JPH02230106A - Optical fiber cable identification method and identification device - Google Patents
Optical fiber cable identification method and identification deviceInfo
- Publication number
- JPH02230106A JPH02230106A JP1050681A JP5068189A JPH02230106A JP H02230106 A JPH02230106 A JP H02230106A JP 1050681 A JP1050681 A JP 1050681A JP 5068189 A JP5068189 A JP 5068189A JP H02230106 A JPH02230106 A JP H02230106A
- Authority
- JP
- Japan
- Prior art keywords
- cable
- optical fiber
- polarization
- variation
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Testing Of Optical Devices Or Fibers (AREA)
- Light Guides In General And Applications Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は管路内,ビルのダクト内等に敷設されている多
数本のケーブルの中から、必要とするケーブルを捜し出
すケーブル識別方法とその識別装置に関するものである
.
(従来の技術)
通信網の発達に伴って,管路内、ビルのダクト内等には
様々なケーブルが敷設されつつある.このような場所に
は通信用ケーブルの他に電力用ケーブル等の外見の似通
ったケーブルが多数本配線されて各種線が混在している
.
このような多数本のケーブルの中のいずれかのケーブル
を、その長手方向途中で後分岐等の工事をする場合,そ
の分岐点で分岐するケーブルを捜し出す必要がある.し
かし通常,ケーブルは敷設長が長いためその途中で入射
端と出射端とを目でFI1認することができない.この
ため目的とするケ一ブルを接し出すことが困難であった
.従来は,このような場合のケーブル識別方法として,
電力用ケーブルの場合はサーチコイルを用いる方法があ
った.この識別方法は、運用されている電力ケーブルの
外側に発生する磁界を、コイルを用いて検出して活線を
見出すようにしたものである.この方法はケーブルの運
用状態のまま非接触で活線を見出すことができるので非
常に便利である.
(従来技術の問題点)
しかし上記識別方法ぱあ《までも電力ケーブル用であり
、光ファイバケーブルに応用することはできない.
光ファイバケーブルの識別方法としては、同ケーブルの
シースの一部を剥ぎ、中のファイバに通光し、同ファイ
バを曲げる等してその光をシースが剥ぎ取られた部分か
ら外に漏らして検出する方法(ローカルディテクション
)が考えられる.しかしこの識別方法ではケープルシー
スを剥ぎ取らなければならないのでケーブルに傷がつく
という問題があり,また運用中の線路に損失変動等の芯
影胃が及ぶ虞れがあった.
(発明の目的)
本発明の目的は、光ファイバケーブルに傷がつかず,運
用中の回線に悪影響が及ぼすことなく・必要なケーブル
を捜し出すことができるケーブル識別方法及びその諜別
装置を実現することにある.(間聞点を解決するための
手段)
本発明は第2図の光学系の原理を応用したもんである.
第2図の光学系において、レーザ光をL D 7よりシ
ングルモードファイバ(SMファイバ)8に入射し,受
光側で検光子9を通して光強度を検出する場合.SMフ
ァイバ8におけるL D光の偏光状態(偏波主軸の角度
、位相等)が変動すると,検出される出力光パワーが変
動する.この出力光パワーのレベル変動は出力光の偏波
状態によって異なる.
ちなみに、第2図において、検光子9を通す前のファイ
バ出射端での光の電界は次のように表される.
E 11 =ame”e′&
E ,=a,e’″′
a)l.a, ’. X軸、y軸での振幅δ:X軸、y
軸での位相差
ω:角周波数
ここで,想定するX軸と主軸角θの角度で検光子9を通
した光の受光パワーは,次式で表わすようになる,
P{θ) ”am” Cog”θ+a,” sin”θ
+2am a, CO8θsinθCO+96つまり,
受光バワーPは主軸角θの関数となる.本発明のケーブ
ル識別方法及び同識別装置は光学系の上記原理を応用し
たもである.
本発明の請求項第1のケーブル識別方法は第1図のよう
に、多数本の光ファイバケーブルの中の任意のケーブル
lの長手方向途中において、同ケーブル1の外側から同
ケーブルlに超音波等の振動をかけ、この振動による同
ケーブルlの偏波変動により同ケーブル1内を伝送され
る光の偏波主軸の角度、位相等の偏光状態を変動させ,
この変動に伴って生ずる同ケーブルlからの出射光レベ
ルの変動から、同ケーブル1を他の多数本の光ファイバ
ケーブルと識別するようにしたことを特徴とするもので
ある.
本発明の詰求項第2のケーブル識別装置は第1図のよう
に、光源2と光ファイバケーブルlにより伝送される光
を受光する偏波変動受光部3とを備えた送受信局4と、
前記光ファイバケーブルlの長手方向途中の識別部5に
おいて同ケーブルlの外側より同ケーブルlに超音波の
振動をかける超音波印加装置6とを備えたことを特徴と
するものである.
(作用)
本発明の光ファイバケーブルの識別方法及び舅別装置で
は、多数本の光ファイバケーブルの中の任意のケーブル
lの長手方向途中(例λば分岐点)において、その外側
から同ケーブルlに超音波等の振動をかけるので、この
ときの同ケーブルlのシングルモードファイバ内を伝送
される先の偏波主軸の角度、位相等の偏光状態が変動し
、同ケーブルlから出射される出力光パワーのレベルが
変動する.この場合,捜し出したい光ファイバケーブル
に超音波等振動がかけられれば,同ケーブルの検光子を
通した出射光パワーが変動するので,同ケーブルを多数
本の光ファイバケーブルの中から識別することができる
.
(実施例)
第2図は本発明の光ファイバケーブルの識別装置の説明
図である.
同図において2はコヒーレンス光等を発生する光源、3
は光ファイバケーブルlにより伝送される光を受光する
偏波変動受光部であり、これらは送受信局4に設けられ
ている. 前記光ファイバケーブルlには光ファイバが
シングルモードファイバのものが使用される.
6は超音波印加装置であり、前記光ファイバケーブルl
の長手方向途中の識別部5において同ケーブルlの外側
より同ケーブルlに超音波をかけるためのものである.
この超音波印加装置6はコントローラ10により,超音
波振動の強度、盾期を変化させて、強度変調、位相変調
させることができるようにしてある.
この場合、現在の光通信システムは、強度変調/直接検
波方式であるため,使用中の回線で偏波変動が起こって
も何ら影響が及ばない.つまり、他の使用中の光ケーブ
ルに超音波振動をかけてもその回線には何の悪影響も及
ばない.
第1図の11は折返し局であり,この局において入力用
光ケーブルl2と出力用光ケーブルl3とがループII
14により接続されている.発明者らの行なった実験に
よると、第3図の外径0.4mmの光ファイバ素線l5
を用いた実験系において、同光ファイ′バ素!15の長
手方向途中で同素線l5に超音波振動を加えたところ、
同光ファイバ素線15から検光子9を通して受光される
光の受光パワーの変動は第4図のようになった.
(発明の効果)
本発明の光ファイバケーブルの識別方法及び識別装置は
次のような効果がある.
■.光ファイバケーブルの外側から同ケーブルlに超音
波等の振動をかけるものであるため、ケーブルlの一部
を剥ぎ取って外部に光を漏出させる必要がなく、従って
同ケーブル1に傷がつかない.
■,ケーブルlの一部を剥ぎ取る必要がないので識別作
業が容易になる.
■.運用中の回線に悪影響が及ぶこともないので.ii
!!用中の回線を停正させることなく工別作業ができる
.[Detailed Description of the Invention] (Field of Industrial Application) The present invention is directed to a cable identification method for searching for a required cable from among a large number of cables installed in conduits, building ducts, etc. This relates to identification devices. (Prior art) With the development of communication networks, various cables are being installed inside pipelines, building ducts, etc. In such places, in addition to communication cables, there are many cables with similar appearances, such as power cables, and a mixture of various wires. When performing work such as branching off one of the many cables along its length, it is necessary to find the cable that will branch at that branch point. However, because cables are usually laid long, it is not possible to visually identify the input and output ends along the way. For this reason, it was difficult to connect the desired cable. Conventionally, the cable identification method in such cases was as follows:
In the case of power cables, there was a method to use a search coil. This identification method uses a coil to detect the magnetic field generated outside the power cable in use to find live wires. This method is very convenient because it allows you to find live wires without contacting them while the cable is still in operation. (Problems with the prior art) However, the above identification method (PA) is only for power cables and cannot be applied to optical fiber cables. To identify an optical fiber cable, a part of the sheath of the cable is stripped off, light is passed through the fiber inside, and the fiber is bent, etc., and the light leaks out from the part where the sheath was stripped off and detected. One possible method is local detection. However, this identification method has the problem of damaging the cable because the cable sheath must be removed, and there is also the risk that loss fluctuations may affect the line during operation. (Objective of the Invention) The object of the present invention is to realize a cable identification method and its identification device that can locate a necessary cable without damaging the optical fiber cable or adversely affecting the line in operation. There is a particular thing. (Means for solving interstitial points) The present invention applies the principle of the optical system shown in Figure 2. In the optical system shown in FIG. 2, a case where a laser beam is incident on a single mode fiber (SM fiber) 8 from an LD 7 and the light intensity is detected through an analyzer 9 on the receiving side. When the polarization state of the LD light in the SM fiber 8 changes (the angle of the principal axis of polarization, the phase, etc.), the detected output optical power changes. The level fluctuation of this output optical power differs depending on the polarization state of the output light. Incidentally, in Fig. 2, the electric field of the light at the output end of the fiber before passing through the analyzer 9 is expressed as follows. E 11 =ame”e′&E ,=a,e′″′ a) l. a,'. Amplitude δ on X axis, y axis: X axis, y
Phase difference ω at the axis: Angular frequency Here, the received power of the light that has passed through the analyzer 9 at the assumed angle between the X axis and the main axis angle θ is expressed by the following formula, P{θ) ``am'' Cog”θ+a,”sin”θ
+2am a, CO8θsinθCO+96 that is,
The received light power P is a function of the principal axis angle θ. The cable identification method and identification device of the present invention apply the above-mentioned principle of the optical system. As shown in FIG. 1, the first cable identification method of claim 1 of the present invention is to apply ultrasonic waves to any cable 1 from the outside of the cable 1 midway in the longitudinal direction of a large number of optical fiber cables. etc., and the polarization state such as the angle and phase of the main axis of polarization of the light transmitted in the cable 1 is varied by the polarization variation of the cable 1 due to this vibration,
The cable 1 is distinguished from a large number of other optical fiber cables based on the variation in the level of light emitted from the cable 1 that occurs with this variation. A second cable identification device according to the present invention, as shown in FIG.
The optical fiber cable 1 is characterized in that an identification section 5 located midway in the longitudinal direction of the optical fiber cable 1 is provided with an ultrasonic application device 6 that applies ultrasonic vibrations to the cable 1 from the outside of the cable 1. (Function) In the optical fiber cable identification method and leg separation device of the present invention, when any cable l among a large number of optical fiber cables is located midway in the longitudinal direction (for example, at a branch point λ), the same cable l is Since vibrations such as ultrasonic waves are applied to the cable, the polarization state such as the angle and phase of the main axis of polarization transmitted through the single mode fiber of the same cable l changes, and the output emitted from the cable l changes. The level of optical power fluctuates. In this case, if vibrations such as ultrasonic waves are applied to the optical fiber cable that you want to find, the power of the light emitted from the cable through the analyzer will change, making it difficult to identify the same cable from among a large number of optical fiber cables. can. (Example) Figure 2 is an explanatory diagram of the optical fiber cable identification device of the present invention. In the figure, 2 is a light source that generates coherence light, etc.;
. is a polarization variation light receiving section that receives light transmitted by the optical fiber cable l, and these are provided in the transmitting/receiving station 4. The optical fiber cable l used is a single mode optical fiber. 6 is an ultrasonic applying device, and the optical fiber cable l
This is for applying ultrasonic waves to the cable l from the outside of the cable l at the identification part 5 located midway in the longitudinal direction.
This ultrasonic wave applying device 6 is configured to be able to perform intensity modulation and phase modulation by changing the intensity and period of ultrasonic vibration using a controller 10. In this case, current optical communication systems use intensity modulation/direct detection, so even if polarization fluctuations occur in the line in use, there is no effect. In other words, applying ultrasonic vibration to another optical cable in use will not have any negative effect on that line. Reference numeral 11 in FIG. 1 is a return station, in which the input optical cable l2 and the output optical cable l3 are connected to loop II.
Connected by 14. According to experiments conducted by the inventors, the optical fiber strand l5 with an outer diameter of 0.4 mm in FIG.
In an experimental system using the same optical fiber element! When ultrasonic vibration was applied to the isotropic wire 15 midway in the longitudinal direction of 15,
The fluctuations in the received power of the light received from the optical fiber 15 through the analyzer 9 are as shown in Figure 4. (Effects of the Invention) The optical fiber cable identification method and identification device of the present invention have the following effects. ■. Since vibrations such as ultrasonic waves are applied to the cable 1 from the outside of the optical fiber cable, there is no need to peel off a part of the cable 1 to leak light to the outside, and therefore the cable 1 is not damaged. .. ■Identification work becomes easier because there is no need to strip off part of the cable l. ■. There will be no negative impact on the lines in operation. ii
! ! You can perform separate work without disrupting the lines in use.
【図面の簡単な説明】
第1図は本発明の識別装置の一実施例を示す説明図、第
2図は光学系における偏波面変動の説明図,第3図は本
発明の識別装置の実験系の説明図、第4図は第3図の実
験系に超音波振動をかけたときの出力光パワーの変動を
示す説明図である.
■は光ファイバケーブル
3は偏波変動受光部
4は送受信局
5は識別部
6は超音波印加装置[Brief Description of the Drawings] Fig. 1 is an explanatory diagram showing an embodiment of the identification device of the present invention, Fig. 2 is an explanatory diagram of polarization plane fluctuation in the optical system, and Fig. 3 is an experiment of the identification device of the present invention. An explanatory diagram of the system, Figure 4 is an explanatory diagram showing the fluctuation of the output optical power when ultrasonic vibration is applied to the experimental system of Figure 3. ■The optical fiber cable 3 is the polarization variation light receiving section 4, the transmitting/receiving station 5 is the identification section 6, and the ultrasonic wave applying device.
Claims (2)
ル1の長手方向途中において、同ケーブル1の外側から
同ケーブル1に超音波等の振動をかけ、この振動による
同ケーブル1の偏波変動により同ケーブル1内を伝送さ
れる光の偏波主軸の角度、位相等の偏光状態を変動させ
、この変動に伴って生じる同ケーブル1からの検光子を
通した出射光のレベル変動から、同ケーブル1を他の多
数本の光ファイバケーブルと識別するようにしたことを
特徴とする光ファイバケーブルの識別方法。(1) Vibrations such as ultrasonic waves are applied to any cable 1 from the outside of the cable 1 in the longitudinal direction of the cable 1 among a large number of optical fiber cables, and the polarization of the cable 1 changes due to this vibration. The polarization state, such as the angle and phase of the main axis of polarization of the light transmitted through the cable 1, is changed by changing the polarization state, such as the angle and phase of the main axis of polarization of the light transmitted through the cable 1, and the level change of the output light from the cable 1 that passes through the analyzer, which occurs due to this change, can be used to determine the same. A method for identifying an optical fiber cable, characterized in that a cable 1 is identified from a large number of other optical fiber cables.
光を受光する偏波変動受光部3とを備えた送受信局4と
、前記光ファイバケーブル1の長手方向途中の識別部5
において同ケーブル1の外側より同ケーブル1に超音波
等振動をかける超音波印加装置6とを備えたことを特徴
とするケーブル識別装置。(2) A transmitting/receiving station 4 equipped with a light source 2 and a polarization variation light receiving section 3 that receives light transmitted by the optical fiber cable 1, and an identification section 5 located midway in the longitudinal direction of the optical fiber cable 1.
A cable identification device comprising: an ultrasonic wave applying device 6 that applies vibrations such as ultrasonic waves to the cable 1 from the outside of the cable 1.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1050681A JP2566004B2 (en) | 1989-03-02 | 1989-03-02 | Optical fiber cable identification method and its identification device |
CA002011303A CA2011303C (en) | 1989-03-02 | 1990-03-01 | Method for identifying an optical transmission medium, apparatus for identifying the same and method for optical telecommunication |
EP90302217A EP0390341B1 (en) | 1989-03-02 | 1990-03-01 | Method and apparatus for identifying an optical transmission medium |
DE69019865T DE69019865T2 (en) | 1989-03-02 | 1990-03-01 | Method and device for identifying an optical transmission medium. |
US07/487,045 US5202746A (en) | 1989-03-02 | 1990-03-02 | Method and apparatus for identifying an optical transmission medium |
US08/041,720 US5379357A (en) | 1989-03-02 | 1993-04-01 | Method and apparatus for polarized optical telecommunications using ultrasonic modulation means |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1050681A JP2566004B2 (en) | 1989-03-02 | 1989-03-02 | Optical fiber cable identification method and its identification device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02230106A true JPH02230106A (en) | 1990-09-12 |
JP2566004B2 JP2566004B2 (en) | 1996-12-25 |
Family
ID=12865671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1050681A Expired - Fee Related JP2566004B2 (en) | 1989-03-02 | 1989-03-02 | Optical fiber cable identification method and its identification device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2566004B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992009873A1 (en) * | 1990-11-30 | 1992-06-11 | The Furukawa Electric Co., Ltd. | Method of identifying optical cables |
WO1993022647A1 (en) * | 1992-05-01 | 1993-11-11 | Sumitomo Electric Industries, Ltd. | Method for identifying optical line |
WO2008123703A1 (en) * | 2007-04-09 | 2008-10-16 | Fiberpro, Inc. | Identification apparatus of optical cable and identification method |
JP2009244610A (en) * | 2008-03-31 | 2009-10-22 | Nippon Telegr & Teleph Corp <Ntt> | Method of contrasting cores of optical fiber and device |
JP2013174884A (en) * | 2003-08-20 | 2013-09-05 | At & T Corp | Method, apparatus and system for minimally intrusive fiber identification |
WO2019172056A1 (en) * | 2018-03-06 | 2019-09-12 | 日本電信電話株式会社 | Optical communication wiring core-line contrast method and core-line contrast system |
CN112362304A (en) * | 2020-10-15 | 2021-02-12 | 高勘(广州)技术有限公司 | Method for identifying target optical cable in multiple optical cables and corresponding system |
-
1989
- 1989-03-02 JP JP1050681A patent/JP2566004B2/en not_active Expired - Fee Related
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992009873A1 (en) * | 1990-11-30 | 1992-06-11 | The Furukawa Electric Co., Ltd. | Method of identifying optical cables |
US5331392A (en) * | 1990-11-30 | 1994-07-19 | The Furukawa Electric Co., Ltd. | Method of identifying an optical cable |
WO1993022647A1 (en) * | 1992-05-01 | 1993-11-11 | Sumitomo Electric Industries, Ltd. | Method for identifying optical line |
US5506674A (en) * | 1992-05-01 | 1996-04-09 | Sumitomo Electric Industries, Ltd. | Method for identifying an optical fiber using a pattern of reflected light |
US5671308A (en) * | 1992-05-01 | 1997-09-23 | Sumitomo Electric Industries, Ltd. | Optical waveguide having diffraction grating area and method of fabricating the same |
JP2013174884A (en) * | 2003-08-20 | 2013-09-05 | At & T Corp | Method, apparatus and system for minimally intrusive fiber identification |
US8811780B2 (en) | 2003-08-20 | 2014-08-19 | At&T Intellectual Property Ii, L.P. | Method, apparatus and system for minimally intrusive fiber identification |
US9243973B2 (en) | 2003-08-20 | 2016-01-26 | At&T Intellectual Property Ii, L.P. | Method, apparatus and system for minimally intrusive fiber identification |
US9534982B2 (en) | 2003-08-20 | 2017-01-03 | At&T Intellectual Property Ii, L.P. | Method, apparatus and system for minimally intrusive fiber identification |
US9797807B2 (en) | 2003-08-20 | 2017-10-24 | At&T Intellectual Property Ii, L.P. | Method, apparatus and system for minimally intrusive fiber identification |
US10168247B2 (en) | 2003-08-20 | 2019-01-01 | At&T Intellectual Property Ii, L.P. | Method, apparatus and system for minimally intrusive fiber identification |
US8233144B2 (en) | 2007-04-09 | 2012-07-31 | Fiberpro, Inc. | Identification apparatus of optical cable and identification method |
WO2008123703A1 (en) * | 2007-04-09 | 2008-10-16 | Fiberpro, Inc. | Identification apparatus of optical cable and identification method |
JP2009244610A (en) * | 2008-03-31 | 2009-10-22 | Nippon Telegr & Teleph Corp <Ntt> | Method of contrasting cores of optical fiber and device |
WO2019172056A1 (en) * | 2018-03-06 | 2019-09-12 | 日本電信電話株式会社 | Optical communication wiring core-line contrast method and core-line contrast system |
CN112362304A (en) * | 2020-10-15 | 2021-02-12 | 高勘(广州)技术有限公司 | Method for identifying target optical cable in multiple optical cables and corresponding system |
Also Published As
Publication number | Publication date |
---|---|
JP2566004B2 (en) | 1996-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5202746A (en) | Method and apparatus for identifying an optical transmission medium | |
US9797807B2 (en) | Method, apparatus and system for minimally intrusive fiber identification | |
US6456381B1 (en) | Apparatus for and method of using optical interference of light propagating through an optical fiber loop | |
US5331392A (en) | Method of identifying an optical cable | |
US5329348A (en) | Method of identifying a particular optical cable out of a number of similar optical cables | |
JPH02230106A (en) | Optical fiber cable identification method and identification device | |
JP3386966B2 (en) | Accident detection position locating system for overhead transmission lines | |
JP3357623B2 (en) | Optical fiber interference type sensor, optical fiber interference type signal detection method, optical fiber interference type vibration sensor, optical fiber interference type vibration detection method, optical fiber cable contrast method, optical fiber core wire contrast method, and optical fiber communication method | |
JP2721251B2 (en) | Optical fiber identification method | |
JPH02230105A (en) | Method and device for identifying optical fiber cable | |
JP2001041817A (en) | Optical fiber interference type sensor and optical fiber interference type signal detection method | |
JP3335117B2 (en) | Optical cable identification method | |
JP2959782B2 (en) | Optical information communication method | |
JPH08149087A (en) | Optical communication system | |
JP3343874B2 (en) | Optical fiber uncut communication device | |
JPH03206413A (en) | Optical communication method | |
JP2514491B2 (en) | Fiber optic gyro | |
RU2205486C1 (en) | Method for routing fiber-optic cable over overhead power transmission line | |
JPH02291517A (en) | Optical modulating method | |
JP2004093407A (en) | Core wire contrast test device and core wire contrast test method | |
JPH05118863A (en) | Optical fiber gyro |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081003 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |