[go: up one dir, main page]

JPH02226776A - Wavelength selection photodetector - Google Patents

Wavelength selection photodetector

Info

Publication number
JPH02226776A
JPH02226776A JP1046767A JP4676789A JPH02226776A JP H02226776 A JPH02226776 A JP H02226776A JP 1046767 A JP1046767 A JP 1046767A JP 4676789 A JP4676789 A JP 4676789A JP H02226776 A JPH02226776 A JP H02226776A
Authority
JP
Japan
Prior art keywords
wavelength
region
light
distributed feedback
bragg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1046767A
Other languages
Japanese (ja)
Inventor
Hajime Sakata
肇 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1046767A priority Critical patent/JPH02226776A/en
Publication of JPH02226776A publication Critical patent/JPH02226776A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Light Receiving Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To realize light detection with high efficiency by arranging a plurality of distributed feedback region constituted of a diffraction grating along the travelling direction of incident light, and inserting a light receiving region between the above distributed feedback regions. CONSTITUTION:A wavelength selection detector has a structure wherein a light receiving region A is sandwiched by two distributed feedback regions B formed by distributed Bragg reflectors (DBR). In the case where the wavelength of an input guided light is sufficiently separated from the Bragg wavelength lambdaB, the guided light is transmitted without generating diffraction. In the case where the wavelength of the input guided light is close to the wavelength lambdaB, the light is reflected by Bragg diffraction. In this case, when the phase shift between the two regions B satisfies a specified condition, Fabry-Perot etalon resonates at the Bragg wavelength of the DBR in the region B, and the light intensity in the region B is increased. When absorption is not present in the region A, only the Bragg wavelength is in the transmission state. In the case where absorption is present in the region A, the light is sufficiently absorbed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、波長多重化された信号を波長ごとに選択検出
する光検出器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a photodetector that selectively detects wavelength-multiplexed signals for each wavelength.

【従来の技術1 従来、波長多重化光信号から任意の光信号の検出におい
ては、光分波器を使用し所望の波長を有する光信号のみ
を選択し、その後、光電変換機能を有するいわゆる光検
出器を用いて検出していた。
[Prior art 1] Conventionally, when detecting an arbitrary optical signal from a wavelength multiplexed optical signal, an optical demultiplexer is used to select only the optical signal having the desired wavelength, and then a so-called optical signal having a photoelectric conversion function is used. It was detected using a detector.

光分波器としては、2本の光導波路間の結合特性が波長
選択性を持つ事を利用した方向性結合器型光分波器や多
層干渉膜のバンドパスフィルタを用いる光分波器あるい
は回折格子の分散、ブラッグ反射を用いたものなどがあ
る。但し、上記の原理を用いた光分波器は、素子長が長
く挿入損失が大きく、また、光導波路化して集積化する
ことが困難であったり、中心波長をチューニングするこ
とが困難であったりして、いずれも満足のいくものでは
なかった。さらに、波長選択度については分離可能な中
心波長間隔で示すと、方向性結合器型で100〜200
人、多層干渉膜型で600〜1000人1回折格子型で
50〜100人程度であ除去将来のコヒーレント通信時
代の高密度波長多重あるいは、光周波数多重への適用は
極めて困難であった。
Optical demultiplexers include directional coupler-type optical demultiplexers that utilize the wavelength selectivity of the coupling characteristics between two optical waveguides, optical demultiplexers that use multilayer interference film bandpass filters, or Examples include those using diffraction grating dispersion and Bragg reflection. However, optical demultiplexers using the above principle have long element lengths and large insertion losses, are difficult to integrate into optical waveguides, and are difficult to tune the center wavelength. However, none of them were satisfactory. Furthermore, the wavelength selectivity, expressed as a separable center wavelength interval, is 100 to 200 for the directional coupler type.
It has been extremely difficult to apply this method to high-density wavelength multiplexing or optical frequency multiplexing in the future era of coherent communications.

上記の光分波器に対して最近、回折格子からなる分布帰
還構造を利用した光波長フィルタが、波長選択度の高さ
や可変同調可能な点あるいは集積化に適している点など
から期待を集めている(特開昭62−2213.62−
241387.63−133105など)。
In contrast to the above-mentioned optical demultiplexers, optical wavelength filters that utilize a distributed feedback structure consisting of a diffraction grating have recently been attracting attention due to their high wavelength selectivity, tunability, and suitability for integration. (Unexamined Japanese Patent Publication No. 1983-2213.62-
241387.63-133105, etc.).

〔発明が解決しようとする課題〕 しかしながら、上述した回折格子の分布帰還構造を利用
する光波長フィルター素子は、応用において幾つかの欠
点を有している。
[Problems to be Solved by the Invention] However, the optical wavelength filter element using the distributed feedback structure of the diffraction grating described above has several drawbacks in application.

例えば、使用波長範囲あるいは間隔が限られていること
が挙げられる。つまり、有効に波長選択透過が行なわれ
るのは、回折格子の分布帰還が生じる波長域、すなわち
回折格子のブラッグ波長周辺のみであるため、それ以外
の波長域では光は常に透過してしまい、光波長フィルタ
ーとしての役目を果さなくなる。さらに複数波長の検出
に不向きであることが挙げられる。すなわち、光波長フ
ィルターを用いて複数波長の検出を行なおうとすると、
まず、被検出光を分岐路で分けて各光波長フィルターで
弁別した後、後段に接続された光検出器を用いて検出し
なければならず、この分岐路を用いることによって光損
失が分岐数に応じて増加し、望ましくなかった。
For example, the usable wavelength range or spacing is limited. In other words, effective wavelength-selective transmission occurs only in the wavelength range where the distributed feedback of the diffraction grating occurs, that is, around the Bragg wavelength of the diffraction grating.In other wavelength ranges, light is always transmitted, and light It no longer functions as a wavelength filter. Another problem is that it is unsuitable for detecting multiple wavelengths. In other words, when trying to detect multiple wavelengths using an optical wavelength filter,
First, the light to be detected must be separated by a branch path, discriminated by each optical wavelength filter, and then detected using a photodetector connected to the subsequent stage. By using this branch path, the optical loss can be reduced by the number of branches. increased accordingly and was undesirable.

本発明は上述の従来の技術が有する欠点に鑑みてなされ
たもので、調整可能な波長選択機能を有し、効率の良い
光検出を可能とする波長選択光検出器を提供することを
目的とする。
The present invention was made in view of the drawbacks of the above-mentioned conventional techniques, and an object of the present invention is to provide a wavelength selective photodetector that has an adjustable wavelength selection function and enables efficient light detection. do.

[課題を解決するための手段] 本発明の波長選択光検出器は、 回折格子から成る複数の分布帰還領域が入射光の進行方
向に沿って設けられており、該分布帰還領域の間に受光
領域を挿入したものであり、さらに、回折格子から成る
複数の分布帰還領域が入射光の進行方向に沿って設けら
れており、該分布帰還領域の間に該受光領域および位相
制御領域を挿入したもので、該分布帰還領域に電流注入
を行なう電極を設けたもの、あるいは、分布帰還領域が
一次回折格子で形成されているものかあり、 また、回折格子から成る?1数の分布帰還領域が入射光
の進行方向に沿って設けられており、該分布帰還領域の
間に受光領域および利得領域を挿入したもの。
[Means for Solving the Problems] The wavelength-selective photodetector of the present invention has a plurality of distributed feedback regions each made of a diffraction grating provided along the traveling direction of incident light, and between the distributed feedback regions there is a light-receiving region. In addition, a plurality of distributed feedback regions made of diffraction gratings are provided along the traveling direction of the incident light, and the light receiving region and the phase control region are inserted between the distributed feedback regions. Is the distributed feedback region provided with an electrode for injecting current, or is the distributed feedback region formed of a first-order diffraction grating, or is it composed of a diffraction grating? A number of distributed feedback regions are provided along the traveling direction of incident light, and a light receiving region and a gain region are inserted between the distributed feedback regions.

回折格子から成る複数の分布帰還領域が入射光の進行方
向に沿って設けられており、該分布帰還領域の間に受光
領域1位相制御領域及び利得領域を挿入したものである
A plurality of distributed feedback regions made of diffraction gratings are provided along the traveling direction of incident light, and a phase control region and a gain region of the light receiving region 1 are inserted between the distributed feedback regions.

[作用1 本発明は分布帰還領域での共振と受光領域での光の吸収
とを利用して所望の波長の光信号を検出するものである
。さらに、利得領域を分布帰還領域の間に設けた場合、
光信号が分布帰還領域を通過する際の放射損失を補償す
ることができる。また1分布帰還領域の間に受光領域と
ともに位相制御領域を設け、該分布帰還領域へ電極を介
して電流を注入することにより、油°述した放射損失の
補償、ならびに、電流注入による分布帰還領域の屈折率
の変化に対応でき、所望の波長選択を行なうことができ
る。さらに、分布帰還領域の間に、受光領域とともに利
得領域および位相制御領域を設けることにより、前記放
射損失を補償するとともに検出波長を選択可能としたも
のである。
[Operation 1] The present invention detects an optical signal of a desired wavelength by utilizing resonance in a distributed feedback region and light absorption in a light receiving region. Furthermore, if the gain region is provided between the distributed feedback regions,
Radiation loss when the optical signal passes through the distributed feedback region can be compensated for. In addition, by providing a phase control region together with a light receiving region between one distributed feedback region, and injecting a current into the distributed feedback region via an electrode, it is possible to compensate for the radiation loss described above, and to compensate for the distributed feedback region by current injection. It is possible to respond to changes in the refractive index of the wavelength and select a desired wavelength. Further, by providing a gain region and a phase control region together with a light receiving region between the distributed feedback regions, the radiation loss can be compensated for and the detection wavelength can be selected.

〔実施例〕〔Example〕

次に2本発明の実施例について図面を参照して説明する
Next, two embodiments of the present invention will be described with reference to the drawings.

本発明による波長選択光検出器の一実施例の基本構成を
第1図に示す。
The basic configuration of an embodiment of a wavelength selective photodetector according to the present invention is shown in FIG.

第1図に右いて、この波長選択光検出器は、受光領域A
が、DBR(デイストリビューティラド・ブラック・リ
フレクター:分布ブラッグ反射器)で形成される2つの
分布帰還領域Bで挟まれた構造を持つ。
On the right side of FIG. 1, this wavelength selective photodetector has a light receiving area A.
has a structure sandwiched between two distributed feedback regions B formed by DBRs (Distributed Bragg Reflectors).

ここで、本実施例における入力導波光に対する透過9反
射の状態を説明する。
Here, the state of transmission and reflection for input guided light in this example will be explained.

まず、入力導波光がブラッグ波長λ、から充分能れた波
長のとき、第2図(a)のように、導波光は回折を起こ
さず透過する。但し、分布帰還領域BのDBRを構成す
る回折格子が1次回折格子でない場合は、回折格子の上
下方向へ放射回折光を生じるが、いずれにせよ、このと
き、波長選択光検出器は透過状態である。また、入力導
波光がブラック波長付近の波長のときは、第2図(bl
のように、ブラッグ回折により反射する反射状態となる
。このとき、2つの分布帰還領域8間での位相シフトφ
が、 (mho、  1. 2.  ・ ・ ・)もしくは、 (m:o、1,2.  ・ ・ ・) 但し、no:導波路の有効屈折率。
First, when the input guided light has a wavelength that is sufficiently different from the Bragg wavelength λ, the guided light is transmitted without diffraction, as shown in FIG. 2(a). However, if the diffraction grating constituting the DBR in distributed feedback region B is not a first-order diffraction grating, radiated diffracted light will be generated in the vertical direction of the diffraction grating, but in any case, at this time, the wavelength selective photodetector will be in the transmission state. It is. In addition, when the input waveguide light has a wavelength near the black wavelength, as shown in Fig. 2 (bl
As shown in FIG. At this time, the phase shift φ between the two distributed feedback regions 8
is (mho, 1. 2. . . .) or (m: o, 1, 2. . . .) where no: effective refractive index of the waveguide.

LA:受光領域Aの長さ を満足すると、分布帰還領域BのDBHのブラッグ波長
で、ファブリペローエタロンの共振状態となり、分布帰
還領域B内部の光強度が高くなる。そして、受光領域A
に吸収がない場合は、第2図(a)のように、反射状態
の中でブラッグ波長のみが透過状態となるが、もし、受
光領域Aで吸収があれば、共振状態の導波光は、第3図
(b)のように受光領域Aで強く吸収される。これを利
用するのが、本発明による波長選択光検出器である。
LA: When the length of the light receiving area A is satisfied, the Fabry-Perot etalon becomes resonant at the Bragg wavelength of the DBH in the distributed feedback area B, and the light intensity inside the distributed feedback area B becomes high. And light receiving area A
If there is no absorption in the light-receiving region A, only the Bragg wavelength will be transmitted in the reflected state as shown in Figure 2(a), but if there is absorption in the light-receiving region A, the guided light in the resonant state will be As shown in FIG. 3(b), the light is strongly absorbed in the light receiving area A. This is utilized in the wavelength selective photodetector according to the present invention.

本実施例において、検出波長λ。を0,8μm、光導波
路11の有効屈折率n0を3.4とすれば、分布帰還領
域BのDBRを構成する回折格子の格子定数Aは以下の
ように表わされる。
In this example, the detection wavelength λ. 0.8 μm, and the effective refractive index n0 of the optical waveguide 11 is 3.4, then the grating constant A of the diffraction grating constituting the DBR of the distributed feedback region B is expressed as follows.

=mx0.117Ei (μII+) 第(2)式において、m=1の場合、つまり1次回折格
子を用いると放射回折による光損失は消失し、DBRの
反射は高効率となるが、作製に高度の技術を要する。そ
こで、m=2.の場合、つまり、2次回折格子を用いた
=mx0.117Ei (μII+) In equation (2), when m = 1, that is, when a first-order diffraction grating is used, the optical loss due to radiation diffraction disappears and the DBR reflection becomes highly efficient, but technology is required. Therefore, m=2. In this case, a second-order diffraction grating was used.

次に、本発明の第2実施例について説明する。Next, a second embodiment of the present invention will be described.

前述した第1実施例において、分布帰還領域Bに2次回
折格子を使用したが、この場合、1次回折光が放射回折
光として導波路外へ出射し損失となる。従って、第1図
において、分布帰還領域Bからの帰還効率が低くなり、
充分な特性が得られないため、本実施例では、放射損失
を補償する利得を分布帰還系に与えることにし、第4図
に示すように受光領域Aとともに利得領域Gを、受光領
域Aに隣接して2つの分布帰還領域Bの間に設けた。こ
の波長選択光検出器は、第4図において、n型GaAs
基板41’上にエピタキシャル成長させたn”−GaA
sからなるバッファ層42. n−AlGaAsからな
るクラッド層43. n−AlGaAsからなる光導波
路層44、1−GaAsまたは1−GaAs/1−Al
GaAs MQWからなる活性層50. p−AlGa
Asからなるクラッド層45゜p“−GaAsからなる
電極形成層46.n側電極47.ρ側電極48から構成
されている。
In the first embodiment described above, a second-order diffraction grating is used in the distributed feedback region B, but in this case, the first-order diffraction light is emitted out of the waveguide as radiation diffraction light, resulting in a loss. Therefore, in FIG. 1, the feedback efficiency from the distributed feedback region B becomes low,
Since sufficient characteristics cannot be obtained, in this embodiment, a gain that compensates for the radiation loss is given to the distributed feedback system, and as shown in FIG. and provided between the two distributed feedback regions B. This wavelength selective photodetector is made of n-type GaAs in FIG.
n''-GaA epitaxially grown on the substrate 41'
A buffer layer 42 consisting of s. Cladding layer 43 made of n-AlGaAs. Optical waveguide layer 44 made of n-AlGaAs, 1-GaAs or 1-GaAs/1-Al
Active layer 50 made of GaAs MQW. p-AlGa
It is composed of a cladding layer 45 made of As, an electrode formation layer 46 made of GaAs, an n-side electrode 47, and a ρ-side electrode 48.

分布帰還領域Bはエツチングで光導波路層44を露出さ
せた後、三光束干渉法及びイオンエツチングにより、周
期0.235μIのレリーフ状回折格子を形成してDB
R49とし、その長さは300μ国及び500μmの間
である。受光領域Aと利得領域G及び分布帰還領域Bの
間はFeをドーピングした高抵抗領域Hで分離されてい
る。
The distributed feedback region B is formed by exposing the optical waveguide layer 44 by etching, and then forming a relief diffraction grating with a period of 0.235 μI by three-beam interferometry and ion etching.
R49 and its length is between 300 μm and 500 μm. The light receiving region A, the gain region G, and the distributed feedback region B are separated by a high resistance region H doped with Fe.

受光領域Aは逆バイアス電圧−■が印加され、pin型
フォトダイオードとなり、利得領域GはDBR49によ
る放射損失を補償するよう、一定の電流I。が注入され
た光増幅器となっている。ここで、DBR49の2次結
合係数をo、oi (μ1−1)とし、その長さを30
0μm及び500μmに変化させた時の本光検出器の透
過光強度1反射光強度、受光領域での吸収光強度を第5
図に示す。但し、この場合、受光領域Aで導波光が1回
通過するときに生する吸収光量α、を、DBR49の長
さに応じて変化させており、何れの長さにおいても、両
DBR間での位相シフトが前述の (1)式、すなわち
(m+第5図(a)に示すように、DBR49の長さが
300μIの場合、ブラッグ波長0.8μIで強い吸収
が起こり、ブラッグ波長周辺では吸収が少なく、ブラッ
グ波長から離れた波長では受光領域Aを1回通過するこ
とによる吸収が生じる。さらに、第5図(b)に示すD
BR49の長さが500μlの場合、300μlの場合
に比べて分布反射率の波長選択性が高くなり、その結果
吸収スペクトル幅が狭くなる。
A reverse bias voltage -■ is applied to the light-receiving region A, which becomes a pin-type photodiode, and a constant current I is applied to the gain region G to compensate for radiation loss due to the DBR 49. is injected into the optical amplifier. Here, the quadratic coupling coefficient of DBR49 is o, oi (μ1-1), and its length is 30
The transmitted light intensity of this photodetector when changed to 0 μm and 500 μm, the reflected light intensity, and the absorbed light intensity in the light receiving area are the fifth
As shown in the figure. However, in this case, the amount of absorbed light α generated when the guided light passes through the light receiving area A once is changed depending on the length of the DBR 49, and at any length, the amount of absorbed light α between the two DBRs is If the phase shift is expressed by the above equation (1), that is, (m+), as shown in Figure 5 (a), when the length of the DBR49 is 300 μI, strong absorption occurs at the Bragg wavelength of 0.8 μI, and absorption occurs around the Bragg wavelength. At wavelengths far from the Bragg wavelength, absorption occurs due to one passage through the light-receiving region A.Furthermore, D shown in FIG. 5(b)
When the length of BR49 is 500 μl, the wavelength selectivity of the distributed reflectance becomes higher than when the length is 300 μl, and as a result, the absorption spectrum width becomes narrower.

このように、波長選択の吸収スペクトル幅はDBH長に
依存して変化するが、本実施例では0.1人から2人の
間で調整可能である。
In this way, the absorption spectrum width for wavelength selection changes depending on the DBH length, but in this embodiment, it can be adjusted between 0.1 and 2.

つづいて、本発明の第3実施例について説明する。Next, a third embodiment of the present invention will be described.

前述した第2実施例においては利得領域Gを分布帰還領
域Bの間に設置したが、本実施例では分布帰還領域、す
なわちDBHに利得を与えられる構成をとっている。但
し、DBHに利得を与えるため電流注入を行なうと、そ
れと同時に屈折率も変化するため、前述した (2)式
から知れるように、ブラッグ波長のシフトが生じる。そ
こで、選択すべき波長に合わせて位相を制御する領域を
設ける必要がある。以上の考えに基づいた波長選択光検
出器の構成図を第6図に示す。
In the second embodiment described above, the gain region G was placed between the distributed feedback regions B, but in this embodiment, a configuration is adopted in which gain can be applied to the distributed feedback region, that is, DBH. However, when current is injected to give a gain to the DBH, the refractive index changes at the same time, so as can be seen from equation (2) above, a shift in the Bragg wavelength occurs. Therefore, it is necessary to provide a region for controlling the phase according to the wavelength to be selected. FIG. 6 shows a configuration diagram of a wavelength selective photodetector based on the above idea.

本実施例では、第6図に示すように、受光領域Aととも
に位相制御領域Pを、受光領域Aに隣接して、2つの分
布帰還領域Bの間に設けており、検出波長は0.83μ
mで、同様にレリーフ状の2次回折格子を用いて分布帰
還領域BのDBR49を形成した。層構成は前述の第2
実施例と同様であるが、レリーフ状回折格子の作製後、
再成長によりp−^lGaAslGaAsクララ p”
−GaAs電極形成層46を成膜し、電流注入が行なわ
れるようにしている。
In this embodiment, as shown in FIG. 6, a phase control region P is provided adjacent to the light receiving region A and between two distributed feedback regions B, and the detection wavelength is 0.83μ.
Similarly, the DBR 49 of the distributed feedback region B was formed using a relief-like second-order diffraction grating. The layer structure is the same as the above-mentioned second layer structure.
Similar to the example, but after fabrication of the relief-like diffraction grating,
By regrowth p-^lGaAslGaAs Clara p”
- A GaAs electrode forming layer 46 is formed to allow current injection.

位相制御領域Pは、電流注入によるキャリア電子ガスの
プラズマ効果を利用して一屈折率制御を行なう。また、
受光領域A1位相制御領域P及び分布帰還領域Bは、い
ずれも高抵抗領域Hで分離されている。
The phase control region P performs refractive index control using the plasma effect of carrier electron gas caused by current injection. Also,
The light receiving area A1, the phase control area P, and the distributed feedback area B are all separated by a high resistance area H.

ここで、本実施例に粘いて、DBR49の長さを100
μlから500μlの間で変化させ、さらに、1回通過
の際の吸収光量を、前述の第2実施例の場合と同様に設
定した場合の、受光領域Aにおける検出光強度を第7図
に示す。
Here, sticking to this example, the length of DBR49 is 100
Figure 7 shows the detected light intensity in the light-receiving area A when the amount of light is varied between μl and 500 μl and the amount of absorbed light in one pass is set in the same manner as in the second embodiment described above. .

第7図からも明らかなように、第2実施例の場合と同様
に、DBH長が長くなるとともに波長選択性が高くなり
、検出光スペクトル幅すなわち吸収スペクトル幅が狭く
なっている。また、本実施例においても、第2実施例と
同様に、DBH長に応じて吸収スペクトル幅を0.1人
から2人の間で調整可能である。
As is clear from FIG. 7, as in the case of the second embodiment, as the DBH length becomes longer, the wavelength selectivity becomes higher and the detected light spectrum width, that is, the absorption spectrum width becomes narrower. Further, in this embodiment as well, as in the second embodiment, the absorption spectrum width can be adjusted from 0.1 to 2 depending on the DBH length.

次に、本実施例において、DBR長300μ園とし2−
・)と変化させた時の受光強度を第8図に示す。
Next, in this example, the DBR length is set to 300μ, and 2-
Figure 8 shows the received light intensity when the intensity is changed to .).

第8図からも明らかなように、位相シフトmπの場合、
ビーキーな受光スペクトルは生じないが、位相シフトの
増加に応じてピーキーな受光スペクトルを生じるように
なっており、そのピーク波長はシフト位相で制御可能で
あることになる。
As is clear from FIG. 8, in the case of phase shift mπ,
Although a peaky light reception spectrum is not generated, a peaky light reception spectrum is generated as the phase shift increases, and the peak wavelength can be controlled by the shift phase.

したがって、波長多重度に応じて、スペクトルの半値幅
を調整すれば、弁別可能な波長のチャネル数は制御でき
る。なお、位相制御領域Pの長さはの屈折率は5 x 
10−’はど変化した。このように、本実施例によれば
、分布帰還領域Bへの注入電流と位相制御領域Pへの注
入電流の制御により、利得と選択波長を制御して選択波
長を変化させ得る光検出器となる。
Therefore, the number of channels of distinguishable wavelengths can be controlled by adjusting the half-width of the spectrum according to the wavelength multiplexing degree. In addition, the refractive index of the length of the phase control region P is 5 x
10-' has changed. As described above, according to this embodiment, by controlling the current injected into the distributed feedback region B and the current injected into the phase control region P, the photodetector can change the selected wavelength by controlling the gain and the selected wavelength. Become.

次に、本発明の第4実施例について説明する。Next, a fourth embodiment of the present invention will be described.

本実施例では、前述した第2実施例に対して、第9図に
示すように、DBR49で構成される分布帰還領域Bの
間に受光領域Aおよび利得領域Gとともに、位相制御領
域Pを設けて検出波長を変化可能としている。
In this embodiment, in contrast to the second embodiment described above, as shown in FIG. This makes it possible to change the detection wavelength.

この位相制御領域Pへ′は電極47を介して電流I、の
注入が行なわれるようになっており、キャリア電子ガス
のプラズマ効果を利用して屈折率制御を行なう。また、
利得領域Gへは一定の電流■6の注入を行ない、分布帰
還領域BのDBR49で放射される光損失を補償してい
る。受光領域Aへは逆バイアス電圧−■が印加され、吸
収された光は電流となワて検出される。本実施例では、
位相制御領域Pへの注入電流IPを制御することにより
屈折率を変化させて両DBR間の位相シフトを制御し、
ここで発生するファブリペローエタロンの共振により受
光領域Aで吸収される波長を変化させている。
A current I is injected into this phase control region P' via an electrode 47, and the refractive index is controlled by utilizing the plasma effect of the carrier electron gas. Also,
A constant current 6 is injected into the gain region G to compensate for the loss of light emitted by the DBR 49 in the distributed feedback region B. A reverse bias voltage -■ is applied to the light receiving area A, and the absorbed light is detected as a current. In this example,
By controlling the injection current IP to the phase control region P, the refractive index is changed to control the phase shift between both DBRs,
The resonance of the Fabry-Perot etalon generated here changes the wavelength absorbed in the light receiving area A.

本実施例における検出光強度、検出波長および位相シフ
トの関係は、前述した第3実施例で示した第8図と同様
であった。
The relationship between the detected light intensity, the detected wavelength, and the phase shift in this example was the same as that in FIG. 8 shown in the third example described above.

次に、本発明の第5実施例について説明する。Next, a fifth embodiment of the present invention will be described.

本実施例では、分布帰還領域BのDBRを構成する回折
格子として格子定数0.122μmの1次回折格子を形
成した例を示す。
In this embodiment, an example is shown in which a first-order diffraction grating with a grating constant of 0.122 μm is formed as a diffraction grating constituting the DBR of the distributed feedback region B.

1次回折格子を使用する場合、放射による損失が少なく
なるため、分布帰還領域8間に利得領域を設ける必要が
なくなり、受光領域Aと位相制御領域Pのみを挿入して
いる。
When using a first-order diffraction grating, loss due to radiation is reduced, so there is no need to provide a gain region between the distributed feedback regions 8, and only the light receiving region A and phase control region P are inserted.

この1次回折格子は、第1O図に示すように、高屈折率
プリズム101を利用した2光束干渉法を用いて作製し
た。
This first-order diffraction grating was fabricated using a two-beam interference method using a high refractive index prism 101, as shown in FIG. 1O.

第10図において、基板105の先導波路面上にフォト
レジスト102を塗布した後、インデックスマツチング
液103を介して屈折率1.8のプリズムを密着し、波
長3250人のHe−fedレーザ光+04の干渉縞を
露光した。
In FIG. 10, after coating a photoresist 102 on the leading waveguide surface of a substrate 105, a prism with a refractive index of 1.8 is closely attached via an index matching liquid 103, and a He-fed laser beam with a wavelength of 3250 nm +04 The interference fringes were exposed.

ここで、検出波長λ。を0.83μm、導波路の有効屈
折率n0を3.4とすれば、DBRを構成する1次回折
格子の格子定数Δは、 =0.122  (μm) となる。
Here, the detection wavelength λ. If 0.83 μm and the effective refractive index n0 of the waveguide is 3.4, then the lattice constant Δ of the first-order diffraction grating constituting the DBR is: =0.122 (μm).

したがって、格子定数へ=0.122(μm)を得るた
めの2光束干渉光の基板105の入射角θは、プリズム
(インデックスマツチング液)の屈折率が1.8である
ので1 、°、θ= 47.7゜ となる。
Therefore, the incident angle θ of the two-beam interference light on the substrate 105 to obtain a lattice constant of 0.122 (μm) is 1°, since the refractive index of the prism (index matching liquid) is 1.8. θ=47.7°.

以上のようにして格子定数0.122の1次回折格子が
得られ、位相制御領域への電流注入により、検出波長の
シフトが可能となる。この場合の検出光強度、検出波長
および位相シフトの関係は、前述の第8図と同様であっ
た。
As described above, a first-order diffraction grating with a grating constant of 0.122 is obtained, and the detection wavelength can be shifted by injecting current into the phase control region. The relationship between the detected light intensity, the detected wavelength, and the phase shift in this case was the same as that shown in FIG. 8 described above.

次に、本発明の第6実施例について説明する。Next, a sixth embodiment of the present invention will be described.

本実施例は、前述した第3実施例で使用した波長選択光
検出器が備えている分布帰還領域の格子定数を個別に設
定し、その波長選択光検出器を、第11図に示すように
、3つ縦列接続したものであり、これによって、3つの
波長λ1.λ2.λ3の光信号を同時検出することがで
きる。ここでは、各波長選択光検出器110の分布帰還
領域の格子定数を各々 0.235μm、 0.238
μm、 0.241μmとして、各々0.8μm 、 
0.81μm 、 0.82μmの波長の光信号を検出
した。
In this example, the lattice constants of the distributed feedback regions included in the wavelength-selective photodetector used in the third example described above are individually set, and the wavelength-selective photodetector is configured as shown in FIG. , three wavelengths λ1 . λ2. Optical signals of λ3 can be detected simultaneously. Here, the lattice constants of the distributed feedback region of each wavelength selective photodetector 110 are 0.235 μm and 0.238 μm, respectively.
μm, 0.241 μm, respectively 0.8 μm,
Optical signals with wavelengths of 0.81 μm and 0.82 μm were detected.

本実施例で使用した波長選択光検出器では、ブラッグ波
長から光分離れた波長の光は透過して検出されないため
、3つの波長選択光検出器が独立に光検出が可能となる
In the wavelength-selective photodetector used in this example, light with a wavelength that is optically separated from the Bragg wavelength is not transmitted and detected, so that the three wavelength-selective photodetectors can independently perform photodetection.

以上の説明では、光検出器の端面について述べなかった
が、本光検出器を単独で用いる場合は両端面に無反射構
造を設ける必要がある。これは端面が反射面として光学
的に結合してしまうと所望外の波長が検出されたり、発
振に及んだりして都合が良くないためである:無反射構
造としてはSin、 SiNなとの無反射コーティング
などがある。
In the above description, the end faces of the photodetector were not described, but when this photodetector is used alone, it is necessary to provide a non-reflective structure on both end faces. This is because if the end face is optically coupled as a reflective surface, undesired wavelengths may be detected or oscillation may occur, which is not convenient. There are anti-reflective coatings.

又、以上は0.8μm帯の波長を取り扱う実施例のため
、GaAs系半導体を使用した例を説明したが、例えば
1.3.1.5μm帯の波長に対しては InP系、 
InGaAsP系などで、同様の波長選択光検出器が得
られることは明白である。
Furthermore, the above example deals with wavelengths in the 0.8 μm band, so an example using a GaAs-based semiconductor has been described. For example, for wavelengths in the 1.3.1.5 μm band, InP-based semiconductors
It is clear that similar wavelength-selective photodetectors can be obtained, such as in the InGaAsP system.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、波長選択幅および
中心波長を調整可能な波長選択機能を有し、また、光信
号に利得を与えるので、光が分布帰還領域を通過する際
発生する回折光の損失を補償した効率のよい光検出が可
能となる。さらに、ブラッグ波長から充分離れた波長の
光は透過して吸収されないので、複数の光信号を、分岐
路を設けずに、独立して検出することができ、光多重信
号の波長選択へ対応できるという効果がある。
As explained above, according to the present invention, it has a wavelength selection function that can adjust the wavelength selection width and center wavelength, and also gives gain to the optical signal, so that the diffraction that occurs when the light passes through the distributed feedback region Efficient light detection that compensates for light loss becomes possible. Furthermore, since light with wavelengths far enough away from the Bragg wavelength is transmitted and not absorbed, multiple optical signals can be detected independently without the need for branching paths, making it possible to support wavelength selection for optical multiplexed signals. There is an effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による波長選択器の基本構成を示す断
面図、 第2図は、分布帰還を用いたファブリペローエタロンの
透過及び反射特性を示す図、 第3図は、本発明による波長選択光検出器の基本特性を
示す図、 第4図、第6図、第9図、第11図は、本発明による波
長選択゛光検出器の他の実施例を示す断面図、 第5図、第7図は、本発明による波長選択光検出器の他
の実施例における素子特性を示す図、第8図は、本発明
による波長選択光検出器において、選択波長を可変とし
た場合の検出光強度を示す図、 第10図は、回折格子の作製法を示す図である。 11・・・・光導波路、 12・・・・電極、 4l−−−−n−GaAs基板、 42−−−−n”−GaAsバッファ層、43・・・・
n−^lGaAsクラッド層、44−−・・’n−Al
GaAs光導波路層、45−−−−p−AIGaAsク
ラッド層、46・・・・p“−GaAs電極形成層、4
7・・・・n側電極、 48・・・・p側電極、 49・・・・DBR。 50−・・−1−GaAsまたは1−GaAs/1−A
IGaAs MQvI活性層、 101・・・プリズム、 102・・・フォトレジスト、 +03・・・インデックス・マツチング液、104・・
・He−Cdレーザ光、 105・・・基板、 110・・・波長選択光検出器、 八・・・・・受光領域、 B・・・・・分布帰遷領域、 G・・・・・利得領域、 P・・・・・位相制御領域。 特許出願人  キャノン株式会社
FIG. 1 is a cross-sectional view showing the basic configuration of a wavelength selector according to the present invention. FIG. 2 is a diagram showing the transmission and reflection characteristics of a Fabry-Perot etalon using distributed feedback. FIG. 3 is a diagram showing the wavelength selector according to the present invention. 4, 6, 9 and 11 are cross-sectional views showing other embodiments of the wavelength selective photodetector according to the present invention, and FIG. , FIG. 7 is a diagram showing element characteristics in another embodiment of the wavelength selective photodetector according to the present invention, and FIG. 8 is a diagram showing the detection when the selected wavelength is made variable in the wavelength selective photodetector according to the present invention. FIG. 10 is a diagram showing a method of manufacturing a diffraction grating. DESCRIPTION OF SYMBOLS 11... Optical waveguide, 12... Electrode, 4l---n-GaAs substrate, 42---n''-GaAs buffer layer, 43...
n-^lGaAs cladding layer, 44--...'n-Al
GaAs optical waveguide layer, 45----p-AIGaAs cladding layer, 46...p"-GaAs electrode formation layer, 4
7...n-side electrode, 48...p-side electrode, 49...DBR. 50-...-1-GaAs or 1-GaAs/1-A
IGaAs MQvI active layer, 101... Prism, 102... Photoresist, +03... Index matching liquid, 104...
・He-Cd laser beam, 105... Substrate, 110... Wavelength selective photodetector, 8... Light receiving area, B... Distribution transition area, G... Gain Area, P... Phase control area. Patent applicant Canon Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] (1)回折格子から成る複数の分布帰還領域が入射光の
進行方向に沿って設けられており、該分布帰還領域の間
に受光領域を挿入したことを特徴とする波長選択光検出
器。
(1) A wavelength selective photodetector characterized in that a plurality of distributed feedback regions each consisting of a diffraction grating are provided along the traveling direction of incident light, and a light receiving region is inserted between the distributed feedback regions.
(2)回折格子から成る複数の分布帰還領域が入射光の
進行方向に沿って設けられており、該分布帰還領域の間
に該受光領域および位相制御領域を挿入したことを特徴
とする波長選択光検出器。
(2) Wavelength selection characterized in that a plurality of distributed feedback regions composed of diffraction gratings are provided along the traveling direction of incident light, and the light receiving region and the phase control region are inserted between the distributed feedback regions. Photodetector.
(3)分布帰還領域に電流注入を行なう電極を設けたこ
とを特徴とする請求項2記載の波長選択光検出器。
(3) The wavelength selective photodetector according to claim 2, further comprising an electrode for injecting current into the distributed feedback region.
(4)分布帰還領域が一次回折格子で形成されることを
特徴とする請求項2記載の波長選択光検出器。
(4) The wavelength selective photodetector according to claim 2, wherein the distributed feedback region is formed by a first-order diffraction grating.
(5)回折格子から成る複数の分布帰還領域が入射光の
進行方向に沿って設けられており、該分布帰還領域の間
に受光領域および利得領域を挿入したことを特徴とする
波長選択光検出器。
(5) Wavelength-selective photodetection characterized in that a plurality of distributed feedback regions composed of diffraction gratings are provided along the traveling direction of incident light, and a light receiving region and a gain region are inserted between the distributed feedback regions. vessel.
(6)回折格子から成る複数の分布帰還領域が入射光の
進行方向に沿って設けられており、該分布帰還領域の間
に受光領域、位相制御領域及び利得領域を挿入したこと
を特徴とする波長選択光検出器。
(6) A plurality of distributed feedback regions composed of diffraction gratings are provided along the traveling direction of incident light, and a light receiving region, a phase control region, and a gain region are inserted between the distributed feedback regions. Wavelength selective photodetector.
JP1046767A 1989-02-28 1989-02-28 Wavelength selection photodetector Pending JPH02226776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1046767A JPH02226776A (en) 1989-02-28 1989-02-28 Wavelength selection photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1046767A JPH02226776A (en) 1989-02-28 1989-02-28 Wavelength selection photodetector

Publications (1)

Publication Number Publication Date
JPH02226776A true JPH02226776A (en) 1990-09-10

Family

ID=12756482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1046767A Pending JPH02226776A (en) 1989-02-28 1989-02-28 Wavelength selection photodetector

Country Status (1)

Country Link
JP (1) JPH02226776A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08204226A (en) * 1995-01-23 1996-08-09 Agency Of Ind Science & Technol Light receiving element
GB2383684A (en) * 2001-12-27 2003-07-02 Bookham Technology Plc A light sensor
JP2009115492A (en) * 2007-11-02 2009-05-28 Canon Inc Chemical sensor element, sensing device, and sensing method
JP2009267251A (en) * 2008-04-28 2009-11-12 Mitsubishi Electric Corp Semiconductor photodetector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08204226A (en) * 1995-01-23 1996-08-09 Agency Of Ind Science & Technol Light receiving element
GB2383684A (en) * 2001-12-27 2003-07-02 Bookham Technology Plc A light sensor
JP2009115492A (en) * 2007-11-02 2009-05-28 Canon Inc Chemical sensor element, sensing device, and sensing method
JP2009267251A (en) * 2008-04-28 2009-11-12 Mitsubishi Electric Corp Semiconductor photodetector

Similar Documents

Publication Publication Date Title
EP0978911B1 (en) Optical functional devices, their manufacturing method and optical communication system
JP3067880B2 (en) Photodetector having diffraction grating
US5351262A (en) Multi-stripe array grating integrated cavity laser
US20040105476A1 (en) Planar waveguide surface emitting laser and photonic integrated circuit
KR20040093053A (en) Tilted cavity semiconductor laser (tcsl) and method of making same
US20070133647A1 (en) Wavelength modulated laser
US7983318B2 (en) Optical semiconductor device
JP2008544530A (en) Integrated monitoring and feedback design of external cavity tunable lasers
US7242699B2 (en) Wavelength tunable semiconductor laser apparatus
EP1672398B1 (en) Tunable demultiplexer and tunable laser with optical deflection
US6594298B2 (en) Multi-wavelength semiconductor laser array and method for fabricating the same
Menezo et al. 10-wavelength 200-GHz channel spacing emitter integrating DBR lasers with a PHASAR on InP for WDM applications
EP0533475B1 (en) Optical semiconductor device, method of producing the optical semiconductor device, and laser device using optical semiconductor devices
US5606573A (en) Method and apparatus for control of lasing wavelength in distributed feedback lasers
EP0591863B1 (en) Optical receiver, optical semiconductor apparatus, and optical communication system utilizing the same
US20060140228A1 (en) Semi-integrated designs with in-waveguide mirrors for external cavity tunable lasers
JPH0715092A (en) Semiconductor laser array and fabrication there
WO2007005796A1 (en) Planar waveguides with air thin films used as antireflective layers, beam splitters and mirrors
JPH02226776A (en) Wavelength selection photodetector
JPH08334796A (en) Optical wavelength conversion integrating element
JP2655600B2 (en) Optical filter element
JP3887738B2 (en) Semiconductor optical integrated circuit device and manufacturing method thereof
US12368283B2 (en) Broadband arbitrary wavelength multichannel laser source
Menezo et al. Design, realization, and characterization of a ten-wavelength monolithic source for WDM applications integrating DBR lasers with a PHASAR
US20220200244A1 (en) Broadband arbitrary wavelength multichannel laser source