[go: up one dir, main page]

JPH02227688A - Distance measuring instrument - Google Patents

Distance measuring instrument

Info

Publication number
JPH02227688A
JPH02227688A JP4791189A JP4791189A JPH02227688A JP H02227688 A JPH02227688 A JP H02227688A JP 4791189 A JP4791189 A JP 4791189A JP 4791189 A JP4791189 A JP 4791189A JP H02227688 A JPH02227688 A JP H02227688A
Authority
JP
Japan
Prior art keywords
sweep
reflected
circuit
sweep signal
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4791189A
Other languages
Japanese (ja)
Inventor
Hiroshi Kato
宏 加藤
Hirosuke Komatsu
小松 宏輔
Hiroshi Hayashi
宏 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP4791189A priority Critical patent/JPH02227688A/en
Publication of JPH02227688A publication Critical patent/JPH02227688A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To utilize a relatively low-speed circuit as an analog or digital processing circuit for processing when a short distance is measured in a short time by adjusting the period of the sweep signal of a sweep oscillation circuit. CONSTITUTION:A transmitting sweep signal generated by sweeping a frequency continuously by a sweep oscillation circuit 13 is sent to a body 1 to be measured through a transmitter 3 and a transmitting antenna 9. The reflected sweep signal which is reflected by the body 1 to be reflected is received through a receiving antenna 10 and a receiver 6 and adjusted by an amplitude adjusting circuit 11 to the same amplitude with the transmitting wave. Then an adding circuit 12 adds the transmitting wave to generate and output a composite wave. The distance between the body 1 to be measured and the receiver 6 is detected from the composite wave output.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は自動車間距離測定等に用いて好適な距離測定装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a distance measuring device suitable for use in measuring distances between vehicles, etc.

〔発明の概要〕[Summary of the invention]

本発明は自動車間距離測定など用いて好適な距離測定装
置に関し、周波数を連続的にスイープさせて、スイープ
信号を発生させるスイープ発振手段と、スイープ発振手
段からの送信スイープ信号を送信手段を通して被測定体
に向けて送信し、被測定体で反射された反射スイープ信
号を受信する受信手段と、受信手段で受信した反射スイ
ープ信号の振幅を送信スイープ信号と同一に調整して合
成する加算手段とを有し、加算手段からの合成波出力か
ら被測定体と受信手段間の距離を検知することで、比較
的低速のアナログ又はデジタル回路を使用出来る様にし
たものである。
The present invention relates to a distance measuring device suitable for measuring the distance between cars, etc., and includes a sweep oscillation means that continuously sweeps a frequency to generate a sweep signal, and a transmission sweep signal from the sweep oscillation means that is transmitted to the measured object through the transmission means. A receiving means for receiving a reflected sweep signal transmitted toward the body and reflected by the object to be measured, and an adding means for adjusting and combining the amplitude of the reflected sweep signal received by the receiving means to be the same as that of the transmitted sweep signal. By detecting the distance between the object to be measured and the receiving means from the combined wave output from the adding means, a relatively low-speed analog or digital circuit can be used.

〔従来の技術〕[Conventional technology]

従来から、超音波、電波、光等を用いて距離測定を行な
う方法は種々提案されている。第6図は超音波送受話器
を用いた距離測定装置の構成図を示すものである。
Conventionally, various methods have been proposed for measuring distance using ultrasonic waves, radio waves, light, and the like. FIG. 6 shows a configuration diagram of a distance measuring device using an ultrasonic handset.

第6図で、被測定体(1)と送受波器(2)(5)間の
距離dを測定するためにパルス発生回路(4)で発生さ
せた送信パルス(4a)を送信機(3)を介して送波器
(2)から被測定体(1)に向けて発射する。この超音
波送信パルスは空中又は水中等の媒質中を伝播して被測
定体(1)に当って反射し、受渡器(5)で受信する。
In Fig. 6, the transmitting pulse (4a) generated by the pulse generating circuit (4) is transmitted to the transmitter (3) in order to measure the distance d between the object to be measured (1) and the transducers (2) and (5). ) is emitted from the transmitter (2) toward the object to be measured (1). This ultrasonic transmission pulse propagates through a medium such as air or water, hits an object to be measured (1), is reflected, and is received by a delivery device (5).

受信機(6)を介して取り出された反射パルス(6a)
を時間を計測するためのカウンタ(7)に供給する。カ
ウンタ(7)にはパルス発生回路(4)からの送信パル
ス(4a)が既に供給されているので例えば、送信パル
ス(4a)の立ち上り点から反射パルス(6a)の立ち
上り点迄の遅延時間Δtをカウンタ(7)で計測する。
Reflected pulse (6a) taken out via receiver (6)
is supplied to a counter (7) for measuring time. Since the counter (7) has already been supplied with the transmission pulse (4a) from the pulse generation circuit (4), for example, the delay time Δt from the rising point of the transmission pulse (4a) to the rising point of the reflected pulse (6a) is measured by a counter (7).

(8)は遅延時間Δtを計測するための基準クロックを
発生するクロック発生回路であり、カウンタ(7)から
は遅延時間Δtに対応した遅延出力が取り出される。
(8) is a clock generation circuit that generates a reference clock for measuring the delay time Δt, and a delay output corresponding to the delay time Δt is taken out from the counter (7).

この遅延時間Δtが解れば測定しようとする距離dは次
の(1)式によって求められる。
If this delay time Δt is known, the distance d to be measured can be determined by the following equation (1).

ここでVは超音波であれば340m八、光であれば3X
10”−八となる。
Here, V is 340m8 for ultrasonic waves and 3X for light.
10”-8.

〔発明が解決しようとする課題] 上述の如き従来の距離測定装置によれば複数の異なった
距離にある被測定体迄の距離を高速カウンタで計測する
ことが出来るのでレーダ等に広く利用されているが次の
如き欠点を有する。
[Problems to be Solved by the Invention] The conventional distance measuring device as described above is widely used in radars and the like because it can measure distances to objects to be measured at a plurality of different distances using a high-speed counter. However, it has the following drawbacks.

(イ)パルス波形の立上り、立下りを確保するため、高
速、高出力の送信デバイスを必要とする。
(b) In order to ensure the rise and fall of the pulse waveform, a high-speed, high-output transmitting device is required.

(ロ)送信パルス及び反射パルスの振幅方向の情報を用
いるのでノイズの影響が大きく、反射パルスの戻る距離
に応じて受信利得を調整しなければならない。
(b) Since information in the amplitude direction of the transmitted pulse and the reflected pulse is used, the influence of noise is large, and the reception gain must be adjusted according to the return distance of the reflected pulse.

(ハ)特に電波或は光を利用する場合、10m内外の短
い距離を測定する時には数10ns程度の計測時間とな
り、回路自体が持つジッタ変動をins以下に抑えなけ
ればならない。
(c) Particularly when using radio waves or light, when measuring short distances of around 10 m, the measurement time is approximately several tens of ns, and jitter fluctuations of the circuit itself must be suppressed to less than ins.

よって、この様な距離測定装置では高速なデジタル又は
アナログ処理が必要で精度を高くするためデバイスは高
価となる。
Therefore, such a distance measuring device requires high-speed digital or analog processing, making the device expensive in order to increase accuracy.

本発明は叙上の欠点に鑑みなされたものでその目的とす
るところは短距離を数10nsオーダの短時間で計測す
る場合でも、この計測処理に用いるアナログ又はデジタ
ル処理回路に比較的低速のものが利用出来る様にした距
離測定装置を得ようとするものである。
The present invention was made in view of the above-mentioned drawbacks, and its purpose is to provide a relatively low-speed analog or digital processing circuit for measuring short distances, even when measuring short distances in a short time on the order of several tens of nanoseconds. The objective is to obtain a distance measuring device that can be used.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の距離測定装置はその1例が第1図に示されてい
る様に周波数を連続的にスイープさせて、スイープ信号
を発生させるスイープ発振手段(13)と、このスイー
プ発振手段(13)からの送信スイープ信号を送信手段
(3)(9)を通して被測定体(1)に向けて送信し、
被測定体(1)で反射された反射スイープ信号を受信す
る受信手段(6)(10)とミ受信手段(6)(10)
で受信した反射スイープ信号の振幅を送信スイープ信号
と同一に調整して合成する加算手段(12)とを有し、
加算手段(12)からの合成波出力から被測定体(1)
と受信手段(to)(6)間の距離を検知してなるもの
である。
One example of the distance measuring device of the present invention is shown in FIG. 1, which includes a sweep oscillation means (13) that continuously sweeps the frequency and generates a sweep signal; transmitting a transmission sweep signal from the transmitting means (3) and (9) toward the object to be measured (1),
Receiving means (6) (10) and mi-receiving means (6) (10) for receiving the reflected sweep signal reflected by the object to be measured (1).
addition means (12) for adjusting and combining the amplitude of the reflected sweep signal received by the transmitted sweep signal to be the same as that of the transmitted sweep signal;
The measured object (1) is calculated from the composite wave output from the adding means (12).
and the receiving means (to) (6).

〔作用〕[Effect]

本発明の距離測定装置は被測定体に向けて送信した送信
スイープ信号を受信手段で受信した反射スイープ信号の
振幅を送信スイープ信号と同一にし、加算する様にした
ので送信スイープ信号と反射スイープ信号間の遅延時間
Δtが2n+1/2f (口=0.1.2・・・・)を
満足すれば加算した合成波の振幅は零となり、スイープ
によって周波数fを可変しているので合成波の振幅変化
は上式を満たす周波数fのいくつかで零点を生じ、この
零点からΔt =1/2foとなる10点より低い周波
数では振■ 離dを求めることが出来るので自動車間距離測定の様に
短距離を高速計測する場合でも、比較的低速のアナログ
又はデジタル回路を使用することが出来る距離測定装置
が得られる。
The distance measuring device of the present invention makes the amplitude of the reflected sweep signal received by the receiving means the same as the transmitted sweep signal and adds the transmitted sweep signal transmitted toward the object to be measured, so that the transmitted sweep signal and the reflected sweep signal are combined. If the delay time Δt between the two satisfies 2n+1/2f (mouth=0.1.2...), the amplitude of the added composite wave becomes zero, and since the frequency f is varied by the sweep, the amplitude of the composite wave The change causes zero points at some of the frequencies f that satisfy the above equation, and at frequencies lower than 10 points from which Δt = 1/2fo, the oscillation distance d can be determined, so it is possible to calculate the A distance measuring device is obtained that can use relatively slow analog or digital circuits even when measuring distance at high speed.

〔実施例〕〔Example〕

以下、本発明の距離測定装置の一実施例を第1図乃至第
3図について説明する。
Hereinafter, one embodiment of the distance measuring device of the present invention will be described with reference to FIGS. 1 to 3.

第1図ではパルス波の代りに連続的な正弦波を被測定体
(1)に発射し、その反射波を受信する様にしたもので
ある。第1図でスイープ発振回路(13)から所定の周
波数fの正弦波(13a)を発振させて送信機(3)及
び送信アンテナ(9)を介して被測定体(1)に送信正
弦波を発射し、この被測定体(1)に当って反射された
反射正弦波を受信アンテナ(10)で受信し、受信機(
6)を介して振幅調整回路(11)で反射正弦波(6a
)の振幅を送信正弦波(13a)の振幅と同一になる様
に調整し、加算回路(12)でスイープ発振回路(13
)からの送信正弦波(13a)と反射正弦波(6a)を
加算した合成波を作って出力する様に構成されている。
In FIG. 1, a continuous sine wave is emitted to the object to be measured (1) instead of a pulse wave, and the reflected wave is received. In Figure 1, a sweep oscillation circuit (13) oscillates a sine wave (13a) of a predetermined frequency f, and transmits a sine wave to the object under test (1) via a transmitter (3) and a transmitting antenna (9). The reflected sine wave that was emitted and reflected by the object to be measured (1) is received by the receiving antenna (10), and the reflected sine wave is transmitted to the receiver (
The reflected sine wave (6a
) is adjusted to be the same as the amplitude of the transmitted sine wave (13a), and the sweep oscillation circuit (13a) is adjusted using the adder circuit (12).
) and a reflected sine wave (6a) are added together to create and output a composite wave.

上述の構成の動作を第2図及び第3図で説明する。第2
図Aは送信アンテナ(9)から被測定体(1)に発射す
る送信正弦波(13a)を示し、第2図Bは受信アンテ
ナ(10)で受信し、受信機(6)を介して振幅調整回
路(11)で振幅を送信正弦波(13a)と同一に調整
した反射正弦波(6a)を示している。
The operation of the above configuration will be explained with reference to FIGS. 2 and 3. Second
Figure A shows the transmitting sine wave (13a) emitted from the transmitting antenna (9) to the object under test (1), and Figure 2B shows the amplitude of the sine wave received by the receiving antenna (10) and transmitted through the receiver (6). A reflected sine wave (6a) whose amplitude has been adjusted to be the same as that of the transmitted sine wave (13a) by an adjustment circuit (11) is shown.

この様な送信正弦波(13a)と反射正弦波(6a)を
加算回路(12)で合成するときに送信正弦波(13a
)と反射正弦波(6a)との遅延時間Δむが次の(2)
弐を満たすと、 ここでn=(L il 2・・・・、rは正弦波周波数
送信正弦波(13a)と反射正弦波(6a)の位相が反
転して合成波出力は振幅が零となる。
When combining such a transmitted sine wave (13a) and a reflected sine wave (6a) in the adder circuit (12), the transmitted sine wave (13a)
) and the reflected sine wave (6a), the delay time Δm is as follows (2)
2, where n = (L il 2..., r is the sine wave frequency. The phase of the transmitted sine wave (13a) and the reflected sine wave (6a) is reversed, and the amplitude of the composite wave output becomes zero. Become.

今、ここで、送信正弦波(13a)をスイープ発振回路
り13)で周波数を高い方から低い方に連続的にスイー
プさせると加算回路(12)から得られる合成波出力の
振幅変化は第3図に示す様に第2式の条件を満すいくつ
かの周波数rで振幅が零となる周波数点f、、3 f、
、5 f、、7 fa・・・・を生ずが遅延時間Δむが Δt=            ・・・・(3)2f。
Now, if the frequency of the transmitted sine wave (13a) is continuously swept from high to low by the sweep oscillation circuit 13), the amplitude change of the composite wave output obtained from the adder circuit (12) will be the third As shown in the figure, the frequency points f, , 3 f, where the amplitude becomes zero at some frequencies r that satisfy the condition of the second equation
, 5 f,, 7 fa, etc., resulting in a delay time Δt= (3) 2f.

となる様な零周波数点toより低い周波数では振幅零の
点が生じなくなる。即ち、波長干渉が生ずる際の一番長
い波長を知れば被測定体(1)から受信アンテナ(10
)迄の距離dを求めることが出来る。
At frequencies lower than the zero frequency point to such that In other words, if you know the longest wavelength at which wavelength interference occurs, you can move from the object to be measured (1) to the receiving antenna (10
) can be found.

従って、遅延時間Δtは Δt = 1/ 2 fa =2 d/ v  ”(4
)、’、  d=v/4 fa (=λ。/4)・・・
・(5)ここでVは正弦波の伝播速度、λ。はスイープ
周波数の波長である。
Therefore, the delay time Δt is Δt = 1/2 fa = 2 d/v'' (4
),', d=v/4 fa (=λ./4)...
・(5) Here, V is the propagation velocity of the sine wave, λ. is the wavelength of the sweep frequency.

として求められ(5)式から距離dを求めることが出来
る。
The distance d can be found from equation (5).

第1図で示した構成の距離測定装置によれば例えば、測
定距離範囲が1m乃至100m程度を考えて、有効な零
周波数点f0を求めるためスイープ発振回路(13)の
発振周波数が1?iHz〜500MI(z (実際には
1mで300MHz、 100mで3MHz程度)をカ
バーする広帯域スイープ波を送受信させなければなら・
ないのでこれら送受信に用いるアンテナの大きさ、指向
性6送受信機の構成が特定され電波法上の規制も考えら
れる。又送受信波形の振幅を同一にするためには受信波
強度に応じて自動的に制御する必要がある。
According to the distance measuring device having the configuration shown in FIG. 1, for example, considering that the measurement distance range is about 1 m to 100 m, the oscillation frequency of the sweep oscillation circuit (13) is set to 1? It is necessary to transmit and receive wideband sweep waves covering iHz to 500 MI (actually 300 MHz at 1 m, 3 MHz at 100 m).
Therefore, the size of the antenna used for these transmissions and receptions and the configuration of the directional 6 transmitter/receiver are specified, and regulations under the Radio Law are also considered. Furthermore, in order to make the amplitudes of the transmitted and received waveforms the same, it is necessary to automatically control them according to the strength of the received waves.

この様な問題を解決するための距離測定装置を第4図及
び第5図について説明する。尚、第4図で第1図との対
応部分には同一符号を付して重複説明を省略する。
A distance measuring device for solving such problems will be explained with reference to FIGS. 4 and 5. Note that parts in FIG. 4 corresponding to those in FIG. 1 are given the same reference numerals, and redundant explanation will be omitted.

第4図の場合は第1図の様にスイープ波そのものを送受
信せず搬送波に乗せて送受信する。本発明では搬送波に
乗せて受信する場合も、スイープ信号の送受信に含めた
意味に用いる。第4図でスイープ発振回路(13)のス
イープ信号の周波数を所定周波数に設定する。上述の様
にlm−10On+の距離測定を行なう、ものであれば
IMHz〜500MHzの範囲でスイープ可能なスイー
プ発振回路(13)を選択する。このスイープ信号fを
位相変調回路(17)に供給する位相変調回路(17)
は例えば、周波数変調回路でもよい。位相変調回路(1
7)には例えば、1〜2GHz程度の搬送波fcが供給
され1.#I送波fcはスイープ信号fで位相変調され
る。
In the case of FIG. 4, the sweep wave itself is not transmitted and received as in FIG. 1, but is transmitted and received on a carrier wave. In the present invention, even when received on a carrier wave, the term is included in the transmission and reception of a sweep signal. In FIG. 4, the frequency of the sweep signal of the sweep oscillation circuit (13) is set to a predetermined frequency. If the distance measurement of lm-10On+ is to be performed as described above, a sweep oscillation circuit (13) capable of sweeping in the range of IMHz to 500MHz is selected. A phase modulation circuit (17) that supplies this sweep signal f to a phase modulation circuit (17)
may be, for example, a frequency modulation circuit. Phase modulation circuit (1
For example, a carrier wave fc of about 1 to 2 GHz is supplied to 1.7). #I transmission wave fc is phase modulated by sweep signal f.

この場合位相又は周波数変調の変調指数を小さくとれば
位相変調回路(17)の出力の占有帯域幅はスイープ信
号fの占有帯域幅より小さくすることが出来る。又、搬
送波fcの周波数は送受信アンテナ(9)(10)及び
送受信機(3)(6)が電波法上で最適な例えば数GH
z〜数10G )4zとなる様に選択すればよい。
In this case, if the modulation index of phase or frequency modulation is set small, the occupied bandwidth of the output of the phase modulation circuit (17) can be made smaller than the occupied bandwidth of the sweep signal f. In addition, the frequency of the carrier wave fc is set to the optimal frequency according to the Radio Law, for example, several GH when the transmitting/receiving antennas (9), (10) and transmitting/receiving devices (3) and (6)
z~several 10G) 4z.

この様にスイープ信号【で搬送波fcを位相変調し位相
変調信号fc±ωとして、送信機(3)及び送信アンテ
ナ(9)を介して被測定体(1)に発射し、その反射波
を受信アンテナ(10)と受信機(6)を介してリミッ
タ(14)に供給する。このリミッタ(14)は受信波
強度の変動を吸収するために設けたものでリミッタ(4
)で一定振幅にする。リミッタ(14)でリミッタされ
るものは位相変調波であるから成る一定値を切らない限
り振幅変動を無視することが出来る。又S/Nや混信に
対しても影響が少ない。リミッタ(14)でリミットさ
れた反射位相変調波fc±ωは復調回路(15)で元の
スイープ信号r′に復調される。この復調回路(15)
で復調されたスイープ信号f′には勿論測定しようとす
る距離dに依存した遅延時間Δtが保存されているから
スイープ発振回路(13)からのスイープ信号fと復調
されたスイープ信号f′を加算回路(12)で加算して
合成波出力信号を得る。この様な合成波出力信号は第3
図に示したと同様の波形となされるので検出回路(16
)では、これら合成波中に含まれた振幅零の周波数f 
o、 3 f O+ 5 f o、 7 f o・・・
・の点から最も低い周波数10を検出すればよい。検出
回路(16)にはスイープ発振回路(13)からf0〜
nfo迄のスイープ情報或は現在スイープしている周波
数のみを与える様にする。この検出回路(16)をマイ
クロプロセッサ等で検出する為の流れ図を第5図で説明
する。本例の検出回路(16)は第1ステップST、で
は合成波出力信号から零となる周波数f。
In this way, the carrier wave fc is phase-modulated using the sweep signal, and the phase-modulated signal fc±ω is emitted to the object to be measured (1) via the transmitter (3) and the transmitting antenna (9), and the reflected wave is received. It is fed to a limiter (14) via an antenna (10) and a receiver (6). This limiter (14) is provided to absorb fluctuations in received wave intensity.
) to maintain a constant amplitude. What is limited by the limiter (14) is a phase modulated wave, so amplitude fluctuations can be ignored as long as the wave does not fall below a certain value. It also has little effect on S/N and interference. The reflected phase modulated wave fc±ω limited by the limiter (14) is demodulated into the original sweep signal r' by the demodulation circuit (15). This demodulation circuit (15)
Of course, the demodulated sweep signal f' stores a delay time Δt that depends on the distance d to be measured, so the sweep signal f from the sweep oscillation circuit (13) and the demodulated sweep signal f' are added. A circuit (12) performs addition to obtain a composite wave output signal. Such a composite wave output signal is the third wave output signal.
Since the waveform is similar to that shown in the figure, the detection circuit (16
), the frequency f of zero amplitude included in these composite waves is
o, 3 f O+ 5 f o, 7 f o...
It is sufficient to detect the lowest frequency 10 from the point . The detection circuit (16) receives f0~ from the sweep oscillation circuit (13).
Sweep information up to nfo or only the frequency currently being swept is given. A flowchart for detecting this detection circuit (16) using a microprocessor or the like will be explained with reference to FIG. In the first step ST, the detection circuit (16) of this example sets the frequency f which becomes zero from the composite wave output signal.

=f、、rz=3ro、f3=3f、・・・・を取り込
み、第2ステップST、では周波数f、、f!、fs・
・・・を周波数の低い順に並べる。次の第3ステップS
T、では第2ステップST、で並べられた周波数r、、
r、・・・・fnの最終数nを1とし、f、をとって、
第4ステップST、に進める。第4ステツプS“T4で
はこのflの値が一番低い周波数f0の奇数倍(2n+
1)になっているか否かをみて、“°NO°゛であれば
第1ステップST、に戻される。
=f,, rz=3ro, f3=3f,... is taken in, and in the second step ST, the frequency f,, f! , fs・
... are arranged in descending order of frequency. Next third step S
In T, the frequencies r, arranged in the second step ST, are
Let the final number n of r,...fn be 1, take f,
Proceed to the fourth step ST. In the fourth step S"T4, the value of fl is an odd number multiple (2n+
1), and if "NO", the process returns to the first step ST.

fn= (2n+1)toの条件が満たされた“YES
”であれば第5ステップST、では周波数fl+f!・
・・・fn順に並べられたn個のすべてが終了している
か、即ちn=n+1迄をみて、第6ステツプST、で終
りか否かを判断し、“N O”であれば第4ステップS
T、に戻ってn+1迄のすべてをみて、“YES”状態
になった出力信号を検出出力信号とする様にすればよい
“YES” when the condition of fn=(2n+1)to is satisfied
”, then the fifth step ST, then the frequency fl+f!・
... Check whether all n items arranged in the order of fn have been completed, that is, up to n=n+1, and judge whether it is finished at the 6th step ST. If "NO", proceed to the 4th step. S
It is only necessary to return to T and look at all the signals up to n+1, and use the output signal that is in the "YES" state as the detection output signal.

この様な検出回路(16)ではスイープ波の繰り返し周
期(数lIs〜数百ns)に追従出来る程度の速度を満
足させればよい。
Such a detection circuit (16) only needs to satisfy a speed that can follow the repetition period (several lIs to several hundred ns) of the sweep wave.

本発明の距離測定装置は自動車間距離測定、工場内の無
人車と人との衝突防止、或は盗人の探知等のセキュリテ
ィシステム、ケーブル長測定等の比較的短距離測定に有
用である。
The distance measuring device of the present invention is useful for measuring distances between cars, preventing collisions between unmanned cars and people in factories, security systems such as detecting thieves, and relatively short distance measurements such as measuring cable lengths.

尚、本発明は叙上の実施例に限定されることなく、本発
明の要旨を逸脱しない範囲で種々変更することか出来る
Note that the present invention is not limited to the embodiments described above, and various changes can be made without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明の距離測定装置によればスイープ発振回路のスイ
ープ信号の周期を調整すれば数nsの遅延時間の検出を
数百111s程度の信号を扱うアナログ又はデジタル回
路で構成させることが出来て、距離測定装置を廉価に得
られる。
According to the distance measuring device of the present invention, by adjusting the cycle of the sweep signal of the sweep oscillation circuit, detection of a delay time of several ns can be configured with an analog or digital circuit that handles a signal of about several hundred 111 seconds, and the distance Measuring equipment can be obtained at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の距離測定装置の一実施例を示す構成図
、第2図は送受信波間の遅延状態を示す波形図、第3図
はスイープ波合成時の波形図、第4図は本発明の距離測
定装置の他の実施例を示す構成図、第5図は本発明の検
出回路の流れ図、第6図は従来の距離測定装置の構成図
である。 (1)は被測定体、(3)は送信機、(6)は受信機、
(13)はスイープ発振回路、(14)はリミッタ、(
15)は復調回路、(16)は検出回路である。
Fig. 1 is a configuration diagram showing an embodiment of the distance measuring device of the present invention, Fig. 2 is a waveform diagram showing the delay state between transmitted and received waves, Fig. 3 is a waveform diagram when sweeping waves are synthesized, and Fig. 4 is the main FIG. 5 is a block diagram showing another embodiment of the distance measuring device of the present invention, FIG. 5 is a flowchart of the detection circuit of the present invention, and FIG. 6 is a block diagram of a conventional distance measuring device. (1) is the object to be measured, (3) is the transmitter, (6) is the receiver,
(13) is a sweep oscillation circuit, (14) is a limiter, (
15) is a demodulation circuit, and (16) is a detection circuit.

Claims (1)

【特許請求の範囲】  周波数を連続的にスイープさせて、スイープ信号を発
生させるスイープ発振手段と、 上記スイープ発振手段からの送信スイープ信号を送信手
段を通して被測定体に向けて送信し、被測定体で反射さ
れた反射スイープ信号を受信する受信手段と、 上記受信手段で受信した反射スイープ信号の振幅を送信
スイープ信号と同一に調整して合成する加算手段とを有
し、 上記加算手段からの合成波出力から被測定体と受信手段
間の距離を検知してなることを特徴とする距離測定装置
[Claims] Sweep oscillation means for generating a sweep signal by continuously sweeping a frequency; and Sweep oscillation means for generating a sweep signal by continuously sweeping a frequency; a receiving means for receiving the reflected sweep signal reflected by the receiving means; and an adding means for adjusting and combining the amplitude of the reflected sweep signal received by the receiving means to be the same as that of the transmitted sweep signal, and combining from the adding means. A distance measuring device that detects the distance between an object to be measured and a receiving means from wave output.
JP4791189A 1989-02-28 1989-02-28 Distance measuring instrument Pending JPH02227688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4791189A JPH02227688A (en) 1989-02-28 1989-02-28 Distance measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4791189A JPH02227688A (en) 1989-02-28 1989-02-28 Distance measuring instrument

Publications (1)

Publication Number Publication Date
JPH02227688A true JPH02227688A (en) 1990-09-10

Family

ID=12788555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4791189A Pending JPH02227688A (en) 1989-02-28 1989-02-28 Distance measuring instrument

Country Status (1)

Country Link
JP (1) JPH02227688A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG137726A1 (en) * 2006-06-06 2007-12-28 Sony Corp A method and apparatus for measuring distance between a target and a receiver in a ranging system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG137726A1 (en) * 2006-06-06 2007-12-28 Sony Corp A method and apparatus for measuring distance between a target and a receiver in a ranging system

Similar Documents

Publication Publication Date Title
JP5538837B2 (en) Method for determining at least one of distance to object and speed of object, and apparatus for determining at least one of distance to object and speed of object
EP1619519B1 (en) FM-CW radar system
JP2990097B2 (en) Continuous-wave wide-band precision ranging radar equipment.
JP2688289B2 (en) Radar distance measuring device
JP2004184393A (en) Pulse radar equipment
JP2008541025A (en) Method and apparatus for determining the distance to a target object
JP5029045B2 (en) Radar system and transmitter and receiver used therefor
JP2005106603A (en) Pulse wave radar apparatus
JPH02227688A (en) Distance measuring instrument
JP2003028949A (en) Transmitter / receiver and radar device
JP3930376B2 (en) FMCW radar equipment
JP2762143B2 (en) Intermittent FM-CW radar device
JP2000321351A (en) Target detection method and radar device
JPH0777575A (en) Radar equipment
JP3973047B2 (en) Pulse radar equipment
JPS5826282A (en) Microwave ranging device
JP2957712B2 (en) Ultrasonic ranging device
JPS6225276A (en) Obstacle detecting device
JP2584482B2 (en) Speed measuring device built into data transmission equipment
JPS5455198A (en) Radar apparatus
GB2251752A (en) Radar arrangement
JPH0128915B2 (en)
JPS591986B2 (en) radar couch
JP2005156442A (en) Short range sensor
CN118226452A (en) A laser ranging and speed measurement system and method based on echo feedback modulation