photonics IR 269) is used as the photomultiplier tube 7, the transfer function G (s) of the electron beam detection system is expressed by the following equation. Obtain what is given by experiment. However, AI = 0.2
9, A4=0.24,τ, =0.02μS,τ2=
0.07μs, τ3=1.5μS, τp=0.15μS
Therefore, the restoration transfer function, that is, the inverse function of the transfer function G (s) of the electron beam detection system (signal transfer system) H (s) = 1
/G(s) is obtained as. However, I(s)=(Azt+t2+(1-AI-A4)tz
ts+A+tst+)s”+((A1+A2)tt+(
1-AI)tz+(1-A2)ts)s+1. Substituting a numerical value into this results in . Signal y (t) of the degraded image of this input signal 30
Let Y(s) be the Laplace transform of the output signal 39, and let X(g) be the Laplace transform of the signal x(t) of the restored image of the output signal 39.
X(s)=H(s) ・Y(s)
(7) holds true. Substituting equation (6) into equation (7) and performing inverse Labrass transformation, h (t)=-0.223e-'°870t +11.
60-19°7t (8)/ is obtained. Equation (8) is the restoration equation required. In order to make Equation (8) into a discrete form, we convert the differential to a difference and the integral to a sum of products. +ksy(t) 10 years h(ti●Δt)・y(i●Δt
)・Δtl:O where Δt: signal sampling interval, n=−Δt. Here, the sampling frequency is assumed to be 15 MHz, that is, the sampling interval Δt=0.067 μs. Fourth
The figure is a graph of the function h (t) of equation (8)' in the restoration equation (8) of the restoration circuit 13 in FIG. 3, where the horizontal axis is time t [μS] and the vertical axis is h ( t). In Figure 4, the value of this function h (t) approaches zero as t increases, so when t exceeds a certain value, h (t)
= It can be approximated as O. Therefore, the convolution of the fourth term in restoration equation (8) can limit the integral period. Therefore, equation (9) can be further written as follows. k,=0.00540, k2=0.275
, k3=0.665, the output of the first-order differentiation circuit 32 is multiplied by k2 by the multiplier 35, and the output of the convolution circuit 33 can be transformed into the multiplier 36. Also, if we omit the convolution term and further simplify 1P, we get + k3y (t)
(11). The above restoration formula (10).
(1.1), the degraded waveform y (t) is transformed into the restored waveform x (
t).

上記の復元式(10)により、第3図の復元回路13の
動作内容は、平滑回路12の出力信号y (t)を入力
信号30として2次微分回路31で信号y (t)の2
次微分を式(10)の第1項により計算し、1次微分回
路32で信号y (t)の1次微分を式(10)の第2
項より計算し,コンボリューション回路33で信号y 
(t)のコンボリューションを式(10)の第3項の(
10)により2次微分回路31の出力を乗算器34でk
.器37でk3倍し、これらの4つの信号を加算器38
で加算することにより、式(10)の復元信号x (t
)を出力信号39として得る。
According to the above restoration formula (10), the operation of the restoration circuit 13 shown in FIG.
The first differential of the signal y (t) is calculated using the first term of equation (10), and the first differential of the signal y (t) is calculated using the first term of equation (10).
The convolution circuit 33 calculates the signal y
The convolution of (t) is the third term of equation (10) (
10), the output of the second-order differentiation circuit 31 is converted to k by the multiplier 34.
.. The adder 38 multiplies these four signals by k3.
By adding the restored signal x (t
) is obtained as the output signal 39.

第5図は第3図の復元回路13のステップ応答に対する
入力信号30の劣化波形y (t)とその出力信号39
の復元波形x (t)を示すグラフである。第5図にお
いて、上記の復元式(to), (11)による復元波
形x (t)でかなり劣化波形y (t)が復元されて
いる。この復元回路l3で復元した信号x(t)を表示
回路14によりDA変換しブラウン管に画像表示する. 第6図は第1図(第2図)の平滑化回路l2の一実施例
の回路図である。第6図において、40は入力端子、4
1 a ,4l bはシフトレジスタ. 42a ,4
2b ,42c,42d,42e,42f,42g,4
2h,42iはレジスタ、43は加算器、44は除算器
、45は減算器、47は絶対値計算器、48は加算器、
49はメモリ、50は比較器,51は切替器、52は出
力端子で,それぞれ図示するように接続されている.第
6図の入力端子40のAD変換器11よりの入力信号か
らシフトレジスタ41a, 4lbとレジスタ42a〜
42iにより3×3画素の局所領域を切り出す。この3
×3画素の信号値y,の平均値を求めるため、加算器4
3でレジスタ42a〜42iの出力の総和を求め、除算
器44で該総和とメモリ45に格納されている定数K.
=9との商を求める。上記の第2図の説明では信号レベ
ル変動を局所領域内の最大値と最小値との差で評価した
が、ここでは分散σ′で評価し,分散σ′を、 σ′=年 ly+  yl 1=1 で与えた。第6図のレジスタ42a〜42iの出力と除
算器44の出力yから、減算器46と絶対値計算器47
と加算器48により式(12)の分散σ′を算出する。
FIG. 5 shows the degraded waveform y (t) of the input signal 30 and its output signal 39 with respect to the step response of the restoration circuit 13 in FIG.
It is a graph showing the restored waveform x (t) of . In FIG. 5, the degraded waveform y (t) is considerably restored by the restored waveform x (t) according to the above restoration formula (to), (11). The signal x(t) restored by the restoration circuit 13 is converted into DA by the display circuit 14 and displayed as an image on the cathode ray tube. FIG. 6 is a circuit diagram of an embodiment of the smoothing circuit l2 of FIG. 1 (FIG. 2). In FIG. 6, 40 is an input terminal;
1a, 4lb are shift registers. 42a, 4
2b, 42c, 42d, 42e, 42f, 42g, 4
2h, 42i are registers, 43 is an adder, 44 is a divider, 45 is a subtracter, 47 is an absolute value calculator, 48 is an adder,
49 is a memory, 50 is a comparator, 51 is a switch, and 52 is an output terminal, which are connected as shown in the figure. From the input signal from the AD converter 11 to the input terminal 40 in FIG. 6, shift registers 41a, 4lb and registers 42a to
A local region of 3×3 pixels is cut out using 42i. This 3
In order to obtain the average value of the signal value y of ×3 pixels, the adder 4
3 calculates the total sum of the outputs of the registers 42a to 42i, and a divider 44 calculates the total sum and a constant K.3 stored in the memory 45.
Find the quotient with =9. In the explanation of Fig. 2 above, the signal level fluctuation was evaluated by the difference between the maximum value and the minimum value in the local area, but here it is evaluated by the variance σ', and the variance σ' is expressed as: σ'=year ly+yl 1 = 1. From the outputs of the registers 42a to 42i in FIG. 6 and the output y of the divider 44, a subtracter 46 and an absolute value calculator 47
and the adder 48 calculates the variance σ' of equation (12).

この分敗σ′とメモリ49に格納されている所定の定数
K2とを比較器50で大小比較する。その比較結果がσ
′〉K2のときにはレジスタ42eの内容をそのままシ
フトレジスタ49aにより出力端子52へ出力するよう
に切替器51を切り替え、σ′≦K2のときには除算器
44の局所領域の平均値yをシフトレジスタ49bによ
り出力端子52へ出力するように切替器51を切り替え
る.このシフトレジスタ49a,49bは比較器50の
出力とレジスタ42eの出力または除算器44の出力の
タイミングをとるために入れる.この回路構成の動作に
より非線形な平滑化処理を実時間で実行できる。
A comparator 50 compares this division σ' with a predetermined constant K2 stored in the memory 49. The comparison result is σ
'>K2, the switch 51 is switched so that the contents of the register 42e are output as they are to the output terminal 52 by the shift register 49a, and when σ'≦K2, the average value y of the local area of the divider 44 is outputted to the output terminal 52 by the shift register 49b. The switch 51 is switched to output to the output terminal 52. These shift registers 49a and 49b are inserted to set the timing between the output of the comparator 50 and the output of the register 42e or the output of the divider 44. The operation of this circuit configuration allows nonlinear smoothing processing to be performed in real time.

第7図は第1図(第3図)の復元回路13の一実施例の
回路図である。第7図において、60は入力端子、61
a , 6lb , 61cはレジスタ、62a , 
62b ,62cは減算器、63は加算器、64a ,
 64b , 64cはメモリ. 65a , 65b
 , 65cは乗算器、66a , 66b ,66 
Q T − + 66mはメモリ、67a , 67b
 , 67c , −67mは乗算器、68a , 6
8b , −, 68m−+はレジスタ、69a , 
69b ,++, 69m−1は加算器,70a,70
b,70c,70dはシフトレジスタ、71は加算器、
72は出力端子で,それぞれ図示するように接続されて
いる.第7図の復元回路13は,上記の復元式(10)
を信号列により表現に改めると、 x (i) = A+ (y(i+1) − 2y(i
) +y(i−1)) + A2 (y(i+1) −
y(i−1))ただし、AH =kI/Δt’,A2=
k2/2・Δt* A3=k3yとなり、この復元式(
l3)により復元処理する回路である.この復元回路1
3の入力端子60に平滑化回路l2からの信号y (i
)を入力し,レジスタ61a,6lb,61cに信号y
 (x+1) t y (1) e y b−1)を格
納する.これより減算器62a,62bと加算器63に
より式(13)の第1項のy (i+1) −2y(i
) +y(i−1)を算出し,さらにメモリ64aに格
納されている定数A1と乗算器65aにより乗算し第↓
項のA+ (y(i÷1)−2y(i) +y(i−1
))を得る.同様に減算器62cとメモリ64bの定数
A2と乗算器65bにより第2項のA2 (y(i+1
)  y(i−1))を算出し,メモリ64cの定数A
3と乗算器65cにより第3項のAs y (1)を算
出する.また入力信号y (i)のコンボリュー路は定
数K I( K g − K ra )を格納している
メモリ66(668〜66m)と乗算器67 (67a
〜67m)とレジスタ68 (68 a 〜6g+a−
1)と加算器69 (69 a 〜69m− 1 )よ
り構成されている.これらの乗算器65a〜65cと加
算器69m−sの出力をシフトレジスタ70a〜70d
でタイミングをとり、加算器71で総和すると出力端子
72に復元式(l3)の復元信号x (i)を出力する
. 第8図は第1図のシンチレータ5のない状態の電子線検
出系の応答特性を測定する方法を示す構成図である.第
8図において,第1図と同一符号は相当部分を示し, 
16は発光ダイオード、l7は電源,18は点滅回路,
19はメモリである.第1図の電子線検出系の構成要素
のうち応答特性の悪いものはシンチレータ5と光電子増
倍管7である。そこでまずシンチレータ5のない状態で
電子線検出系の応答特性を測定する.これには第8図に
示すように光電子増倍管7の受光面に設置した発光ダイ
オード16を電源17と点滅回路18により点滅させる
。この発光ダイオード16の代りにランプを用いてもよ
いし,発光ダイオード16を点滅させるのではなく発光
ダイオード16と光電子増倍管7の間にシャッターを挿
入し該シャッターを開閉してもよい。このときの光電子
増倍管7の出力を増幅器8で増幅し、AD変換器l1で
所定のサンプリング周波数で量子化し、メモリ19に取
り込む.このメモリ19から信号を読み出し,ステップ
応答の信号波形を精度よく近似する伝達関数G(3)を
求める。
FIG. 7 is a circuit diagram of one embodiment of the restoration circuit 13 of FIG. 1 (FIG. 3). In FIG. 7, 60 is an input terminal, 61
a, 6lb, 61c are registers, 62a,
62b, 62c are subtracters, 63 is an adder, 64a,
64b and 64c are memories. 65a, 65b
, 65c is a multiplier, 66a, 66b, 66
Q T - + 66m is memory, 67a, 67b
, 67c, -67m are multipliers, 68a, 6
8b, -, 68m-+ are registers, 69a,
69b, ++, 69m-1 are adders, 70a, 70
b, 70c, 70d are shift registers, 71 is an adder,
72 is an output terminal, which is connected as shown in the figure. The restoration circuit 13 in FIG. 7 is based on the above restoration formula (10).
When expressed by a signal sequence, x (i) = A+ (y(i+1) − 2y(i
) +y(i-1)) + A2 (y(i+1)-
y(i-1)) However, AH = kI/Δt', A2=
k2/2・Δt* A3=k3y, and this restoration formula (
This is a circuit that performs restoration processing using 13). This restoration circuit 1
A signal y (i
) and input the signal y to registers 61a, 6lb, 61c.
(x+1) ty (1) ey b-1) is stored. From this, the subtracters 62a, 62b and the adder 63 calculate y (i+1) −2y(i
) +y(i-1) is calculated, and further multiplied by the constant A1 stored in the memory 64a and the multiplier 65a, and the result is ↓
Term A+ (y(i÷1)-2y(i) +y(i-1
)) is obtained. Similarly, the second term A2 (y(i+1
) y(i-1)) and set the constant A in the memory 64c.
3 and the multiplier 65c to calculate the third term As y (1). Further, the convolution path of the input signal y (i) is formed by a memory 66 (668 to 66m) storing a constant K I (K g − K ra ) and a multiplier 67 (67 a
~67m) and register 68 (68a ~6g+a-
1) and an adder 69 (69a to 69m-1). The outputs of these multipliers 65a to 65c and adders 69ms are transferred to shift registers 70a to 70d.
When the timing is determined by the adder 71 and the sum is performed by the adder 71, the restored signal x (i) of the restoration formula (l3) is outputted to the output terminal 72. FIG. 8 is a block diagram showing a method for measuring the response characteristics of the electron beam detection system without the scintillator 5 shown in FIG. In Figure 8, the same symbols as in Figure 1 indicate corresponding parts,
16 is a light emitting diode, l7 is a power supply, 18 is a blinking circuit,
19 is memory. Among the components of the electron beam detection system shown in FIG. 1, the scintillator 5 and photomultiplier tube 7 have poor response characteristics. Therefore, we first measured the response characteristics of the electron beam detection system without the scintillator 5. To do this, as shown in FIG. 8, a light emitting diode 16 installed on the light receiving surface of the photomultiplier tube 7 is blinked by a power source 17 and a blinking circuit 18. A lamp may be used instead of the light emitting diode 16, or a shutter may be inserted between the light emitting diode 16 and the photomultiplier tube 7 and the shutter may be opened and closed instead of blinking the light emitting diode 16. The output of the photomultiplier tube 7 at this time is amplified by an amplifier 8, quantized at a predetermined sampling frequency by an AD converter l1, and taken into a memory 19. The signal is read from this memory 19 and a transfer function G(3) that accurately approximates the signal waveform of the step response is determined.

光電子増倍管7にヘッドオン型(浜松ホトニクス製R 
269)を使用したとき,時定数τ,=0.15μSの
1次遅れ要素で近似できることが分った.よって伝達関
数GPMTは、 である. 第9図は第1図のシンチレータ5を付けた状態の電子線
検出系の応答特性を測定する方法を示す構成図である.
第9図において,29はナイフエッジである.第9図の
シンチレータ5の前にナイフエッジ29を設置し.tt
t子線15を走査する.このナイフエッジ29は電子顕
微鏡の分解能レベルで充分にシャープなエッジのものが
入手困難であるので,電子線15の走査速度を通常の走
査速度より速くすることにより,シンチレータ5に入射
する電子線15をシャープなステップ入力にする.入射
する電子線l5はシンチレータ5で光に変換され、ライ
トガイド6で光電子増倍管7の受光面に導かれ、光電子
増倍管7で電気信号に変換され、増幅器8で増幅し、A
D変換器11で所定のサンプリング周波数で量子化し,
メモリ19に取り込む.このメモリ19から読み出した
信号は電子線検出系のシンチレータ5と光電子増倍管7
と増幅器8とAD変換器11の応答特性により波形が鈍
っている.ここで光電子増倍管7と増幅器8とAD変換
器1lによる応答遅れは1次遅れ要素で近似できるので
(式(14))、電子線検出系の全体の応答特性はシン
チレータ5の伝達関数と1次遅れ要素の積となる.シン
チレータ5にYAPの単結晶を使用すると、この電子線
検出系の応答特性は上記の式(5)の伝達関数G(8)
のように, で近似できた. 第10図は第1図(第9図)の上記シンチレータ5と光
電子増倍管7と増幅器8とAD変換器11を含む電子線
検出系の応答曲線を示すグラフであり、横軸は時刻〔μ
S〕で,縦軸は応答出力(相対値)である.第10図に
おいて、実験値によるステップ応答特性(丸印)と式(
5)の伝達関数G (s)による応答曲線(実線)とは
よく一致している, 第11図(a), (b), (C), (d)は第1
図の電子線検出画像(パターン波形)を示す波形図であ
る.第11図(a)はX線マスク試料4の走査線方向パ
ターンを示し、54はメンブレン、55はパターン、5
6は黒点欠陥,57は白点欠陥,58は走査線である.
第11図(b)はAD変換器11の出力波形,第11図
(c)はそのAD変換器11の出力の復元回路13によ
る復元波形、第11図(d)は平滑化回路l2の出力の
復元回路13による復元波形をそれぞれ示す.第11図
(a)のよにX線マスクを試料4としてメンブレン54
とパターン55にまたがって走査線58の方向に電子線
15を走査する場合には、例えばメンブレン54上には
黒点欠陥56があってパターン55上には白点欠陥57
がある。この場合に走査線58に沿って電子線15を走
査して得られた電子線検出系のAD変換器l1の出力波
形は第11図(b)に示すように電子線検出系の応答遅
れのために波形が鈍っている。このため黒点欠陥56と
白点欠陥57の検出信号振幅は小さくて欠陥56. 5
7を十分に検出できない。これに対して本発明の検出画
像(波形)の復元方法により電子線検出系の伝達関数G
(s)の逆関数より復元回路13で画像復元した波形は
第11図(C)に示すように波形の鈍りがなく、欠陥5
6. 57の検出振幅も大きいが、ただし微゛分処理で
あるためノイズの増加が著しい.したがって更に電子線
検出系のAD変換器11の出力を平滑化回路12で非線
形の平滑化処理をした画像に対して復元回路13で伝達
関数G (s)の逆関数による復元処理をした波形は第
11図(d)に示すようにノイズの増加を抑えて波形の
鈍りを復元しており,よって欠陥56. 57をノイズ
に埋れることなく十分に検出できる効果が見られる.第
12図は本発明による走査型電子顕微鏡を用いたパター
ン外観検査装置の一実施例を示す構成図である. 第12図において、第1図の走査型透過電子顕微鏡を用
いたX線マスクパターン外観検査装置の例を示し、第1
図と同一符号は相当部分を示すものとし、75は電子検
出器、76はステージ,77はステージ制御回路,78
は濃淡階調変換回路, 79 a ,79b,79c 
, 79d , 79eは2値化回路,80a , 8
0bは位置ずれ検出回路.81a,8lbは画像シフト
回路、82は記憶装fi(CADデータ),82a ,
 82bは画素サイズ変換回路、83は読出回路、83
a,83bは画面分割回路、84は画像信号発生器,8
5はコーナ丸め回路,86は多値化回路、87は画像比
較回路、88はメモリ(欠陥)で,それぞれ図示するよ
うに接続されている.本実施例のパターン外観検査装置
は第1図の走査型透過電子顕微鏡で検出した試料4のX
線マスクパターンの電子線画像と記憶装置82に記憶さ
れているX線マスクパターンの描画データであるCAD
データから発生させた理想パターンとを比較し,不一致
部を欠陥として描出する設計パターン比較方式のもので
ある.第12図の電子銃1と、走査コイル2と、電子レ
ンズ3と,f!!子線検出器75と,増幅器8と、偏向
回路9と、同期回路10と.AD変換器l1は通常の走
査型透過電子顕微鏡の構成要素であり,本発明による平
滑化回路12と、復元回路13と共に第1図で説明した
通りである.また走査型透過電子顕微鏡の視野は試料4
のX線マスクの検査領域より狭いため、試料4をステー
ジ76に載せてステージ制御回路77によりステップア
ンドリピートで検査領域前面を検査する. 上記の走査型透過電子顕微鏡の復元回路13の出力の電
子線画像を濃淡階調変換回路78に入力し、X線マスク
のパターン部およびメンブレン部の平均の明るさが基準
値になるように濃度階調を変換する.この画像のパター
ン部の平均濃度値をp、その基準値をp′とし、メンブ
レン部の平均濃度値をm、その基準値をm′とし,元の
画像の濃度値を2,変換後の画像の濃度値を2′とする
と,濃度階調変換を次式で与えた. 二二でパターン部の平均濃度値pとメンブレン部の平均
濃度値mは検出画像のヒストグラムより容易に求められ
る.一方の記憶装置82に記憶されているパターン描画
用のCADデータを読出回路83で読み出し、画像信号
発生器84により上記走査型透過電子顕微鏡の試料4の
検出位置に対応するマスクパターンの基準画像(理想画
像)を作成する.とこで実際の試料4のマスクパターン
はコーナ部が丸まっており,この丸いコーナを欠陥とし
て検出しないために,画像信号発生器84の基準画像を
コーナ丸め回路85に入力してコーナを丸める.さらに
検出画像と濃淡画像比較するために,多値化回路86に
より2値画像を濃淡画像に変換する.この変換処理は点
拡り関数PSFにガウス分布を仮定したぼかしフィルタ
を使うとよい.この場合に入力画像をf(x*y)、出
力画像をg(x* y),PSFをh(xyy)とする
と、変換式は,σl:分散 となる.この基準画像(2値画像)を滑らかな濃度変化
を持つ濃淡画像に変換するために、検出画素サイズより
小さい画素サイズで基準画像を変換した後に画素をサン
プリングして検出画素サイズと一致させるとよい. 次に濃淡階調変換回路78の出力である検出画像と多値
化回路86の出力である基準画像をそれぞれ2値化回路
79a,フ9bで2値画像にして,位置ずれ検出回路8
0aで2つの画像の位置ずれ量を計算し、画像シフト回
路81aで検出画像の位置合せを行う.さらに微少な欠
陥を検出するために,画素サイズ変換回路82a,82
bにより画素サイズを半分(例えば0.05μm/pi
xから0.025μs/pix)にする.この変換処理
は1画素を4画素に分割するもので処理式は、 a=(9A+3B+3C+D)/16 b =(9 B + 3 A+ 3 D+C)/16 
       (16)c=(9C+3D+3A+B)
/16 b=(9D+3C:+38+A)/16ただし.A,B
,C,D:変換前の画素の明るさa g b @ Q 
g d :変換後の画素の明るさとなる.そこで走査型
透過電子顕微鏡の検出画像には画像歪があるため,もう
一度位置合せする.そのさい両素歪があると画面全体に
対して位置合せしても画面全体が平均的に位置合せされ
たにすぎず、画面各部については更に個別に位置合せが
可能であるため、画面を分割して該分割した各画面に対
し再度に2値化して位置合せを行う.これより画面分割
回路83a,83bでそれぞれ検出画像と基準画像を画
面分割し,2値化回路79a,79dにより2値化し、
位置ずれ検出回路80bで2つの画像の画面の位置ずれ
量を求め、画像シフト回路8lbで検出画像の画面の位
置合せを行う.上記のように位置合せされた検出画像と
基準画像とを画像比較回路87で濃淡画像比較し,その
差画像を2値化回路79eで2値化し、不一致部の座標
を欠陥としてメモリ88に格納する.この画像比較回路
87の濃淡画像比較アルゴリズムには、局所摂動パター
ンマッチング法が好適である.局所摂動パターンマッチ
ング法は、基準画像に対して検出画像を局所領域毎にx
y平面および明るさ方向に合せ込んでいき,合せきれな
い部分を欠陥として抽出するアルゴリズムであって、判
定結果濃淡画像をD( x e y )、差分画像をS
*(xsy)、検出画像を” ( ” y y ) ,
基準画像をR ( x e y )とすると、ただし、
S+−Sa(xyy)=I(xyy)−R(x”Ly”
x),(i,j)−(−1.0),(1.0)−(0,
−1),(0.1)SsNSs(xyy)=I(x−y
)−(()lΣ:1)H(x−y)÷R(x+x,y+
j))/ )lクー*(itj)=(−L−t),(一
t,t)tQ,−t)*Q,oSs〜S+o(xpy)
= I (x,y)−R(Xty).±αで与えられる
. 第13図は本発明による走査型透過電子顕微鏡を用いた
パターン外観検査装置の他の実施例を示す構成図である
。第13図において,第1図の走査型透過電子顕微鏡を
用いたX線マスクパターン外観検査装置の他の例を示し
、第12図と同一符号は相当部分を示し、89は応答特
性付加回路である。本実施例のパターン外観検査装置の
第12図の実施例との相違点は,第12図は走査型透過
電子顕微鏡の検出画像を平滑化回路l2と復元回路13
により復元していたのに対し、第13図は走査型透過電
子顕微鏡の検出画像を復元するのではなく記憶装置82
に記憶されているCADデータから発生させた基準画像
(理想画像)に対し応答特性付加回路89により走査型
透過電子顕微鏡の電子線検出系の応答特性を付加するこ
とである.この応答特性付加回路89は上記の電子線検
出器75と増幅器8とAD変換器11を含む電子線検出
系の応答特性の伝達関数G(S)、 に従い、基憎画像の波形を鈍らす。この伝達関数G(s
)の逆ラプラス変換すなわちインパルス応答g (t)
は, となる。出力信号y (t)は入力信号x (t)とイ
ンパルス応答g (t)により, とコンボリューションで表わせる.これを離散形にする
と、 ただし,Δt:信号のサンプリング間隔となる.よって
応答特性付加回路89は式(21)を実現する回路構成
とすればよく、例えばコンボリューション和を計算する
デジタルシグナルプロセッサDSPあるいは第14図に
示す回路とすればよい.他は第12図と同様である. 第14図は第13図の応答特性付加回路89のコンボリ
ューション和を計算する回路図である.第14図におい
て、101は入力端子,102a , 102b , 
102c ,−,102nはメモリ,103a , 1
03b , 103c , −103nは乗算器、10
4 a , 104 b , − , 104,−1は
レジスタ、105a , 105b ,−・−, io
so−,は加算器,106は出力端子である.第14図
の入力端子101に入力された信号x (t)はメモリ
102(102 a 〜102 n )に格納されてい
る係数K.=Δt−g(i・Δt)の係数KG〜Knと
乗算器103 (103a 〜103n )により乗算
され,レジスタ104 (104a〜104n−+)で
ディレイされながら加算器105 (105 a −L
O51+−+ )により加算されることにより,出力端
子106に式(21)によるコンボリューション和の信
号y (t)が出力される.第15図は本発明による画
像復元方法を用いた走査像検出装置の一実施例を示す楕
成図である。第15図において,本発明の画像復元方法
を用いた走査像検出装置のレーザ走査顕微鏡の例を示し
、第1図と同一符号は相当部分を示すものとし、90は
レーザ、91aは偏向器,92は駆動回路、93はハー
フミラー,94はレンズ、95は光検出器である。第1
5図のレーザ90から出力されたレーザ光は偏向器(例
えばガルバノミラー)91aとレンズ94により試料4
上にスポットに絞られて走査される。この試料4で反射
されたレーザ光はハーフミラー93で光検出器95に導
かれ、電気信号に変換される。この光検出器95は例え
ばホトダイオードか、ホトトランジスタか,cdsか、
あるいは光電子増倍管などである。変換された電気信号
は増幅器8で増幅され、AD変換器1lで量子化され,
平滑化回路12でノイズを低減し、復元回路13で画像
検出系の応答遅れによる波形の鈍り劣化を復元し、表示
回路14に表示される.このとき同期回路10に同期し
て駆動回路92で駆動回路される偏向器91aにより偏
向されるレーザ光の走査と、同期回路10により同期さ
せて表示回路14に表示することにより2次元の映像が
得られる。上記の光検出器95と,増幅器8と、AD変
換器11からなる画像検出系の伝達関数G (s)は1
次遅れ要素で, G(s)=、Ps+1(22) と近似できる。よって復元式は、 X(s)=(τps + 1)Y(s)       
(23)となりこれを逆ラプラス変換して、 x(t)=τpy’(t)+ y (t)      
 (24)となる。よって復元回路13は第16図(a
), (b)に示す回路構成で実現される。
Head-on type photomultiplier tube 7 (Hamamatsu Photonics R)
269), it was found that it can be approximated by a first-order delay element with a time constant τ, = 0.15 μS. Therefore, the transfer function GPMT is. FIG. 9 is a block diagram showing a method for measuring the response characteristics of the electron beam detection system with the scintillator 5 shown in FIG. 1 attached.
In Figure 9, 29 is a knife edge. A knife edge 29 is installed in front of the scintillator 5 shown in FIG. tt
Scan the t-satellite line 15. Since it is difficult to obtain a knife edge 29 with a sufficiently sharp edge at the resolution level of an electron microscope, by making the scanning speed of the electron beam 15 faster than the normal scanning speed, the electron beam 15 incident on the scintillator 5 can be Makes a sharp step input. The incident electron beam l5 is converted into light by the scintillator 5, guided to the light receiving surface of the photomultiplier tube 7 by the light guide 6, converted to an electric signal by the photomultiplier tube 7, amplified by the amplifier 8, and then
The D converter 11 quantizes at a predetermined sampling frequency,
Import into memory 19. The signals read from this memory 19 are sent to the scintillator 5 and photomultiplier tube 7 of the electron beam detection system.
The waveform is dull due to the response characteristics of the amplifier 8 and AD converter 11. Here, the response delay due to the photomultiplier tube 7, amplifier 8, and AD converter 1l can be approximated by a first-order delay element (Equation (14)), so the overall response characteristic of the electron beam detection system is the transfer function of the scintillator 5. It is the product of first-order lag elements. When a single crystal of YAP is used as the scintillator 5, the response characteristic of this electron beam detection system is expressed by the transfer function G(8) of the above equation (5).
It can be approximated by , as in . FIG. 10 is a graph showing the response curve of the electron beam detection system including the scintillator 5, photomultiplier tube 7, amplifier 8, and AD converter 11 in FIG. 1 (FIG. 9), and the horizontal axis is the time [ μ
S], and the vertical axis is the response output (relative value). In Figure 10, the step response characteristics (circles) based on experimental values and the equation (
Figures 11 (a), (b), (C), and (d) are in good agreement with the response curve (solid line) due to the transfer function G (s) of 5).
It is a waveform diagram showing the electron beam detection image (pattern waveform) shown in the figure. FIG. 11(a) shows a pattern in the scanning line direction of the X-ray mask sample 4, where 54 is a membrane, 55 is a pattern, and 5
6 is a black spot defect, 57 is a white spot defect, and 58 is a scanning line.
11(b) is the output waveform of the AD converter 11, FIG. 11(c) is the restored waveform of the output of the AD converter 11 by the restoration circuit 13, and FIG. 11(d) is the output of the smoothing circuit l2. The restored waveforms by the restoration circuit 13 are shown respectively. As shown in FIG. 11(a), the X-ray mask is used as sample 4, and the membrane 54 is
When scanning the electron beam 15 in the direction of the scanning line 58 across the pattern 55, for example, there is a black spot defect 56 on the membrane 54 and a white spot defect 57 on the pattern 55.
There is. In this case, the output waveform of the AD converter l1 of the electron beam detection system obtained by scanning the electron beam 15 along the scanning line 58 is as shown in FIG. Therefore, the waveform is dull. Therefore, the detection signal amplitudes of the black spot defect 56 and the white spot defect 57 are small, and the detection signal amplitude of the black spot defect 56 and the white spot defect 57 is small. 5
7 cannot be detected sufficiently. In contrast, the detection image (waveform) restoration method of the present invention allows the transfer function G of the electron beam detection system to be
The waveform restored by the restoration circuit 13 using the inverse function of (s) has no waveform dullness as shown in FIG.
6. The detection amplitude of 57 is also large, but since it is a differential process, the noise increases significantly. Therefore, the waveform obtained by further processing the output of the AD converter 11 of the electron beam detection system through nonlinear smoothing processing using the smoothing circuit 12 and performing restoration processing using the inverse function of the transfer function G (s) using the restoration circuit 13 is As shown in FIG. 11(d), the increase in noise is suppressed and the waveform dullness is restored, so that defect 56. 57 can be sufficiently detected without being buried in noise. FIG. 12 is a configuration diagram showing an embodiment of a pattern appearance inspection apparatus using a scanning electron microscope according to the present invention. FIG. 12 shows an example of an X-ray mask pattern visual inspection apparatus using the scanning transmission electron microscope shown in FIG.
The same symbols as in the figure indicate corresponding parts, 75 is an electronic detector, 76 is a stage, 77 is a stage control circuit, 78
are gray level conversion circuits, 79a, 79b, 79c
, 79d, 79e are binarization circuits, 80a, 8
0b is a positional deviation detection circuit. 81a and 8lb are image shift circuits, 82 is a storage device fi (CAD data), 82a,
82b is a pixel size conversion circuit, 83 is a readout circuit, 83
83a and 83b are screen dividing circuits; 84 is an image signal generator;
5 is a corner rounding circuit, 86 is a multi-level conversion circuit, 87 is an image comparison circuit, and 88 is a memory (defect), which are connected as shown in the figure. The pattern appearance inspection apparatus of this embodiment is a sample 4 detected by a scanning transmission electron microscope shown in FIG.
CAD which is the electron beam image of the ray mask pattern and the drawing data of the X-ray mask pattern stored in the storage device 82
This is a design pattern comparison method that compares an ideal pattern generated from data and depicts mismatched areas as defects. The electron gun 1, scanning coil 2, electron lens 3, and f! shown in FIG. ! A sub beam detector 75, an amplifier 8, a deflection circuit 9, a synchronization circuit 10, . The AD converter l1 is a component of a normal scanning transmission electron microscope, and is as described in FIG. 1 together with the smoothing circuit 12 and the restoration circuit 13 according to the present invention. In addition, the field of view of the scanning transmission electron microscope is sample 4.
Since the inspection area is narrower than the inspection area of the X-ray mask, the sample 4 is placed on the stage 76 and the stage control circuit 77 inspects the front of the inspection area in a step-and-repeat manner. The electron beam image output from the restoration circuit 13 of the scanning transmission electron microscope described above is input to the gradation conversion circuit 78, and the density is adjusted so that the average brightness of the pattern part and membrane part of the X-ray mask becomes the reference value. Convert the gradation. The average density value of the pattern part of this image is p, its reference value is p', the average density value of the membrane part is m, its reference value is m', the density value of the original image is 2, and the converted image Assuming that the density value of is 2', the density gradation conversion is given by the following equation. In 22, the average density value p of the pattern part and the average density value m of the membrane part can be easily obtained from the histogram of the detected image. The reading circuit 83 reads out the CAD data for pattern drawing stored in one of the storage devices 82, and the image signal generator 84 generates a reference image ( create an ideal image). The mask pattern of the actual sample 4 has rounded corners, and in order to prevent these rounded corners from being detected as defects, the reference image from the image signal generator 84 is input to a corner rounding circuit 85 to round the corners. Furthermore, in order to compare the detected image and the grayscale image, the binary image is converted into a grayscale image by the multivalue conversion circuit 86. For this conversion process, it is best to use a blurring filter that assumes a Gaussian distribution for the point spread function PSF. In this case, if the input image is f(x*y), the output image is g(x*y), and the PSF is h(xyy), the conversion formula is σl: variance. In order to convert this reference image (binary image) into a grayscale image with smooth density changes, it is recommended to convert the reference image with a pixel size smaller than the detection pixel size, and then sample the pixels to match the detection pixel size. .. Next, the detected image that is the output of the grayscale gradation conversion circuit 78 and the reference image that is the output of the multilevel conversion circuit 86 are converted into binary images by the binarization circuits 79a and 9b, respectively.
0a calculates the amount of positional deviation between the two images, and the image shift circuit 81a aligns the detected images. In order to detect further minute defects, pixel size conversion circuits 82a and 82
b reduces the pixel size by half (for example, 0.05 μm/pi
x to 0.025μs/pix). This conversion process divides one pixel into four pixels, and the processing formula is a = (9A + 3B + 3C + D) / 16 b = (9 B + 3 A + 3 D + C) / 16
(16)c=(9C+3D+3A+B)
/16 b=(9D+3C:+38+A)/16 However. A, B
, C, D: Brightness of pixel before conversion a g b @ Q
g d: Brightness of the pixel after conversion. Since there is image distortion in the image detected by the scanning transmission electron microscope, we need to align it again. At that time, if there is double elemental distortion, even if the entire screen is aligned, the entire screen will only be aligned on average, and each part of the screen can be aligned individually, so it is possible to divide the screen. Then, each divided screen is binarized again and aligned. From this, the detected image and the reference image are screen-divided by screen division circuits 83a and 83b, respectively, and binarized by binarization circuits 79a and 79d,
A displacement detection circuit 80b calculates the amount of displacement between the two images, and an image shift circuit 8lb aligns the detected images. The image comparison circuit 87 compares the detected image and the reference image aligned as described above, and the difference image is binarized by the binarization circuit 79e, and the coordinates of the mismatched part are stored in the memory 88 as a defect. do. The local perturbation pattern matching method is suitable for the grayscale image comparison algorithm of the image comparison circuit 87. In the local perturbation pattern matching method, the detected image is divided into x for each local area with respect to the reference image
This is an algorithm that performs matching in the y-plane and brightness direction, and extracts parts that cannot be matched as defects.
*(xsy), the detected image is "("y y),
If the reference image is R (x ey), then,
S+-Sa(xyy)=I(xyy)-R(x"Ly"
x), (i, j)-(-1.0), (1.0)-(0,
-1), (0.1)SsNSs(xyy)=I(x-y
)−(()lΣ:1)H(x−y)÷R(x+x,y+
j))/)lku*(itj)=(-L-t), (1t,t)tQ,-t)*Q,oSs~S+o(xpy)
= I (x,y)-R(Xty). It is given by ±α. FIG. 13 is a block diagram showing another embodiment of a pattern appearance inspection apparatus using a scanning transmission electron microscope according to the present invention. FIG. 13 shows another example of the X-ray mask pattern visual inspection apparatus using the scanning transmission electron microscope shown in FIG. 1, where the same reference numerals as in FIG. be. The difference between the pattern appearance inspection apparatus of this embodiment and the embodiment shown in FIG. 12 is that in FIG.
In contrast, in Fig. 13, the image detected by the scanning transmission electron microscope is not restored but is stored in the storage device 82.
The response characteristic adding circuit 89 adds the response characteristic of the electron beam detection system of the scanning transmission electron microscope to the reference image (ideal image) generated from the CAD data stored in the CAD data. This response characteristic adding circuit 89 dulls the waveform of the reference image according to the transfer function G(S) of the response characteristic of the electron beam detection system including the electron beam detector 75, amplifier 8, and AD converter 11 described above. This transfer function G(s
), that is, the impulse response g (t)
becomes . The output signal y (t) can be expressed by convolution with the input signal x (t) and the impulse response g (t). When this is made into a discrete form, Δt: signal sampling interval. Therefore, the response characteristic adding circuit 89 may have a circuit configuration that realizes equation (21), and may be, for example, a digital signal processor DSP that calculates a convolution sum or the circuit shown in FIG. 14. The rest is the same as in Figure 12. FIG. 14 is a circuit diagram for calculating the convolution sum of the response characteristic addition circuit 89 in FIG. 13. In FIG. 14, 101 is an input terminal, 102a, 102b,
102c, -, 102n are memories, 103a, 1
03b, 103c, -103n are multipliers, 10
4a, 104b, -, 104, -1 are registers, 105a, 105b, -・-, io
so- is an adder, and 106 is an output terminal. The signal x (t) input to the input terminal 101 in FIG. 14 is the coefficient K. =Δt−g(i・Δt) is multiplied by the coefficients KG to Kn by the multipliers 103 (103a to 103n), and then delayed by the registers 104 (104a to 104n−+) to the adder 105 (105a to L
O51+-+), the convolution sum signal y(t) according to equation (21) is output to the output terminal 106. FIG. 15 is an elliptical diagram showing an embodiment of a scanning image detection device using the image restoration method according to the present invention. In FIG. 15, an example of a laser scanning microscope of a scanning image detection device using the image restoration method of the present invention is shown, in which the same reference numerals as in FIG. 1 indicate corresponding parts, 90 is a laser, 91a is a deflector, 92 is a drive circuit, 93 is a half mirror, 94 is a lens, and 95 is a photodetector. 1st
The laser beam output from the laser 90 in FIG.
The image is narrowed down to a spot and scanned. The laser beam reflected by the sample 4 is guided by a half mirror 93 to a photodetector 95, where it is converted into an electrical signal. This photodetector 95 is, for example, a photodiode, a phototransistor, a CDS,
Or a photomultiplier tube, etc. The converted electrical signal is amplified by an amplifier 8, quantized by an AD converter 1l,
A smoothing circuit 12 reduces noise, a restoring circuit 13 restores waveform dullness caused by response delay in the image detection system, and the resulting image is displayed on a display circuit 14. At this time, a two-dimensional image is created by scanning the laser beam deflected by a deflector 91a driven by a drive circuit 92 in synchronization with the synchronization circuit 10 and displaying it on the display circuit 14 in synchronization with the synchronization circuit 10. can get. The transfer function G (s) of the image detection system consisting of the photodetector 95, amplifier 8, and AD converter 11 is 1
With the next lag element, it can be approximated as G(s)=, Ps+1(22). Therefore, the restoration formula is: X(s) = (τps + 1)Y(s)
(23), and by inverse Laplace transform, x(t)=τpy'(t)+y(t)
(24). Therefore, the restoration circuit 13 is
), (b).

第16図(a), (b)は第15図の復元回路l3の
実施例の回路図で,1lOは入力端子、111, ll
la, lllbはレジスタ、112は減算器,1l3
はメモリ、114は乗算器、115はシフトレジスタ,
l16は加算器、117は出力端子である.第16図(
a)は1次微分を前進(後進)差分に離散化した復元回
路l3の例であり、入力端子110に入力された信号は
レジスター11によりk番目の信号skと、k+1番目
の信号S k+1が選択され、減算器112でその差S
k+I  Skが計算され、メモリー13に格納されて
いる定数τP/Δtと乗算器114で乗算される.一方
のシフトレジスタ115で上記回路とタイミングをとっ
た信号skと乗算器114の出力が加算器116で加算
され、出力端子1】7に(τP/Δt)(Sk++−S
k)+Skが出力される.第16図(b)は1次微分を
中心差分で離散化した復元回路l3の例であり、入力端
子110に入力された信号からレジスタ111 a ,
11l bでk−1番目の信号Sk=1と、k番目の信
号skと,k+1番目の信号S k++が選択され,減
算器112により差S k+1−St+−tが計算され
、メモリ113に格納されている定数τP/(2・Δt
)と乗算器114で乗算される.一方のシフトレジスタ
115で上記回路とタイミングをとった信号skと乗算
器114の出力が加算器116で加算され,出力端子1
17に(τp/(2・Δt)) (Sk+I−St−t
)+Skが出力される.また平滑化回路l2は第6図の
回路構成とすればよい.第17図は本発明による画像復
元方法を用いた走査像検出装置の他の実施例を示す構成
図である.第17図において,本発明の画像復元方法を
用いた走査像検出装置の異物検査装置の例を示し、第1
図と第12図と第15図などと同一符号は相当部分を示
すものとし,9lbは偏向器、96は積分球,97は2
値化回路. 100は計算機である.第17図のレーザ
90から出力されたレーザ光は偏向器(例えばポリゴン
ミラー)9lbとレンズ94により試料4上でスポット
に絞られて走査される.この試料4の散乱光を積分球9
6で集め,光電子増倍管7で電気信号に変換し,増幅器
8で増幅し,平滑化回路l2でノイズを低減し,復元回
路13で画像検出系の応答遅れによる波形の鈍りを復元
する。試料4上に異物があると,異物からの散乱光が強
いため、復元回路l3で復元した波形を2値化回路97
により適切なしきい値で2値化することで異物を検出で
きる.この検出した異物の座標を計算機100に記録し
、異物の個数と座標を知ることができる.試料4の全面
を検査するために、試料4をステージ76に載せ、ステ
ージ制御回路77によりステージを移動させる.このさ
い計算機100により偏向器9lbの駆動回路92とス
テージ制御回路77を制御することにより、試料4の全
面を検査する。平滑化回路12と復元回路13はそれぞ
れ第6図と第16図(a) , (b)に示した回路構
成とする. 第18図は本発明に上る画像検出系の劣化画像の復元回
路l3の他の実施例の構成図である。第18図において
,逆フィルタによる復元回路l3の例を示し、120は
入力画像、121は平滑化回路、122はFFT回路、
123は逆フィルタ,124はFFT回路、125は出
力画像である.第18図の逆フィルタ123はノイズに
対して敏感であるため,劣化した波形を復元するには入
力画像120を平滑化回路121でノイズを除去する.
この平滑化回路121は例えば第2図または第6図の栂
成とすればよい。ここでノイズを除去した画像をFFT
回路122でフーリエ変換し,逆フィルタ123で画像
復元し.FFT回路124で逆フーリエ変換し,復元さ
れた出力画像125を得る.ここで劣化関数(画像検出
系の応答性)をGとすると,逆フィルタは1/Gである
FIGS. 16(a) and 16(b) are circuit diagrams of an embodiment of the restoration circuit l3 in FIG. 15, where 1lO is an input terminal, 111, ll
la, lllb are registers, 112 is a subtracter, 1l3
is a memory, 114 is a multiplier, 115 is a shift register,
l16 is an adder, and 117 is an output terminal. Figure 16 (
a) is an example of a restoration circuit l3 that discretizes a first-order differential into a forward (backward) difference; is selected, and the subtracter 112 calculates the difference S
k+I Sk is calculated and multiplied by the constant τP/Δt stored in the memory 13 in the multiplier 114. The signal sk synchronized with the above circuit in one shift register 115 and the output of the multiplier 114 are added in an adder 116, and the output terminal 1]7 is (τP/Δt)(Sk++−S
k)+Sk is output. FIG. 16(b) is an example of a restoration circuit l3 that discretizes the first-order differential using a central difference.
In 11l b, the k-1st signal Sk=1, the k-th signal sk, and the k+1st signal S k++ are selected, and the subtracter 112 calculates the difference Sk+1-St+-t, which is stored in the memory 113. The constant τP/(2・Δt
) is multiplied by the multiplier 114. The signal sk, which is timed with the above circuit in one shift register 115, and the output of the multiplier 114 are added in an adder 116, and the output terminal 1
17 (τp/(2・Δt)) (Sk+I-St-t
)+Sk is output. Furthermore, the smoothing circuit l2 may have the circuit configuration shown in FIG. FIG. 17 is a block diagram showing another embodiment of a scanning image detection device using the image restoration method according to the present invention. FIG. 17 shows an example of a foreign object inspection device of a scanning image detection device using the image restoration method of the present invention.
The same reference numerals as in the figure, Fig. 12, Fig. 15, etc. indicate corresponding parts, 9lb is a deflector, 96 is an integrating sphere, and 97 is a 2
Value conversion circuit. 100 is a calculator. A laser beam outputted from a laser 90 in FIG. 17 is focused to a spot on the sample 4 and scanned by a deflector (for example, a polygon mirror) 9lb and a lens 94. The integrating sphere 9
6, the photomultiplier tube 7 converts it into an electrical signal, the amplifier 8 amplifies it, the smoothing circuit 12 reduces noise, and the restoration circuit 13 restores the waveform dullness caused by the response delay of the image detection system. If there is a foreign object on the sample 4, the scattered light from the foreign object is strong, so the waveform restored by the restoration circuit 13 is converted to the binarization circuit 97.
Foreign objects can be detected by binarizing with an appropriate threshold. The coordinates of the detected foreign objects are recorded in the computer 100, and the number and coordinates of the foreign objects can be known. In order to inspect the entire surface of the sample 4, the sample 4 is placed on the stage 76, and the stage is moved by the stage control circuit 77. At this time, the entire surface of the sample 4 is inspected by controlling the drive circuit 92 of the deflector 9lb and the stage control circuit 77 by the computer 100. The smoothing circuit 12 and the restoration circuit 13 have the circuit configurations shown in FIG. 6 and FIGS. 16(a) and (b), respectively. FIG. 18 is a block diagram of another embodiment of the degraded image restoration circuit l3 of the image detection system according to the present invention. In FIG. 18, an example of a restoration circuit l3 using an inverse filter is shown, where 120 is an input image, 121 is a smoothing circuit, 122 is an FFT circuit,
123 is an inverse filter, 124 is an FFT circuit, and 125 is an output image. Since the inverse filter 123 in FIG. 18 is sensitive to noise, noise is removed from the input image 120 by a smoothing circuit 121 in order to restore the degraded waveform.
This smoothing circuit 121 may be, for example, the one shown in FIG. 2 or FIG. 6. Here, the image with noise removed is FFT
A circuit 122 performs Fourier transform, and an inverse filter 123 restores the image. The FFT circuit 124 performs inverse Fourier transform to obtain a restored output image 125. Here, if the deterioration function (responsiveness of the image detection system) is G, then the inverse filter is 1/G.

第19図は本発明による画像検出系の劣化画像の復元回
路13のさらに他の実施例の構成図である.第19図に
おいて,ウィナーフィルタによる復元回路13の例を示
し,第18図と同一符号は相当部分を示し、126はウ
ィナーフィルタである。第19図の劣化した入力画像1
20をFFT回路122でフーリエ変換し、ウィナーフ
ィルタ126で画像復元し、FFT回略124で逆フー
リエ変換し,復元された出力画像125を得る。ここで
劣化関数をG、劣化のない画像のパワースペクトルをW
f、ノイズのパワースペクトルをWl+とすれば、ウイ
ナーフィルタ126はG / (l G l’ + w
n/ Wr)である.(Wn/wf)=l−と定数で表
わL.G/(IG+’+r)とM略化してもよい.また
ウィナーフィルタ126の代わりに、準同形フィルタ、
一般逆フィルタ、制限付最小二乗フィルタ、パラメトリ
ックウイナーフィルタ,射影フィルタ、バラメトリック
射影フィルタなどの各種復元フィルタを用いてもよい.
第20図は本発明による画像検出系の劣化画像の復元回
路13のさらに他の実施例の構成図である。
FIG. 19 is a block diagram of still another embodiment of the degraded image restoration circuit 13 of the image detection system according to the present invention. FIG. 19 shows an example of the restoration circuit 13 using a Wiener filter, where the same reference numerals as in FIG. 18 indicate corresponding parts, and 126 is a Wiener filter. Degraded input image 1 in Figure 19
20 is subjected to Fourier transformation in an FFT circuit 122, image restoration is performed in a Wiener filter 126, and inverse Fourier transformation is performed in an FFT circuit 124 to obtain a restored output image 125. Here, the degradation function is G, and the power spectrum of the image without degradation is W.
f, and the power spectrum of the noise is Wl+, then the Wiener filter 126 has G / (l G l' + w
n/Wr). (Wn/wf)=l- and expressed as a constant L. M may be abbreviated as G/(IG+'+r). Also, instead of the Wiener filter 126, a homomorphic filter,
Various restoration filters such as a general inverse filter, restricted least squares filter, parametric Wiener filter, projection filter, and parametric projection filter may be used.
FIG. 20 is a block diagram of still another embodiment of the degraded image restoration circuit 13 of the image detection system according to the present invention.

第20図において、反復法による復元回路13の例を示
し、127は計算機である.第20図の劣化した入力画
像120を計算機127で反復計算することにより復元
された出力画像125を得る. 上記実施例の画像復元方法は、画像検出系の応答遅れに
よる画像劣化を復元す゛る方法のほかに、信号伝達系の
応答特性を適切な伝達関数で近似し、該伝達関数の逆関
数を逆ラプラス変換した式に従い信号を処理することに
より、信号伝達系による信号劣化を復元する信号復元方
法にも同様に適用できる. また上記実施例の走査型電子顕微鏡は,透過電子を検出
する走査型透過電子顕微鏡のほかに、反射電子や2次電
子などを検出する走査型電子顕微鏡にも適用できる。ま
た上記実施例の走査型電子顕微鏡を用いたパターン外観
検査装置は、上記の設計パターン比較方式のものに限定
されない。
FIG. 20 shows an example of the restoration circuit 13 using the iterative method, and 127 is a computer. A restored output image 125 is obtained by repeatedly calculating the degraded input image 120 in FIG. 20 using a computer 127. In addition to the method of restoring image deterioration due to response delay of the image detection system, the image restoration method of the above embodiment approximates the response characteristics of the signal transmission system with an appropriate transfer function, and converts the inverse function of the transfer function into an inverse Laplace. It can also be applied to signal restoration methods that restore signal degradation caused by signal transmission systems by processing signals according to the converted equations. Further, the scanning electron microscope of the above embodiment can be applied not only to a scanning transmission electron microscope that detects transmitted electrons but also to a scanning electron microscope that detects reflected electrons, secondary electrons, and the like. Furthermore, the pattern appearance inspection apparatus using the scanning electron microscope of the above embodiment is not limited to the design pattern comparison method described above.

また上記実施例の走査像検出装置は、上記のレーザ走査
顕微鏡や外観検査装置あるいは異物検査装置などに限定
されるものではない。
Further, the scanning image detection device of the above embodiment is not limited to the above laser scanning microscope, visual inspection device, foreign matter inspection device, or the like.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、画像検出系の応答遅れによる波形の劣
化を復元できるので,走査型電子顕微鏡及びその走査型
電子顕微鏡を用いたパターン検査装置及びレーザ走査顕
微鏡や異物検査装置などの走査像検出装置の検出速度を
向上させ、検査時間を短縮できる効果がある.
According to the present invention, it is possible to restore the waveform deterioration caused by the response delay of the image detection system, so scanning image detection can be performed using a scanning electron microscope, a pattern inspection device using the scanning electron microscope, a laser scanning microscope, a foreign object inspection device, etc. This has the effect of improving the detection speed of the device and shortening inspection time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による走査型電子顕微鏡の一実施例を示
す楕成図,第2図は第1図の平滑化回路の機能ブロック
図、第3図は第1図の復元回路の機能ブロック図,第4
図は第1図の復元式の関数h (t)のグラフ、第5図
は第1図の復元波形のグラフ、第6図は第1図の平滑化
回路の一実施例の回路図、第7図は第1図の復元回路の
一実施例の回路図,第8図は第1図のシンチレータのな
い検出系の応答特性の測定方法の構成図、第9図は第1
図のシンチレータを付けた検出系の応答特性の測定方法
の構成図、第10図は第1図の検出系の応答曲線のグラ
フ、第11図(a), (b), (c), (d)は
第1図の検出画像の波形図、第12図は本発明によるパ
ターン外観検査装置の一実施例を示す構成図、第13図
は本発明によるパターン外観検査装置の他の実施例を示
す構成図、第14図は第13図の応答特性付加回路の回
路図、第15図は本発明による走査像検出装置の一実施
例を示す構成図、第16図(a),(b)は第15図の
復元回路の実施例の回路図、第17図は本発明による走
査画像検出装置の他の実施例を示す摺成図、第18図は
本発明による復元回路の他の実施例の枯成図、第19図
は本発明による復元回路のさらに他の実施例の構成図、
第20図は本発明による復元回路のさらに他の実施例の
構成図である. 1・・・電子銃、2・・・走査コイル、3・・・電子レ
ンズ、4・・・試料,5・・・シンチレータ、6・・・
ライトガイド,7・・・光電子増倍管、8・・・増幅器
,9・・・偏向回路,10・・・同期回路,11・・・
AD変換器、12・・・平滑化回路,13・・・復元回
路、14・・・表示回路、16・・・発光ダイオード、
18・・・点滅回路、21・・・局所領域切出回路、2
2・・・レベル変動検出回路、23・・・平均値フィル
タ、29・・・ナイフエッジ,31・・・2次微分回路
,32・・・1次微分、33・・・コンボリューション
回路,34〜37・・・乗算器、38・・・加算器,8
2・・・記憶装置(CADデータ)、84・・・画像信
号発生器、87・・・画像比較回路、89・・・応答特
性付加回路、 90・・・レーザ光、 91a, 9lb・・・偏向器、 92・・・駆動回路、 93・・・ハーフミラー、 94・・・レンズ, 95・・・光検出器, 96・・・積分球、 100・・・計算機. 代 理 人 弁 理 士 秋 本 正 実 第 図 第 図 弟 図 第 図 ゴマ 図 t (声S) 第 図 第 図 第 図 第 10図 第 図 (a) (d) 第 図 (a)
Fig. 1 is an elliptical diagram showing an embodiment of a scanning electron microscope according to the present invention, Fig. 2 is a functional block diagram of the smoothing circuit shown in Fig. 1, and Fig. 3 is a functional block diagram of the restoration circuit shown in Fig. 1. Figure, 4th
The figure is a graph of the function h (t) of the restoration equation in Figure 1, Figure 5 is a graph of the restored waveform in Figure 1, Figure 6 is a circuit diagram of an embodiment of the smoothing circuit in Figure 1, and Figure 5 is a graph of the restored waveform in Figure 1. Fig. 7 is a circuit diagram of an embodiment of the restoration circuit shown in Fig. 1, Fig. 8 is a block diagram of a method for measuring the response characteristics of the detection system without a scintillator shown in Fig. 1, and Fig. 9 is a circuit diagram of an embodiment of the restoration circuit shown in Fig. 1.
Fig. 10 is a graph of the response curve of the detection system shown in Fig. 1, Fig. 11 (a), (b), (c), ( d) is a waveform diagram of the detected image in FIG. 1, FIG. 12 is a configuration diagram showing one embodiment of the pattern visual inspection device according to the present invention, and FIG. 13 is a diagram showing another embodiment of the pattern visual inspection device according to the present invention. 14 is a circuit diagram of the response characteristic addition circuit shown in FIG. 13, FIG. 15 is a block diagram showing an embodiment of the scanning image detection device according to the present invention, and FIGS. 16(a) and (b) 15 is a circuit diagram of an embodiment of the restoration circuit, FIG. 17 is a schematic diagram showing another embodiment of the scanning image detection device according to the present invention, and FIG. 18 is a circuit diagram of another embodiment of the restoration circuit according to the present invention. FIG. 19 is a block diagram of still another embodiment of the restoration circuit according to the present invention.
FIG. 20 is a block diagram of still another embodiment of the restoration circuit according to the present invention. DESCRIPTION OF SYMBOLS 1...Electron gun, 2...Scanning coil, 3...Electron lens, 4...Sample, 5...Scintillator, 6...
Light guide, 7... Photomultiplier tube, 8... Amplifier, 9... Deflection circuit, 10... Synchronization circuit, 11...
AD converter, 12... Smoothing circuit, 13... Restoration circuit, 14... Display circuit, 16... Light emitting diode,
18... Blinking circuit, 21... Local area extraction circuit, 2
2... Level fluctuation detection circuit, 23... Average value filter, 29... Knife edge, 31... Second order differentiation circuit, 32... First order differentiation, 33... Convolution circuit, 34 ~37... Multiplier, 38... Adder, 8
2... Storage device (CAD data), 84... Image signal generator, 87... Image comparison circuit, 89... Response characteristic addition circuit, 90... Laser light, 91a, 9lb... Deflector, 92... Drive circuit, 93... Half mirror, 94... Lens, 95... Photodetector, 96... Integrating sphere, 100... Computer. Agent Masami Akimoto (voice S) (voice S) (voice S) (voice S) (a) (d) (a)

Claims (1)

【特許請求の範囲】 1、画像検出系の応答特性を適切な伝達関数で近似し、
該伝達関数の逆関数を逆ラプラス変換した式に従い画像
検出信号を処理し、画像検出系による画像検出信号の劣
化を復元する画像復元方法。 2、細く絞った電子線を試料上で走査し、反射電子や2
次電子あるいは透過電子などを検出して電子像を得る走
査型電子顕微鏡において、電子線を電気信号に変換する
電子線検出手段の応答遅れによる電子線検出波形の劣化
を復元する復元手段を有することを特徴とする走査型電
子顕微鏡。 3、細く絞った電子線を試料上で走査し、反射電子や2
次電子あるいは透過電子などを検出して電子像を得る走
査型電子顕微鏡において、電子線を電気信号に変換する
電子線検出手段の応答特性を適切な伝達関数で近似し、
該伝達関数の逆関数を逆ラプラス変換した式に従い電子
線検出信号を処理し、電子線検出信号の劣化を復元する
復元手段を有することを特徴とする走査型電子顕微鏡。 4、細く絞った電子線を試料上で走査し、反射電子や2
次電子あるいは透過電子などを検出して電子像を得る走
査型電子顕微鏡において、電子線を電気信号に変換する
電子線検出手段の電子線検出信号のノイズを除去するノ
イズ除去手段と、上記電子線検出手段の応答特性を適切
な伝達関数で近似し、該伝達関数の逆関数を逆ラプラス
変換した式に従い上記ノイズ除去手段のノイズ除去した
電子線検出信号を処理し、電子線検出信号の劣化を復元
する復元手段とを有することを特徴とする走査型電子顕
微鏡。 5、電子線を電気信号に変換する電子線検出手段の応答
特性を1次遅れ要素の和または積または和と積で近似す
ることを特徴とする請求項3または請求項4記載の走査
型電子顕微鏡。 6、上記復元手段は、n(n;自然数)次微分処理とコ
ンボリューション処理とを行なう処理手段を有すること
を特徴とする請求項3または請求項4記載の走査型電子
顕微鏡。 7、電子線検出信号のノイズを除去するノイズ除去手段
は電子線検出信号の局所領域内での信号レベルの変動が
小さいときには平滑化フィルタを作用させ、局所領域内
での信号レベルの変動が大きいときには電子線検出信号
をそのまま出力するノイズ除去手段であることを特徴と
する請求項4記載の走査型電子顕微鏡。 8、請求項3または請求項4記載の走査型電子顕微鏡を
有し、復元手段の復元した電子線検出信号により試料の
パターンを検査するパターン外観検査装置。 9、走査型電子顕微鏡の電子線検出手段からの復元手段
を使用しない電子線検出画像と設計データから発生させ
た理想画像とを比較検査して試料のパターンを検査する
パターン外観検査装置において、上記理想画像に上記電
子線検出手段の応答特性を付加する手段を有することを
特徴とするパターン外観検査装置。 10、点センサの撮像手段を使用したレーザ走査顕微鏡
または外観検査装置または異物検出装置などの走査像検
出装置において、上記撮像手段の走査像検出信号のノイ
ズを除去するノイズ除去手段と、上記撮像手段の応答特
性を適切な伝達関数で近似し、該伝達関数の逆関数を逆
ラプラス変換した式に従い上記ノイズ除去手段のノイズ
除去した走査像検出信号を処理し、走査像検出信号の劣
化を復元する手段とを有することを特徴とする走査像検
出装置。 11、点センサの撮像手段は光電子増倍管であることを
特徴とする請求項10記載の走査像検出装置。
[Claims] 1. Approximate the response characteristics of the image detection system with an appropriate transfer function,
An image restoration method that processes an image detection signal according to an expression obtained by inverse Laplace transform of the inverse function of the transfer function, and restores deterioration of the image detection signal caused by the image detection system. 2. A finely focused electron beam is scanned over the sample to detect reflected electrons and
In a scanning electron microscope that obtains an electron image by detecting secondary electrons or transmission electrons, the scanning electron microscope has a restoring means for restoring deterioration of an electron beam detection waveform due to a response delay of an electron beam detection means for converting an electron beam into an electric signal. A scanning electron microscope featuring: 3. A finely focused electron beam is scanned over the sample to detect reflected electrons and
In a scanning electron microscope that obtains an electron image by detecting secondary electrons or transmission electrons, the response characteristics of the electron beam detection means that converts the electron beam into an electric signal are approximated by an appropriate transfer function.
1. A scanning electron microscope characterized by comprising a restoring means for processing an electron beam detection signal according to an expression obtained by inverse Laplace transform of the inverse function of the transfer function and restoring deterioration of the electron beam detection signal. 4. Scan the sample with a narrowly focused electron beam to detect reflected electrons and
In a scanning electron microscope that obtains an electron image by detecting secondary electrons or transmission electrons, there is provided a noise removing means for removing noise in an electron beam detection signal of an electron beam detection means for converting an electron beam into an electric signal; The response characteristic of the detection means is approximated by an appropriate transfer function, and the electron beam detection signal from which noise has been removed by the noise removal means is processed in accordance with a formula obtained by inverse Laplace transform of the inverse function of the transfer function, thereby eliminating deterioration of the electron beam detection signal. A scanning electron microscope characterized in that it has a restoring means for restoring. 5. The scanning electronic device according to claim 3 or 4, wherein the response characteristic of the electron beam detection means for converting the electron beam into an electric signal is approximated by the sum or product of first-order delay elements, or the sum and product of first-order delay elements. microscope. 6. The scanning electron microscope according to claim 3 or 4, wherein the restoring means includes processing means for performing nth (n; natural number) differential processing and convolution processing. 7. The noise removing means for removing noise in the electron beam detection signal operates a smoothing filter when the fluctuation in the signal level within the local region of the electron beam detection signal is small, and when the fluctuation in the signal level within the local region is large. 5. The scanning electron microscope according to claim 4, wherein the scanning electron microscope is a noise removing means that sometimes outputs the electron beam detection signal as it is. 8. A pattern appearance inspection apparatus comprising the scanning electron microscope according to claim 3 or 4, and inspecting a pattern of a sample using the electron beam detection signal restored by the restoration means. 9. In a pattern appearance inspection device that inspects the pattern of a sample by comparing and inspecting an electron beam detected image that does not use a restoring means from an electron beam detection means of a scanning electron microscope and an ideal image generated from design data, the above-mentioned A pattern appearance inspection apparatus comprising means for adding response characteristics of the electron beam detection means to an ideal image. 10. In a scanning image detection device such as a laser scanning microscope, a visual inspection device, or a foreign object detection device using an imaging means of a point sensor, a noise removing means for removing noise from a scanning image detection signal of the imaging means; and the imaging means. approximating the response characteristics of by an appropriate transfer function, and processing the noise-removed scanning image detection signal of the noise removing means in accordance with a formula obtained by inverse Laplace transform of the inverse function of the transfer function, and restoring the deterioration of the scanning image detection signal. A scanning image detection device comprising: means. 11. The scanning image detection device according to claim 10, wherein the imaging means of the point sensor is a photomultiplier tube.
JP1056304A 1989-03-10 1989-03-10 Image restoration method, scanning electron microscope, pattern appearance inspection device, and scanning image detection device Pending JPH02236938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1056304A JPH02236938A (en) 1989-03-10 1989-03-10 Image restoration method, scanning electron microscope, pattern appearance inspection device, and scanning image detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1056304A JPH02236938A (en) 1989-03-10 1989-03-10 Image restoration method, scanning electron microscope, pattern appearance inspection device, and scanning image detection device

Publications (1)

Publication Number Publication Date
JPH02236938A true JPH02236938A (en) 1990-09-19

Family

ID=13023393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1056304A Pending JPH02236938A (en) 1989-03-10 1989-03-10 Image restoration method, scanning electron microscope, pattern appearance inspection device, and scanning image detection device

Country Status (1)

Country Link
JP (1) JPH02236938A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005037166A (en) * 2003-07-16 2005-02-10 Semiconductor Leading Edge Technologies Inc Apparatus for detecting mask defect and method for inspecting mask defect
JP2007220529A (en) * 2006-02-17 2007-08-30 Hitachi High-Technologies Corp electronic microscope
JP2010054356A (en) * 2008-08-28 2010-03-11 Anritsu Sanki System Co Ltd Image processor and x-ray foreign matter detector having the same, and image processing method
JP2011007614A (en) * 2009-06-25 2011-01-13 Toshiba Corp Nuclear medicine diagnosis apparatus, and method for identifying failure of detector in the same
WO2011099101A1 (en) * 2010-02-09 2011-08-18 株式会社 日立ハイテクノロジーズ Charged particle beam apparatus
WO2011155122A1 (en) * 2010-06-07 2011-12-15 株式会社 日立ハイテクノロジーズ Circuit pattern inspection device, and inspection method therefor
WO2015050157A1 (en) * 2013-10-03 2015-04-09 株式会社日立ハイテクノロジーズ Charged particle beam device and method for setting correction filter thereof
WO2021149188A1 (en) * 2020-01-22 2021-07-29 株式会社日立ハイテク Charged particle beam device and inspection device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005037166A (en) * 2003-07-16 2005-02-10 Semiconductor Leading Edge Technologies Inc Apparatus for detecting mask defect and method for inspecting mask defect
JP2007220529A (en) * 2006-02-17 2007-08-30 Hitachi High-Technologies Corp electronic microscope
JP4728137B2 (en) * 2006-02-17 2011-07-20 株式会社日立ハイテクノロジーズ electronic microscope
JP2010054356A (en) * 2008-08-28 2010-03-11 Anritsu Sanki System Co Ltd Image processor and x-ray foreign matter detector having the same, and image processing method
JP2011007614A (en) * 2009-06-25 2011-01-13 Toshiba Corp Nuclear medicine diagnosis apparatus, and method for identifying failure of detector in the same
WO2011099101A1 (en) * 2010-02-09 2011-08-18 株式会社 日立ハイテクノロジーズ Charged particle beam apparatus
JP2011165450A (en) * 2010-02-09 2011-08-25 Hitachi High-Technologies Corp Charged particle beam device
US9099283B2 (en) 2010-02-09 2015-08-04 Hitachi High-Technologies Corporation Charged particle beam apparatus
JPWO2011155122A1 (en) * 2010-06-07 2013-08-01 株式会社日立ハイテクノロジーズ Circuit pattern inspection apparatus and inspection method thereof
WO2011155122A1 (en) * 2010-06-07 2011-12-15 株式会社 日立ハイテクノロジーズ Circuit pattern inspection device, and inspection method therefor
WO2015050157A1 (en) * 2013-10-03 2015-04-09 株式会社日立ハイテクノロジーズ Charged particle beam device and method for setting correction filter thereof
JPWO2015050157A1 (en) * 2013-10-03 2017-03-09 株式会社日立ハイテクノロジーズ Charged particle beam apparatus and correction filter setting method thereof
WO2021149188A1 (en) * 2020-01-22 2021-07-29 株式会社日立ハイテク Charged particle beam device and inspection device
JPWO2021149188A1 (en) * 2020-01-22 2021-07-29
TWI769662B (en) * 2020-01-22 2022-07-01 日商日立全球先端科技股份有限公司 Charged particle beam device and inspection device
US12237145B2 (en) 2020-01-22 2025-02-25 Hitachi High-Tech Corporation Charged particle beam device and inspection device

Similar Documents

Publication Publication Date Title
Likar et al. Retrospective shading correction based on entropy minimization
US5355212A (en) Process for inspecting patterned wafers
US5715051A (en) Method and system for detecting defects in optically transmissive coatings formed on optical media substrates
JPH11194154A (en) Pattern inspection method and device, and pattern inspection method and device based on electron beam image
JP2000184192A (en) Image processing method
JP2000184202A (en) Image processing system for removing pattern arranged in vertical direction on image generated by scanning
JPH02236938A (en) Image restoration method, scanning electron microscope, pattern appearance inspection device, and scanning image detection device
JP2005317818A (en) Pattern inspection device and method therefor
EP1071042B1 (en) Method for determining the components of image noise patterns of an imaging device and use of this method in an imaging device
US6731824B2 (en) Spatial filtering method for failure analysis of a device
US5373567A (en) Method and apparatus for pattern matching
EP0265769B1 (en) Method and apparatus for measuring with an optical cutting beam
JP3788586B2 (en) Pattern inspection apparatus and method
CN114689604A (en) Image processing method for optical detection of object to be detected with smooth surface and detection system thereof
KR20040017838A (en) Autothresholding of noisy images
Choudhary et al. A novel approach for edge detection for blurry images by using digital image processing
JPH0443204B2 (en)
AKINTOYE et al. COMPOSITE MEDIAN WIENER FILTER BASED TECHNIQUE FOR IMAGE ENHANCEMENT.
Lei et al. A comparison of methods to measure the modulation transfer function of aerial survey lens systems from the image structures
JPH05164702A (en) Surface inspecting device
Manek et al. A soft weighted median filter for removing general purpose image noise
Alanka et al. Modified Haze Removal Algorithm for Image Using Color Attenuation Prior
US20050094133A1 (en) Methods and systems for evaluating optical systems
Saleh et al. Image Restoration Using Hybrid Technique Based on Noise Detection and Uncetainty
JPH09218957A (en) Image processing method