[go: up one dir, main page]

JPH02226001A - Method for detecting pattern edge - Google Patents

Method for detecting pattern edge

Info

Publication number
JPH02226001A
JPH02226001A JP1046148A JP4614889A JPH02226001A JP H02226001 A JPH02226001 A JP H02226001A JP 1046148 A JP1046148 A JP 1046148A JP 4614889 A JP4614889 A JP 4614889A JP H02226001 A JPH02226001 A JP H02226001A
Authority
JP
Japan
Prior art keywords
signal waveform
waveform
signal
laser beam
reference signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1046148A
Other languages
Japanese (ja)
Inventor
Etsuya Morita
森田 悦也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1046148A priority Critical patent/JPH02226001A/en
Publication of JPH02226001A publication Critical patent/JPH02226001A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To enhance the reproducibility of measurement by readjusting the focus of laser beam or electron beam when the waveform of a reflected signal or that of a secondary electron signal is unsimilar to the waveform of a reference signal to perform re-detection. CONSTITUTION:Prior to measurement, the waveform SA of a reference signal corresponding to a pattern edge is stored in a reference signal waveform memory means 1. At the time of measurement, laser beam is generated by a laser beam generating/scanning means 3 to be projected on an objective pattern and a reflected beam signal is detected by a detector 5 to obtain a reflected beam signal waveform SB which is, in turn, corrected by an amplitude correction means 6 so that the difference between the base line and peak value of the reflected beam signal waveform SB coincides with that of the reference signal waveform SA to obtain a signal SB. Then, the difference between the reference signal waveform SA and the waveform of the signal SB' is calculated according to a convolution method by a signal waveform comparing means 7 and, when the difference is larger than a prescribed value, the focus of the laser beam generating/scanning means 3 is adjusted through a focus matching mechanism 4 and the difference is set to a prescribed value before measurement.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体製造プロセス等において使用される微細
寸法測定装置に使用して好適なパターンエツジ検出方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a pattern edge detection method suitable for use in a fine dimension measuring device used in semiconductor manufacturing processes and the like.

[従来の技術] 一般に、レーザビーム走査型の微細寸法測定装置では、
対象パターン近傍の基準面に対して焦点合わせを行った
後、予め設定した焦点オフセットを行って、対象パター
ン上をレーザビームで走査し、この走査によって得られ
る反射光信号波形よりパターンエツジの検出が行われ、
対象パターンの寸法、形状が測定される。
[Prior Art] Generally, in a laser beam scanning type micro-dimensional measuring device,
After focusing on a reference plane near the target pattern, a preset focus offset is performed, the target pattern is scanned with a laser beam, and pattern edges can be detected from the reflected optical signal waveform obtained by this scanning. carried out,
The dimensions and shape of the target pattern are measured.

また、電子線走査型の微細寸法測定装置では、レーザビ
ームの代わりに電子線を走査して得られる2次電子信号
波形よりパターンエツジの検出が行われ、対象パターン
の寸法、形状が測定される。
In addition, in an electron beam scanning type fine dimension measurement device, pattern edges are detected from the secondary electron signal waveform obtained by scanning an electron beam instead of a laser beam, and the dimensions and shape of the target pattern are measured. .

[発明が解決しようとする課題] ところで、レーザビーム走査型の微細寸法測定装置にお
いて得られる反射光信号波形は、■焦点合わせ精度(焦
点合わせ精度は、基準面の表面状態に影響される)、■
焦点合わせ位置と対象パターンとのZ軸方向の相対位置
関係(対象パターン近傍に段差がある場合、ステージ位
置再現精度の。
[Problems to be Solved by the Invention] By the way, the reflected light signal waveform obtained in a laser beam scanning type micro-dimensional measuring device has: ■Focusing accuracy (focusing accuracy is affected by the surface condition of the reference surface); ■
Relative positional relationship in the Z-axis direction between the focusing position and the target pattern (if there is a step near the target pattern, the stage position reproducibility accuracy.

範囲内で焦点合わせ位置が段差上部に来る場合と下部に
来る場合とが起こる)、■焦点合わせ後のフォーカスシ
フト再現性、などにより変化してしまい、これが測定値
再現性低下の原因となっていた。
(Sometimes the focusing position is at the top of the step and sometimes it is at the bottom of the step within the range), ■ Focus shift reproducibility after focusing, etc. This causes a decrease in the reproducibility of measured values. Ta.

また、電子線走査型の微細寸法測定装置の場合には、あ
る面積をもった平面に対して焦点合わせが行われるが、
こうして得られた基準面は対象パターンに対して微妙に
変動する。また、チャージアップ現象による2次電子信
号波形の崩れが起こり、これらが測定値再現性低下の原
因となっていた。
In addition, in the case of an electron beam scanning type microdimensional measurement device, focusing is performed on a plane with a certain area,
The reference plane thus obtained varies slightly with respect to the target pattern. Furthermore, the waveform of the secondary electron signal is distorted due to the charge-up phenomenon, which causes a decrease in the reproducibility of measured values.

本発明は、かかる点にかんがみ、微細寸法測定装置にお
ける測定値再現性の向上を図ることができるようにした
パターンエツジ検出方法を提供することを目的とする。
In view of this point, it is an object of the present invention to provide a pattern edge detection method that can improve the reproducibility of measured values in a microdimensional measuring device.

[課題を解決するための手段] 本発明によるパターンエツジ検出方法は、対象パターン
にレーザビーム又は電子線を照射することによって得ら
れる反射光信号波形又は2次電子信号波形よりパターン
エツジの検出を行うパターンエツジ検出方法において、
反射光信号波形又は2次電子信号波形を基準信号波形と
比較し、反射光信号波形又は2次電子信号波形が基準信
号波形と非類似の場合には、レーザビーム又は電子線の
焦点位置を再調整し、その後、再びパターンエツジの検
出を行う、とするものである。
[Means for Solving the Problems] A pattern edge detection method according to the present invention detects a pattern edge from a reflected light signal waveform or a secondary electron signal waveform obtained by irradiating a target pattern with a laser beam or an electron beam. In the pattern edge detection method,
The reflected light signal waveform or secondary electron signal waveform is compared with the reference signal waveform, and if the reflected light signal waveform or secondary electron signal waveform is dissimilar to the reference signal waveform, the focal position of the laser beam or electron beam is re-aligned. After the adjustment is made, pattern edges are detected again.

[作用] 反射光信号波形又は2次電子信号波形が基準信号波形と
非類似の場合、これら反射光信号波形又は2次電子信号
波形については、その信頼性が低いものとして取り扱う
ことが妥当である。
[Operation] If the reflected light signal waveform or secondary electronic signal waveform is dissimilar to the reference signal waveform, it is appropriate to treat these reflected light signal waveforms or secondary electronic signal waveforms as having low reliability. .

ここに、本発明においては、反射光信号波形又は2次電
子信号波形が基準信号波形と非類似の場合、レーザビー
ム又は電子線の焦点位置を再調整し、その後、再びパタ
ーンエツジの検出を行うことにしているので、基準信号
波形と非類似の、すなわち、信頼性の低い反射光信号波
形又は2次電子信号波形をもってパターンエツジの検出
が行われることはなく、常に基準信号波形と類似した、
すなわち、信頼性のある反射光信号波形又は2次電子信
号波形をもってパターンエツジの検出が行われる。
Here, in the present invention, when the reflected light signal waveform or the secondary electron signal waveform is dissimilar to the reference signal waveform, the focal position of the laser beam or electron beam is readjusted, and then the pattern edge is detected again. Therefore, pattern edge detection is never performed using a reflected light signal waveform or a secondary electronic signal waveform that is dissimilar to the reference signal waveform, that is, has low reliability, and is always similar to the reference signal waveform.
That is, pattern edges are detected using reliable reflected light signal waveforms or secondary electronic signal waveforms.

[実施例] 以下、第1図ないし第3図を参照して、本発明の一実施
例につき説明する。
[Embodiment] An embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

第1図は本発明の一実施例を実施できるように構成した
パターンエツジ検出装置の一例の要部を示すブロック線
図であって、このパターンエツジ検出装置は8、基準信
号波形記憶手段1、基準信号波形読み出し手段2、レー
ザビーム発生・走査手段3、焦点合わせ機構4、ディテ
クタ5、振幅補正手段6、信号波形比較手段7、バター
〉・エツジ検出信号出力端子8を設けて構成されている
FIG. 1 is a block diagram showing essential parts of an example of a pattern edge detection device configured to carry out an embodiment of the present invention. It is constructed by providing a reference signal waveform reading means 2, a laser beam generation/scanning means 3, a focusing mechanism 4, a detector 5, an amplitude correction means 6, a signal waveform comparison means 7, and an edge detection signal output terminal 8. .

本実施例においては、先ず、第2図Aに示すようなパタ
ーンエツジに対応した基準信号波形SAを基準信号波形
記憶手段1に記憶させる。
In this embodiment, first, a reference signal waveform SA corresponding to a pattern edge as shown in FIG. 2A is stored in the reference signal waveform storage means 1.

次に、レーザビーム発生・走査手段3によってレーザビ
ームを発生させた後、焦点合わせ機14によって、この
レーザビームの焦点を対象パターン近傍の基準面に合わ
せ、その後、予め設定した焦点オフセットを行って、対
象パターン上を走査する。
Next, after a laser beam is generated by the laser beam generation/scanning means 3, the focus of the laser beam is adjusted to a reference plane near the target pattern by the focusing device 14, and then a preset focus offset is performed. , scan the target pattern.

このようにすると、ディテクタ5により5例えば、第2
図Bに示すような反射光信号波形SBを得ることができ
る。
In this way, the detector 5 detects 5, for example, the second
A reflected light signal waveform SB as shown in FIG. B can be obtained.

この反射光信号波形Saの振幅は振幅補正手段6によっ
て補正される。この補正は、反射光信号波形Saと基準
信号波形S^との類似性を判断できるようにするための
ものであって、反射光信号波形S11におけるベースラ
インレベルBLaと、ピーク値PBとの差が基準信号波
形SAのそれと一致するように所定のサンプルポイント
で反射光信号波形SRの強度fin(n=1.2.3・
・)を補正することによって行われる。この場合、次式
が使用される。なお、式中、PAは基準信号波形S^に
おけるピーク値、BLAは同じくベースラインレベルで
ある。
The amplitude of this reflected light signal waveform Sa is corrected by the amplitude correction means 6. This correction is for the purpose of determining the similarity between the reflected light signal waveform Sa and the reference signal waveform S^, and is based on the difference between the baseline level BLa and the peak value PB in the reflected light signal waveform S11. The intensity fin(n=1.2.3·
・) is performed by correcting. In this case, the following formula is used: Note that in the formula, PA is the peak value in the reference signal waveform S^, and BLA is also the baseline level.

補正の結果、本例の場合には、第2図Bに破線で示すよ
うな補正信号波形SR’を得ることができる、この補正
信号波形SB゛は信号波形比較手段7において基準信号
波形S^と比較され、それらの類似性が判断される。こ
の類似判断は、パターンエツジ近傍に設定されたサンプ
ルポイントについて、いわゆる、たたみ込み(Conv
olution )法によって行われる。即ち、次式を
用いて値Cを求め、このCを予め設定した基準値Ct&
と比較することによって行われる。
As a result of the correction, in this example, a corrected signal waveform SR' as shown by the broken line in FIG. are compared to determine their similarity. This similarity judgment is performed using so-called convolution (Conv) for sample points set near the pattern edges.
It is carried out by the method. That is, the value C is calculated using the following formula, and this C is set as a preset reference value Ct&
This is done by comparing.

(Σ(工。−Im−’)” l ” =C(2)この場
合、第3図に示すように、補正信号波形SR’のベース
ラインレベルBLaおよびピーク値PB゛より、それぞ
れベースラインレベル・ピーク間距離の5〜30%、例
えば、15%内側の位1に検出レベルDL、及びDL、
を設け、これら検出レベルDL、及びDL2に挟まれた
領域内で補正信号波形SB′の変化率が最大となるポイ
ントEL及びERをパターンエツジとみなし、その左右
、0.05〜0.30u rnの範囲、例えば、0.1
08mの範囲に0.01〜0.10μm間隔、例えば、
0.02μm間隔でサンプルポイントを設定することが
好適である。
(Σ(Work.-Im-')"l"=C(2) In this case, as shown in FIG. 3, the baseline level is determined from the baseline level BLa and peak value PB' of the correction signal waveform SR'.・Detection level DL and DL at 5 to 30% of the distance between peaks, for example, 15% inside,
The points EL and ER where the rate of change of the correction signal waveform SB' is maximum within the area between these detection levels DL and DL2 are regarded as pattern edges, and the left and right sides of the points EL and ER are 0.05 to 0.30 u rn. range, e.g. 0.1
0.01 to 0.10 μm intervals in the range of 0.08 m, for example,
It is preferable to set sample points at intervals of 0.02 μm.

ここに、CがC<(、amの場合、反射光信号波形Sa
は信頼性が高く、逆にC≧C1Ilの場合には、信頼性
が低いものと考えることができる。そこで、信号波形比
較手段7は、CくC□の場合には、所定のパターンエツ
ジ検出信号S0をパターンエツジ検出信号出力端子8に
出力し、C≧C1hの場合には、反射光信号波形S6を
棄却し、この情報を焦点合わせ機構4にフィールドバッ
クするように構成される。
Here, if C is C<(, am, the reflected light signal waveform Sa
It can be considered that reliability is high, and conversely, when C≧C1Il, reliability is low. Therefore, the signal waveform comparing means 7 outputs a predetermined pattern edge detection signal S0 to the pattern edge detection signal output terminal 8 when C□, and when C≧C1h, the reflected light signal waveform S6 is configured to reject this information and feed back this information to the focusing mechanism 4.

また、これに対応して、焦点合わせ機構4は、レーザビ
ームの焦点位置を再調整させるとともにレーザビーム発
生・走査手段3は、この再調整された焦点位置をもって
対象パターン上を再走査し、C<Cahとなるまで、こ
の動作を繰り返すように構成される。
In addition, in response to this, the focusing mechanism 4 readjusts the focal position of the laser beam, and the laser beam generating/scanning means 3 rescans the target pattern using the readjusted focal position. The configuration is such that this operation is repeated until <Cah.

このように、本実施例においては、反射光信号波形SB
を振幅補正して補正信号波形88′を得、この補正信号
波形Si′を基準信号波形S^と比較し、この補正信号
波形Ss’が基準信号波形SAと非類似の場合には、レ
ーザビームの焦点位置を変化させて再走査、再検出を行
うようにしているので、基準信号波形S^と非類似の、
すなわち、信頼性の低い反射光信号波形SRをもってパ
ターンエツジの検出が行われることはなく、常に基準信
号波形S^と類似した、すなわち、信頼性の高い反射光
信号波形Saをもってパターンエツジの検出が行われる
In this way, in this embodiment, the reflected light signal waveform SB
is amplitude corrected to obtain a correction signal waveform 88', and this correction signal waveform Si' is compared with the reference signal waveform S^. If this correction signal waveform Ss' is dissimilar to the reference signal waveform SA, the laser beam Since re-scanning and re-detection are performed by changing the focal position of
That is, pattern edges are never detected using the reflected light signal waveform SR with low reliability, and pattern edges are always detected using the reflected light signal waveform Sa that is similar to the reference signal waveform S^, that is, highly reliable. It will be done.

したがって5本実施例を使用すれば、微細寸法測定装置
における測定値再現性の向上を図ることができる、とい
う効果がある。
Therefore, by using the fifth embodiment, it is possible to improve the reproducibility of measured values in a micro-dimensional measuring device.

なお、上述の実施例において、焦点位置の調整が行われ
る場合、予め設定した許容値以上の移動があった場合に
は、その焦点位置をエラーとして棄却し、アラームが鳴
るように構成することもできる。
In addition, in the above embodiment, when the focus position is adjusted, if the focus position moves beyond a preset tolerance value, the focus position may be rejected as an error and an alarm may sound. can.

また、C≧C1bの場合には、装置を一時停止させ、ア
ラームにより、作業者のアシストを要求するように構成
することもできる。
Further, in the case of C≧C1b, the device may be temporarily stopped and an alarm may be generated to request assistance from the operator.

また、本発明の手法は、ドライエツチング装置に応用す
ることもできる。
Furthermore, the method of the present invention can also be applied to dry etching equipment.

すなわち、ドライエツチング装置では、一定波長のプラ
ズマ発光強度の時間変化からエツチングの終点検出が行
われる。ここに、装置に異常が発生した場合、プラズマ
発光強度の時間変化を示す波形は正常の場合とは異なる
ものになる。しかしながら、従来のドライエツチング装
置では、プラズマ発光強度にしきい値を設け、この値に
達する時間のみをモニターしている。このため、プラズ
マ発光強度の時間変化を示す波形が変化した場合におい
ても、しきい値に達する時間が正常時の場合と同一であ
れば、エツチングは正常に行われていると判断され、装
置の異常を早期に発見することが困難であった。
That is, in the dry etching apparatus, the end point of etching is detected from the temporal change in the plasma emission intensity of a constant wavelength. Here, if an abnormality occurs in the apparatus, the waveform indicating the temporal change in plasma emission intensity will be different from that in a normal case. However, in conventional dry etching equipment, a threshold value is set for the plasma emission intensity and only the time required to reach this value is monitored. Therefore, even if the waveform indicating the time change in plasma emission intensity changes, if the time to reach the threshold value is the same as in normal times, it is determined that etching is being performed normally, and the device It was difficult to detect abnormalities early.

例えば、第4図はプラズマ発光強度の時間変化を示して
おり、図中、Xは正常時のプラズマ発光強度の時間変化
を示す波形、1tl+はしきい値である。ここに、プラ
ズマ発光強度が波形Xのような時間変化を示すときは、
時刻tACをもってエツチング終点に達したと判定され
る。また、プラズマ発光強度が波形Yのような時間変化
を示した場合には、時刻telをもってエツチング終点
に達したと判定され、この場合には、異常が知らされる
ように成されている。
For example, FIG. 4 shows the temporal change in the plasma emission intensity, where X is a waveform showing the temporal change in the plasma emission intensity under normal conditions, and 1tl+ is a threshold value. Here, when the plasma emission intensity shows a time change like waveform X,
It is determined that the etching end point has been reached at time tAC. Further, when the plasma emission intensity shows a time change like waveform Y, it is determined that the etching end point has been reached at time tel, and in this case, an abnormality is notified.

しかしながら、プラズマ発光強度が波形2のような時間
変化を示した場合には、この波形Zも時刻tACでしき
い値1tkと交差する。このため、この場合には異常が
あると考えられるにも拘らず、これが知らされない。
However, when the plasma emission intensity shows a temporal change like waveform 2, this waveform Z also crosses the threshold value 1tk at time tAC. Therefore, in this case, even though it is thought that there is an abnormality, this is not reported.

そこで、かかるドライエツチング装置においても、正常
時の基準波形を記憶手段に記憶させ、この基準波形と測
定されるプラズマ発光強度の波形とを比較することによ
って、装置に異常があることを早期に知ることが可能と
なる。
Therefore, even in such dry etching equipment, by storing a normal reference waveform in the storage means and comparing this reference waveform with the waveform of the measured plasma emission intensity, it is possible to know at an early stage that there is an abnormality in the equipment. becomes possible.

[発明の効果] 本発明によれば、反射光信号波形又は2次電子信号波形
を基準信号波形と比較し、非類似の場合は、レーザビー
ム又は電子線の焦点位置を再調整して再検出を行うとし
ているので、基準信号波形と非類似の、すなわち、信頼
性のない反射光信号波形又は2次電子信号波形をもって
パターンエツジの検出が行われることはなく、常に基準
信号波形と類似した。すなわち、信頼性のある反射光信
号波形又は2次電子信号波形によってパターンエツジの
検出が行われる。したがって、測定値再現性の向上を図
ることができる、という効果がある。
[Effects of the Invention] According to the present invention, the reflected light signal waveform or the secondary electron signal waveform is compared with the reference signal waveform, and if they are dissimilar, the focal position of the laser beam or electron beam is readjusted and detected again. Therefore, pattern edge detection is never performed using a reflected light signal waveform or a secondary electronic signal waveform that is dissimilar to the reference signal waveform, that is, unreliable, and is always similar to the reference signal waveform. That is, pattern edges are detected using reliable reflected light signal waveforms or secondary electronic signal waveforms. Therefore, there is an effect that the reproducibility of measured values can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を実施できるように構成され
たパターンエツジ検出装置の一例を示すブロック線図、
第2図及び第3図はそれぞれ信号波形を示す図、第4図
はプラズマ発光強度の時間変化を示す図である。 S^・・・基準信号波形 S8・・・反射光信号波形 s 、 l・・・補正信号波形
FIG. 1 is a block diagram showing an example of a pattern edge detection device configured to implement an embodiment of the present invention;
FIGS. 2 and 3 are diagrams showing signal waveforms, respectively, and FIG. 4 is a diagram showing temporal changes in plasma emission intensity. S^... Reference signal waveform S8... Reflected light signal waveform s, l... Correction signal waveform

Claims (1)

【特許請求の範囲】 対象パターンにレーザビーム又は電子線を照射すること
によって得られる反射光信号波形又は2次電子信号波形
よりパターンエッジの検出を行うパターンエッジ検出方
法において、 上記反射光信号波形又は2次電子信号波形を基準信号波
形と比較し、上記反射光信号波形又は2次電子信号波形
が上記基準信号波形と非類似の場合には、上記レーザビ
ーム又は電子線の焦点位置を再調整し、その後、再びパ
ターンエッジの検出を行うことを特徴とするパターンエ
ッジ検出方法。
[Scope of Claim] A pattern edge detection method for detecting a pattern edge from a reflected light signal waveform or a secondary electron signal waveform obtained by irradiating a target pattern with a laser beam or an electron beam, Compare the secondary electron signal waveform with the reference signal waveform, and if the reflected light signal waveform or the secondary electron signal waveform is dissimilar to the reference signal waveform, readjust the focal position of the laser beam or electron beam. , and then detecting pattern edges again.
JP1046148A 1989-02-27 1989-02-27 Method for detecting pattern edge Pending JPH02226001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1046148A JPH02226001A (en) 1989-02-27 1989-02-27 Method for detecting pattern edge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1046148A JPH02226001A (en) 1989-02-27 1989-02-27 Method for detecting pattern edge

Publications (1)

Publication Number Publication Date
JPH02226001A true JPH02226001A (en) 1990-09-07

Family

ID=12738889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1046148A Pending JPH02226001A (en) 1989-02-27 1989-02-27 Method for detecting pattern edge

Country Status (1)

Country Link
JP (1) JPH02226001A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6993459B2 (en) * 2001-07-17 2006-01-31 Tellabs Operations, Inc. Extinction ratio calculation and control of a laser
US7129484B2 (en) 2004-01-21 2006-10-31 Hitachi Global Storage Technologies Netherlands B.V. Method for pattern recognition in energized charge particle beam wafer/slider inspection/measurement systems in presence of electrical charge
JP2009098132A (en) * 2007-09-27 2009-05-07 Hitachi High-Technologies Corp Sample inspection, measurement method, and charged particle beam apparatus
JP2013178144A (en) * 2012-02-28 2013-09-09 Toppan Printing Co Ltd Sem image propriety determination method and sem image propriety determination device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6993459B2 (en) * 2001-07-17 2006-01-31 Tellabs Operations, Inc. Extinction ratio calculation and control of a laser
US7129484B2 (en) 2004-01-21 2006-10-31 Hitachi Global Storage Technologies Netherlands B.V. Method for pattern recognition in energized charge particle beam wafer/slider inspection/measurement systems in presence of electrical charge
JP2009098132A (en) * 2007-09-27 2009-05-07 Hitachi High-Technologies Corp Sample inspection, measurement method, and charged particle beam apparatus
JP2014095728A (en) * 2007-09-27 2014-05-22 Hitachi High-Technologies Corp Inspection of sample, measuring method, and charged particle beam device
JP2013178144A (en) * 2012-02-28 2013-09-09 Toppan Printing Co Ltd Sem image propriety determination method and sem image propriety determination device

Similar Documents

Publication Publication Date Title
KR20120046471A (en) Method of measuring critical dimension of pattern and apparatus for performing the method
US20140322833A1 (en) Irradiation apparatus for irradiating charged particle beam, method for irradiation of charged particle beam, and method for manufacturing article
JPH0141962B2 (en)
US4558225A (en) Target body position measuring method for charged particle beam fine pattern exposure system
JPH02226001A (en) Method for detecting pattern edge
US20050141761A1 (en) Method and apparatus for measuring dimensions of a pattern on a semiconductor device
US6414325B1 (en) Charged particle beam exposure apparatus and exposure method capable of highly accurate exposure in the presence of partial unevenness on the surface of exposed specimen
US6489612B1 (en) Method of measuring film thickness
US20040084619A1 (en) Method and an apparatus for determining the dimension of a feature by varying a resolution determining parameter
CN110196107B (en) Terahertz line width measuring device and method
JP4128262B2 (en) Sample stage and particle size measuring apparatus using the same
JPH04162337A (en) electron beam equipment
JPS63187627A (en) Automatic focusing method in charged particle beam exposure equipment
JP2004528580A (en) Sample positioning system and method for optical surface inspection using video images
JP3751610B2 (en) Displacement measuring device
JPH01202603A (en) Fine dimensions measuring apparatus using laser beam
JP3479515B2 (en) Displacement measuring device and method
JPS6095307A (en) Position measuring device
JPS5999216A (en) Object surface height measuring device
JPH09106945A (en) Particle beam alignment method and irradiation method and apparatus using the same
JPH07297114A (en) Reference deflection angle setting method in charged particle beam drawing apparatus
JPH05280947A (en) Optical apparatus for measurement
JP2001349997A (en) Electron beam irradiation device and method
JP2986130B2 (en) Mark detection processing method
JPS62259441A (en) Reduction stepper