JPH02232518A - Magnetic sensor - Google Patents
Magnetic sensorInfo
- Publication number
- JPH02232518A JPH02232518A JP1053258A JP5325889A JPH02232518A JP H02232518 A JPH02232518 A JP H02232518A JP 1053258 A JP1053258 A JP 1053258A JP 5325889 A JP5325889 A JP 5325889A JP H02232518 A JPH02232518 A JP H02232518A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnetizing
- parts
- scale
- long side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000694 effects Effects 0.000 claims abstract description 6
- 239000000696 magnetic material Substances 0.000 claims description 11
- 238000010586 diagram Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
Landscapes
- Transmission And Conversion Of Sensor Element Output (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
本発明は、磁極の向きを交互に変換させて着磁したリニ
アスケールや回転スケールの速度等を磁気抵抗効果素子
で検出できるようにした磁気センサに関する.
「従来の技術」
従来の磁気センサは、第4〜7図に示すように、N極と
S極を交互に着磁した磁気ドラム10に磁気抵抗効果素
子1)を対向させζ磁気ドラムIOの回転にともなう磁
気変化を磁気抵抗効果素子llが検出して、磁気ドラム
10の回転速度あるいは回転位置を検出できるようにな
っている.EB気抵抗効果素子l1の磁性体パターンl
2は、第4図の破線状態に配置され,磁性体パターンl
2の長辺部が磁気ドラム10の回転方向に対して直角の
向きになっている.そのため第5図に示すように、磁性
体パターンl2の両端が電源l3に接続され、磁気ドラ
ム10が回転したときに矢印l4方向の磁界を磁性体パ
ターンの2つの長辺部(抵抗Rl,R−)が横切ること
により、磁性体パターンl2の中央の出力端子l5に抵
抗変化に基ずく電圧変化が出力される.なお,FB性体
パターンl2の等価回路は第6図の通りである.また、
磁性体パターン12に作用するX方向(磁気ドラムの移
動方向)の磁界強さ、抵抗R1とR2および出力電圧■
の変化は第7図に示されるようになっていた.
「発明が解決しようとする課題」
従来の磁気センサは、その磁性体パターンの長辺部が磁
気スケールの移動方向に直角になっているため、その長
辺部に生じる抵抗変化R.R..は第7図に示すように
正弦波となり、出力端子からの出力電圧VGi第7図に
示すように磁界Hの小さな領域でのみ正弦波となり、正
弦波領域が狭い.そのため磁気センサの検出精度(内挿
精度)が低下し,その検出値に基ずく装置の制御が困難
であった.
そこで本発明は、磁気センサの出力電圧が三角波形にな
るようにし、内挿制度を向上して、各種の装置の制御を
容易にすることを目的とする.「課題を解決するための
手段J
本発明は、磁気スケールに対向して磁気抵抗効果素子を
配置させる田気センサにおいて、磁気スケール本体に、
その移動方向と直角に磁界が作用する着磁部をそれと同
一間隔をあけて磁気スケールの移動方向に連続配置し、
さらに前記@石部とは逆向きに磁界が作用する@田部を
前記1つの青磁部長さずらして平行に同ピッチで配置し
、磁気抵抗効果素子の磁性体パターンはその長辺部が磁
気スケールの移動方向と同方向に配置される磁気センサ
である.なお,磁気センサの電圧出力をより三角波に近
づけるため、磁性体パターンの長辺部を磁気スケールの
1つの着磁部とほぼ同一長さにするのが望ましい.
「作用」
上記手段の磁気センサは、磁気スケールの各着磁部間は
それと同一長さの間隔があけられ,かつ2列の着磁トラ
ックは1つの着磁部長さずらしてあり、さらに各着磁部
の磁界の向きは磁気スケールの移動方向に垂直であるの
で磁気スケール上の磁界強さはパルス的に変化する.よ
って磁気抵抗効果素子の磁性体パターンの2つの長辺部
の抵抗は三角波状の同位相の抵抗変化を生じさせ,その
ため,la性体パターンの2つの長辺部間の出力端子か
ら三角波状の電圧変化が出力される.「実施例」
本発明の磁気センサの実施例を第1〜3図により説明す
る.
磁気スケールはリニア式でもロータ式でもよいが,本実
施例ではリニア式の磁気スケールで説明する.磁気スケ
ールlは、磁気スケール本体1aに、その移動方向と直
角に磁界が作用する着磁部2が,それと同一長さの間隔
をあけて磁気スケールの移動方向に連続配置される.ま
た磁気スケールlは、前記の連続配置の着磁部2と磁界
が逆向きの着磁部2゛が着磁部2と平行に配置され、着
磁部2、2゜は互いに1つの@磁部長さだけずらして配
置される.
磁気スケールの2列の着磁部2、2゜に対向して、磁気
抵抗効果素子3が配置される.i気抵抗効果素子3は2
つの長辺部4aと複数個の短辺部性体パターン4により
形成され,その両端が電源5に接続され,2つの長辺部
4a間中央部が出力端子6とされる.このように構成し
た磁気抵抗効果素子の等価回路は第3図に示すようにな
り、各長辺部4aの抵抗はR..R.で示した.なお、
本実施例では2つの長辺部4aを,それぞれ4本で形成
したが、その本数に限るものではない6また.磁性体パ
ターン4の長辺部4aの長さしを、磁気スケールの1つ
の着磁部2の長さPとほぼ同一長さにするのが、出力電
圧Vが三角波になりやすくて望ましい.さらに、磁性体
パターン4の短辺部4bの長さWを、磁気スケールの着
磁部2の幅Wとほぼ同一にするのが、前記同様に望まし
い.
上記構成の磁気センサを使用し、磁気スケールを移動さ
せて,着磁部2、2゜の移動方向Xに直角なy方向磁界
の強さH,.H.と、磁性体パターン2の各長辺部の抵
抗R,、R2と,磁気センサの出力端子6からの出力電
圧■とを測定したとった.
第1図(B)からわかるように、磁気スケールlの着磁
部2、2゜の磁界強さはほぼ同一値で半ピッチずれたパ
ルス波となり、長辺部4aの抵抗R+.Rzは同位相の
三角波となり、出力電圧Vが三角波になっていることが
わかる.
「発明の効果」
本発明の磁気センサは、磁気スケールの着磁部を同一長
さの間隔をあけて連続配置することともに、磁界の向き
を磁気スケールの移動方向に直角にし、磁気抵抗効果素
子の磁気パターンの長辺部を磁気スケールの移動方向と
同方向にしたので、磁気センサからの出力電圧は連続的
な三角波となり,内挿精度の向上が容易になるとともに
.その検出値に基ずく装置の制御が容易になり、かつ精
度を向上できる.Detailed Description of the Invention "Field of Industrial Application" The present invention relates to a magnetic sensor that can detect the speed, etc. of a linear scale or rotary scale magnetized by alternately changing the direction of the magnetic poles using a magnetoresistive element. Regarding sensors. "Prior Art" As shown in FIGS. 4 to 7, a conventional magnetic sensor has a magnetoresistive element 1) facing a magnetic drum 10 whose north and south poles are alternately magnetized. The magnetoresistive element ll detects the magnetic change caused by rotation, and the rotational speed or rotational position of the magnetic drum 10 can be detected. Magnetic material pattern l of EB magnetoresistance effect element l1
2 is arranged as indicated by the broken line in FIG. 4, and the magnetic material pattern l
The long side of the magnetic drum 2 is oriented perpendicular to the direction of rotation of the magnetic drum 10. Therefore, as shown in FIG. 5, both ends of the magnetic pattern l2 are connected to the power source l3, and when the magnetic drum 10 rotates, the magnetic field in the direction of the arrow l4 is applied to the two long sides of the magnetic pattern (resistors Rl, R -) crosses, a voltage change based on the resistance change is output to the central output terminal l5 of the magnetic material pattern l2. The equivalent circuit of the FB physical pattern l2 is shown in Figure 6. Also,
Magnetic field strength in the X direction (direction of movement of the magnetic drum) acting on the magnetic material pattern 12, resistances R1 and R2, and output voltage ■
The changes in were as shown in Figure 7. "Problems to be Solved by the Invention" In conventional magnetic sensors, the long sides of the magnetic material pattern are perpendicular to the direction of movement of the magnetic scale, so the resistance change R. R. .. is a sine wave as shown in FIG. 7, and the output voltage VGi from the output terminal becomes a sine wave only in a small region of the magnetic field H as shown in FIG. 7, and the sine wave region is narrow. As a result, the detection accuracy (interpolation accuracy) of the magnetic sensor decreased, making it difficult to control the device based on the detected values. Therefore, an object of the present invention is to make the output voltage of a magnetic sensor have a triangular waveform, improve interpolation accuracy, and facilitate control of various devices. ``Means for Solving the Problems J'' The present invention provides a field sensor in which a magnetoresistive element is disposed opposite to a magnetic scale, in which a magnetic scale main body includes:
Magnetized parts on which a magnetic field acts perpendicularly to the direction of movement are arranged continuously in the direction of movement of the magnetic scale with the same spacing therebetween.
Furthermore, the @tabe where the magnetic field acts in the opposite direction to the @stone part is arranged parallel to the one celadon part by the same pitch, and the long side of the magnetic material pattern of the magnetoresistive element is the movement of the magnetic scale. This is a magnetic sensor placed in the same direction as the direction. Note that in order to make the voltage output of the magnetic sensor more similar to a triangular wave, it is desirable that the long side of the magnetic material pattern be approximately the same length as one magnetized part of the magnetic scale. "Function" In the magnetic sensor of the above means, the distance between each magnetized part of the magnetic scale is the same as that length, and the two rows of magnetized tracks are shifted by one magnetized part, and each magnetized part is spaced apart by the same length. Since the direction of the magnetic field in the magnetic part is perpendicular to the moving direction of the magnetic scale, the magnetic field strength on the magnetic scale changes in a pulsed manner. Therefore, the resistance of the two long sides of the magnetic material pattern of the magnetoresistive element causes a triangular wave-like resistance change with the same phase. Voltage changes are output. "Example" An example of the magnetic sensor of the present invention will be described with reference to FIGS. 1 to 3. The magnetic scale may be a linear type or a rotor type, but in this example, a linear type magnetic scale will be used. In the magnetic scale l, magnetized parts 2, on which a magnetic field acts perpendicularly to the direction of movement of the magnetic scale main body 1a, are continuously arranged in the direction of movement of the magnetic scale, with an interval of the same length as the magnetized parts 2. In addition, in the magnetic scale l, a magnetized part 2'' whose magnetic field is opposite to the magnetized part 2 in the continuous arrangement described above is arranged parallel to the magnetized part 2, and the magnetized parts 2 and 2° each have one @magnetized part. They are placed offset by the length of the length. A magnetoresistive element 3 is placed opposite the two rows of magnetized parts 2 and 2 degrees of the magnetic scale. The i-resistance effect element 3 is 2
It is formed by two long side parts 4a and a plurality of short side body patterns 4, both ends of which are connected to a power source 5, and the central part between the two long side parts 4a is used as an output terminal 6. The equivalent circuit of the magnetoresistive effect element constructed in this way is shown in FIG. 3, and the resistance of each long side portion 4a is R. .. R. It is shown as follows. In addition,
In this embodiment, each of the two long sides 4a is formed with four pieces, but the number is not limited to six or more. It is desirable that the length of the long side 4a of the magnetic material pattern 4 be approximately the same length as the length P of one magnetized portion 2 of the magnetic scale, since the output voltage V tends to become a triangular wave. Further, as described above, it is desirable that the length W of the short side portion 4b of the magnetic material pattern 4 is approximately the same as the width W of the magnetized portion 2 of the magnetic scale. Using the magnetic sensor configured as described above, the magnetic scale is moved to increase the strength of the magnetic field H, . H. , the resistances R, , R2 of each long side of the magnetic pattern 2, and the output voltage (■) from the output terminal 6 of the magnetic sensor were measured. As can be seen from FIG. 1(B), the magnetic field strengths at the magnetized portions 2 and 2 degrees of the magnetic scale l are approximately the same value, and the pulse waves are shifted by half a pitch, and the resistance R+. It can be seen that Rz is a triangular wave with the same phase, and the output voltage V is a triangular wave. "Effects of the Invention" The magnetic sensor of the present invention has the magnetized parts of the magnetic scale arranged consecutively at intervals of the same length, and the direction of the magnetic field is made perpendicular to the moving direction of the magnetic scale, and the magnetoresistive element Since the long side of the magnetic pattern is aligned in the same direction as the moving direction of the magnetic scale, the output voltage from the magnetic sensor becomes a continuous triangular wave, making it easier to improve interpolation accuracy. Control of the device based on the detected values becomes easier and accuracy can be improved.
第1図(A)は本発明の磁気センサの説明図、第l図B
は磁気センサの検出波形を示す波形図,第2図は磁気抵
抗効果素子の説明図、第3図は磁気抵抗効果素子の回路
図、第4図は従来の磁気センサの斜視図、第5図は第4
図の磁気センサの磁気抵抗効果素子の斜視図,第6図は
第5図の磁気抵抗効果素子の回路図、第7図は従来の磁
気センサの各検出値の波形図である.
l;磁気スケール 2:着田部
4:磁気抵抗効果素子 4a;長辺部FIG. 1(A) is an explanatory diagram of the magnetic sensor of the present invention, FIG. 1(B)
is a waveform diagram showing the detection waveform of the magnetic sensor, Figure 2 is an explanatory diagram of the magnetoresistive element, Figure 3 is a circuit diagram of the magnetoresistive element, Figure 4 is a perspective view of a conventional magnetic sensor, and Figure 5. is the fourth
FIG. 6 is a perspective view of the magnetoresistive element of the magnetic sensor shown in the figure, FIG. 6 is a circuit diagram of the magnetoresistive element of FIG. 5, and FIG. 7 is a waveform diagram of each detected value of the conventional magnetic sensor. l: Magnetic scale 2: Attachment part 4: Magnetoresistive element 4a; Long side part
Claims (2)
させる磁気センサおいて、磁気スケール本体に、その移
動方向と直角に磁界が作用する着磁部をそれと同一間隔
をあけて磁気スケールの移動方向に連続配置し、さらに
前記着磁部とは逆向きに磁界が作用する着磁部を前記の
1つの着磁部長さだけずらして同ピッチで平行に配置し
、磁気抵抗効果素子の磁性体パターンはその長辺部が磁
気スケールの移動方向と同方向に配置されることを特徴
とする磁気センサ。(1) In a magnetic sensor in which a magnetoresistance effect element is arranged facing a magnetic scale, the magnetic scale is moved so that the magnetized part, on which a magnetic field acts perpendicularly to the direction of movement of the magnetic scale body, is spaced at the same distance as that of the magnetized part. The magnetic body of the magnetoresistive element is arranged continuously in the direction of the magnetoresistive element, and magnetized parts on which a magnetic field acts in the opposite direction to the magnetized part are shifted by the length of the one magnetized part and arranged in parallel at the same pitch. A magnetic sensor characterized in that the long side of the pattern is arranged in the same direction as the moving direction of the magnetic scale.
の着磁部とほぼ同一長さに形成したことを特徴とする請
求項(1)の磁気センサ。(2) The magnetic sensor according to claim 1, wherein the long side of the magnetic material pattern is formed to have approximately the same length as one magnetized portion of the magnetic scale.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1053258A JPH02232518A (en) | 1989-03-06 | 1989-03-06 | Magnetic sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1053258A JPH02232518A (en) | 1989-03-06 | 1989-03-06 | Magnetic sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02232518A true JPH02232518A (en) | 1990-09-14 |
Family
ID=12937757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1053258A Pending JPH02232518A (en) | 1989-03-06 | 1989-03-06 | Magnetic sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02232518A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4208154A1 (en) * | 1991-03-14 | 1992-09-17 | Sony Magnescale Inc | MAGNETIC SENSOR |
-
1989
- 1989-03-06 JP JP1053258A patent/JPH02232518A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4208154A1 (en) * | 1991-03-14 | 1992-09-17 | Sony Magnescale Inc | MAGNETIC SENSOR |
DE4208154C2 (en) * | 1991-03-14 | 1994-03-10 | Sony Magnescale Inc | Magnetic sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5304926A (en) | Geartooth position sensor with two hall effect elements | |
GB2034053A (en) | Magneto resistive displacement sensors | |
JPH01297507A (en) | Device that magnetically detects position and speed | |
JP4582298B2 (en) | Magnetic position detector | |
JPS63271112A (en) | Position detecting device | |
JPH02232518A (en) | Magnetic sensor | |
JPS6363050B2 (en) | ||
JPS63202979A (en) | Magnetic sensor for encoder | |
JP2550049B2 (en) | Device that magnetically detects position and speed | |
JPS59142417A (en) | Magnetism detecting device | |
JPS63311117A (en) | Magnetic sensor for position detection | |
JP3344605B2 (en) | Magnetoresistive sensor | |
JPH0914990A (en) | Magneto-resistance sensor | |
JP2513851Y2 (en) | Rotation sensor | |
JPH10274546A (en) | Magnetic rotation detecting system | |
JPH02205716A (en) | Magnetoelectric transducer device | |
JP2562719B2 (en) | Magnetic sensors and magnetic rotary encoders | |
JPS6329837B2 (en) | ||
JPH0484712A (en) | Magnetism sensor | |
JPS62220809A (en) | Magnetic sensor | |
JPH0473087B2 (en) | ||
JPH0342514A (en) | Rotation position detector | |
JPS61161416A (en) | Index signal detector | |
JPH0711429B2 (en) | Encoder device | |
JPH0298627A (en) | Magnetic rotary encoder |