JPH02224305A - Method and device for magnetization of linear magnetic material - Google Patents
Method and device for magnetization of linear magnetic materialInfo
- Publication number
- JPH02224305A JPH02224305A JP1046747A JP4674789A JPH02224305A JP H02224305 A JPH02224305 A JP H02224305A JP 1046747 A JP1046747 A JP 1046747A JP 4674789 A JP4674789 A JP 4674789A JP H02224305 A JPH02224305 A JP H02224305A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- linear
- magnetic pole
- magnetized
- magnetic material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000696 magnetic material Substances 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims abstract description 13
- 230000005415 magnetization Effects 0.000 title abstract description 11
- 230000005291 magnetic effect Effects 0.000 claims abstract description 133
- 239000004020 conductor Substances 0.000 claims abstract description 19
- 230000004907 flux Effects 0.000 abstract description 8
- 238000004804 winding Methods 0.000 description 8
- 230000005284 excitation Effects 0.000 description 6
- 238000002653 magnetic therapy Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 3
- 235000011613 Pinus brutia Nutrition 0.000 description 3
- 241000018646 Pinus brutia Species 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011295 pitch Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000004709 Chlorinated polyethylene Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 206010052904 Musculoskeletal stiffness Diseases 0.000 description 1
- 208000000112 Myalgia Diseases 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 208000013465 muscle pain Diseases 0.000 description 1
- AJCDFVKYMIUXCR-UHFFFAOYSA-N oxobarium;oxo(oxoferriooxy)iron Chemical compound [Ba]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O AJCDFVKYMIUXCR-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F13/00—Apparatus or processes for magnetising or demagnetising
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Magnetic Treatment Devices (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、軸方向に対して磁極の極性が所定寸法毎に交
互に反転するように磁化された線状永久磁石の谷磁方法
及びその着磁装置に関する。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a valley magnetization method for linear permanent magnets that are magnetized so that the polarity of the magnetic poles in the axial direction is alternately reversed every predetermined dimension. This invention relates to a magnetizing device.
従来、血行を促進し、筋肉の過緊張状態を緩解して筋痛
又は筋硬結状態(こり)を軽減することを目的として永
久磁石を用いた磁気治療器が知られ、例えば、磁気腹巻
(実公昭39−26259号公報)、磁気サポータ−(
実公昭50−55791号公報)、磁気布団(実公昭5
5−44534号公報)、磁気マツトレス(実開昭56
−88268号公報)等についての多くの考案が提案さ
れている。Conventionally, magnetic therapy devices using permanent magnets have been known for the purpose of promoting blood circulation, relieving muscle overtension, and alleviating muscle pain or stiffness. Publication No. 39-26259), magnetic supporter (
Publication No. 50-55791), Magnetic futon (Jitko Publication No. 50-55791)
5-44534), magnetic pine tress (Utility Model No. 56
-88268), etc., many ideas have been proposed.
上記永久磁石磁気治療器は、粒状もしくはブロック状の
永久磁石をマツトレス等に、例えば10〜30cmの間
隔をおいて複数個装着し、磁場の広さを確保するように
なされているが、上記粒状磁石の磁束密度はその表面か
ら10cm以上離れると、表面の最大磁束密度の171
0以下に低下するので、実質的には点状の磁界がマツト
レスの面上に所定間隔をおいて分布したものであり、十
分な磁界の広さが確保できているとはいえながった。こ
のため、面状に広く磁界を形成することのできる線状も
しくは面状の磁気部祠が望まれていた。The above-mentioned permanent magnet magnetic therapy device is designed to secure the width of the magnetic field by attaching a plurality of granular or block-shaped permanent magnets to a pine tress, etc., at intervals of 10 to 30 cm, for example. When the magnetic flux density of a magnet is 10 cm or more away from the surface, the maximum magnetic flux density of the surface is 171
Since the magnetic field decreases to less than 0, it is essentially a point-like magnetic field distributed at predetermined intervals on the surface of the pine tress, and it cannot be said that a sufficient width of the magnetic field has been secured. . For this reason, a linear or planar magnetic part that can form a magnetic field over a wide area has been desired.
そこで、本発明者はバリュウムフェライト及び塩素化ポ
リエチレンを主成分とした表面密度8゜Oガウス以上を
有する線状柔軟性プラスチック複合磁石を繊維布体等に
編込み、線状若しくは面上の磁界を形成する磁気治療器
を提案している(実開昭61−91241号公報)。Therefore, the present inventor has woven a linear flexible plastic composite magnet, which is mainly composed of barium ferrite and chlorinated polyethylene and has a surface density of 8°O Gauss or more, into a fiber cloth, etc., and has created a linear or planar magnetic field. proposed a magnetic therapy device that forms a magnetic field (Japanese Utility Model Application Publication No. 61-91241).
ところで、例えば磁気治療器に使用される線状磁石では
、表面磁束密度が1000ガウス以上で、その磁界の分
布が比較的−様に形成されることが望ましいが、上記公
報では上記線状柔軟性プラスチック複合磁石の表面磁束
密度の大きさについて記載されているのみで、磁化され
た磁極の分布及び方向、更にはその着磁方法及び着磁装
置についても明らかにされていない。By the way, for example, in a linear magnet used in a magnetic therapy device, it is desirable that the surface magnetic flux density is 1000 Gauss or more and the magnetic field distribution is formed in a relatively -like manner. It only describes the magnitude of the surface magnetic flux density of the plastic composite magnet, and does not clarify the distribution and direction of the magnetized magnetic poles, nor the magnetization method and magnetization device.
本発明は、上記課題に鑑みてなされたものであり、線状
磁性体の軸方向に対して磁極を所定間隔毎に交互に反転
して磁化させる着磁方法及びその着磁装置を提供するこ
とを目的とする。The present invention has been made in view of the above problems, and provides a magnetizing method and a magnetizing device for magnetizing a linear magnetic material by alternately reversing its magnetic poles at predetermined intervals in the axial direction. With the goal.
上記課題を解決するために、本発明は、磁極片の極性が
所定寸法毎に交互に反転するように複数構成された磁極
部上に線状磁性体を載置した状態で、各磁極片に磁界を
発生させる第1の工程と、上記磁極部の長さ分だけ上記
線状磁性体をその軸方向に引き取る第2の工程から線状
磁性体を着磁するものである。In order to solve the above-mentioned problems, the present invention provides a method in which a linear magnetic body is placed on a plurality of magnetic pole parts configured such that the polarity of the magnetic pole pieces is alternately reversed every predetermined dimension, and a linear magnetic body is placed on each magnetic pole piece. The linear magnetic material is magnetized through a first step of generating a magnetic field and a second step of drawing the linear magnetic material in its axial direction by the length of the magnetic pole portion.
また、磁極片の極性が所定寸法毎に交互に反転するよう
に複数構成された磁極部上で線状磁性体を所定速度でそ
の軸方向に引き取りながら、上記線状磁性体が上記磁極
部の長さ分だけ引取られる毎に各磁極片に磁界を発生さ
せて着磁するものである。Further, while the linear magnetic body is drawn in the axial direction at a predetermined speed on a plurality of magnetic pole parts configured such that the polarity of the magnetic pole piece is alternately reversed every predetermined dimension, the linear magnetic body is removed from the magnetic pole part. A magnetic field is generated in each magnetic pole piece each time it is pulled out by the length, thereby magnetizing it.
また、上記着磁方法に用いられる着磁装置として、その
表面一方向に所定間隔で複数のスロットが形成された磁
性体からなる基盤と、上記スロットにその終端部で折り
返しながら波状に埋設された電源に接続される両端を有
する導体線とからなるものである。In addition, the magnetizing device used in the above magnetizing method includes a base made of a magnetic material on which a plurality of slots are formed at predetermined intervals in one direction on the surface thereof, and a base made of a magnetic material that is embedded in the above slots in a wave shape while being folded back at the terminal portion. It consists of a conductor wire having both ends connected to a power source.
本発明に係る線状・磁性体の着磁方法では、磁極片の極
性が所定寸法毎に反転するように構成された磁極部に線
状磁性体を載置した状態で磁化した後、磁化した部分を
引き取り、それに続く未磁化部分を磁極部に載置して磁
化するようにしているので、軸方向所定寸法毎に磁極の
極性が反転するように線状磁性体が磁極部の長さ毎に一
度に磁化される。In the method for magnetizing a linear/magnetic material according to the present invention, a linear magnetic material is placed on a magnetic pole section configured such that the polarity of the magnetic pole piece is reversed every predetermined dimension, and then magnetized. Since the unmagnetized part is taken out and the following unmagnetized part is placed on the magnetic pole part and magnetized, the linear magnetic material is magnetized every length of the magnetic pole part so that the polarity of the magnetic pole is reversed every predetermined axial dimension. magnetized at once.
また、磁極片の極性が所定寸法毎に反転するように構成
された磁極部上で線状磁性体を所定速度で引取りながら
、上記線状磁性体が上記磁極部の長さ分だけ引取られる
毎に各磁極片に磁界を発生させるものでは、線状磁性体
が所定速度で上記磁極部の長さ分引き取られると、それ
に続く未磁化部分が軸方向所定寸法毎に磁極の極性が反
転するように磁極部の長さ毎に一度に磁化される。Further, while the linear magnetic material is being drawn at a predetermined speed on a magnetic pole section configured such that the polarity of the magnetic pole piece is reversed every predetermined dimension, the linear magnetic material is drawn off by the length of the magnetic pole section. In a device that generates a magnetic field in each magnetic pole piece at each time, when the linear magnetic body is drawn at a predetermined speed by the length of the magnetic pole portion, the polarity of the magnetic pole of the following unmagnetized portion is reversed every predetermined axial dimension. Each length of the magnetic pole part is magnetized at once.
また、本発明に係る着磁装置は、磁性体からなる基盤の
表面に一方向に所定間隔で複数のスロットを形成すると
ともに導体線を上記スロットにその終端部で折り返しな
がら波状に埋設しているので、上記導体線に直流の電流
を流すと、上記スロット間に形成された磁極片には交互
に反転した磁界が発生する。Further, in the magnetizing device according to the present invention, a plurality of slots are formed at predetermined intervals in one direction on the surface of a base made of a magnetic material, and conductor wires are buried in the slots in a wave shape while being folded back at their terminal ends. Therefore, when a direct current is passed through the conductor wire, alternately reversed magnetic fields are generated in the magnetic pole pieces formed between the slots.
第1図は本発明に係る線状永久磁石の製造工程を示す図
である。線状永久磁石は以下のようにして製造される。FIG. 1 is a diagram showing the manufacturing process of a linear permanent magnet according to the present invention. A linear permanent magnet is manufactured as follows.
すなわち、押出成型機s1がら、例えば毎分2mの速度
で押出成形された線状磁性体が引取機S3で引取られな
がら冷却装置s2で冷却固化され、巻取機S4に巻き取
られる。次に、巻取られた上記線状磁性体は着磁装置s
5で軸方向に対して所定寸法毎に磁極の極性が反転する
ように磁化された後、引取機S6で引き取られ、巻取機
S7に巻き取られる。That is, a linear magnetic material extruded from the extrusion molding machine s1 at a speed of, for example, 2 m/min is taken by a take-up machine S3, cooled and solidified by a cooling device s2, and wound up by a winding machine S4. Next, the wound linear magnetic body is magnetized by a magnetizing device s.
After being magnetized in step 5 so that the polarity of the magnetic poles is reversed every predetermined dimension in the axial direction, it is taken up by a take-up machine S6 and wound up by a winding machine S7.
第2図は上記着磁装置S5の一例を示す斜視図である。FIG. 2 is a perspective view showing an example of the magnetizing device S5.
また、第3図は着磁装置S5の平面図である。第2図に
おいて、着磁ヨークAの磁極部2は以下のように構成さ
れている。すな
わち、磁性体、好ましくは鉄等の強磁性体からなる平板
状の基盤1の表面に、長平方向に対して垂直方向に切ら
れた溝幅g2 (第4図参照)のスロット1aが長平
方向に間隔f11 (第4図参照)で適宜の本数形成さ
れている。また、上記スロット1aには直径がほぼ溝幅
I22に等しい、絶縁体で肢覆された銅等による導体線
3が第3図に示すように上記各スロット1aの終端部で
折り返すようにして波状に埋設され、該導体線3の両端
にはコンデンサ式着磁電源5から直流の励磁電流が供給
されるようになされている。なお、導体113は1本に
限らず、複数本を東ねて埋設してもよい。Moreover, FIG. 3 is a plan view of the magnetizing device S5. In FIG. 2, the magnetic pole portion 2 of the magnetizing yoke A is constructed as follows. That is, on the surface of a flat base plate 1 made of a magnetic material, preferably a ferromagnetic material such as iron, a slot 1a having a groove width g2 (see Fig. 4) cut in a direction perpendicular to the elongated direction is formed in the elongated direction. An appropriate number of them are formed at intervals f11 (see FIG. 4). Further, in the slot 1a, a conductor wire 3 made of copper or the like covered with an insulator and having a diameter approximately equal to the groove width I22 is folded back at the terminal end of each slot 1a to form a wavy shape, as shown in FIG. A DC excitation current is supplied to both ends of the conductor wire 3 from a capacitor-type magnetizing power supply 5. Note that the number of conductors 113 is not limited to one, but a plurality of conductors may be buried.
コンデンサ式着磁電Ifi、5は大容量コンデンサに蓄
積された電荷を上記導体線3を通して放電させることに
より、瞬間的に大きな励磁電流を供給するものである。The capacitor-type magnetizing electric current Ifi, 5 momentarily supplies a large excitation current by discharging the charge accumulated in a large-capacity capacitor through the conductor wire 3.
上記11η成において、導体線3に励磁電流が供給され
ると、各磁極片1bに第4図に示すようにN。In the above 11η configuration, when an excitation current is supplied to the conductor wire 3, each magnetic pole piece 1b has an N as shown in FIG.
Sの磁極が形成され、磁極部2には一定寸法Q(−g1
+ρ2)毎に極性が反転した磁極が形成される。例えば
、I 1 = 1. 5mm5 j22 = 2−5
m mとし、導体線3に最大電流およそ10000アン
ペアの励磁電流を流すと、磁極片1bにはおよそ100
00ガウスの磁束密度の磁極が4゜Q m mピッチで
交互に反転するように形成される。A magnetic pole of S is formed, and the magnetic pole part 2 has a certain dimension Q (-g1
+ρ2), a magnetic pole whose polarity is reversed is formed. For example, I 1 = 1. 5mm5 j22 = 2-5
m m, and when an excitation current with a maximum current of about 10,000 amperes is passed through the conductor wire 3, the magnetic pole piece 1b has an excitation current of about 100 amperes.
The magnetic poles with a magnetic flux density of 0.00 Gauss are formed so as to be alternately reversed at a pitch of 4°Q mm.
線状磁性体4は上記着磁装置を用いて以下のように磁化
される。すなわち、該線状磁性体4を着磁ヨークAの上
にその向きに載置し、導体線3に電流を流す。導体線3
に電流が流れると、上述のように瞬間的に磁極部2にN
、Sの磁極が一定寸法gで交互に発生する。そして、該
磁極部2に発生した磁界により線状磁性体4の磁極部2
の上に置かれた部分が軸方向に対して上記一定寸法gで
磁極が反転するように磁化される。前記10000ガウ
スの例では、保磁力として1000ガウス以上が得られ
る。磁化が完了すると、後述する引取量検出器若しくは
磁気検出器(不図示)で線状磁性体4の磁化した部分を
検出して巻取機S7で巻取り、それに続く未磁化の部分
を磁極部2に載せて上述と同様の操作で磁化を行う。以
下、順次線状磁性体4を磁極部2の長さ毎に繰り返し磁
化していく。The linear magnetic body 4 is magnetized using the above-mentioned magnetizing device as follows. That is, the linear magnetic body 4 is placed on the magnetizing yoke A in that direction, and a current is passed through the conductor wire 3. Conductor wire 3
When a current flows through the magnetic pole part 2, as mentioned above, N
, S occur alternately with a constant dimension g. The magnetic field generated in the magnetic pole part 2 causes the magnetic pole part 2 of the linear magnetic body 4 to
The portion placed on top of is magnetized so that the magnetic poles are reversed in the axial direction by the above-mentioned constant dimension g. In the above example of 10,000 Gauss, a coercive force of 1,000 Gauss or more can be obtained. When magnetization is completed, a magnetized portion of the linear magnetic material 4 is detected by a take-up amount detector or a magnetic detector (not shown), which will be described later, and is wound up by a winder S7, and the subsequent unmagnetized portion is used as a magnetic pole part. 2 and magnetize it in the same manner as described above. Thereafter, the linear magnetic body 4 is sequentially magnetized repeatedly for each length of the magnetic pole portion 2.
第5図は上記方法で断面円形の線状磁性体を磁化した線
状永久磁石の磁極と磁界の分布とを示した図である。同
図において、表面の片側(図中、上側あるいは下側)、
他の片側半面にS極の磁極が形成された軸方向一定寸法
gの微小磁石が軸方向に連続して並んでいるとみなした
とき、線状永久磁石の磁極はその隣合う他の微小磁石の
極性と互いに反転するように連続的に形成されている。FIG. 5 is a diagram showing the magnetic poles and magnetic field distribution of a linear permanent magnet obtained by magnetizing a linear magnetic body with a circular cross section using the above method. In the figure, one side of the surface (upper or lower side in the figure),
When it is assumed that micro-magnets with an S-pole formed on the other half surface and having a constant axial dimension g are continuously lined up in the axial direction, the magnetic pole of the linear permanent magnet is the same as that of the other adjacent micro-magnet. are formed continuously so that the polarity of the two polarities is reversed.
従って、上側N極から下側S極へ向かう軸方向に対して
直角方向の磁界HTが形成されるとともに、上記微小磁
石と隣合う微小磁石との間においては、それぞれ上側部
分と下側部分とに軸方向の磁界HEが形成され、全体で
は軸方向に寸法g毎に磁界の方向が反転した、直角方向
の磁界HTと軸方向の磁界HEが連続して形成される。Therefore, a magnetic field HT is formed in the direction perpendicular to the axial direction from the upper north pole to the lower south pole, and between the above micromagnet and the adjacent micromagnet, an upper portion and a lower portion are formed, respectively. An axial magnetic field HE is formed in the axial direction, and a perpendicular magnetic field HT and an axial magnetic field HE, in which the direction of the magnetic field is reversed every dimension g in the axial direction, are continuously formed.
このような磁界が形成された線状永久磁石は多少捻転し
てもその外表面近傍に形成される磁界が比較的−様に保
持されるので、例えば磁気治療器としての布団に使用し
たとき、良好な線状の磁界を形成することができ、磁気
治療の効果を一層高める。A linear permanent magnet with such a magnetic field formed thereon retains the magnetic field formed near its outer surface relatively well even if it is slightly twisted, so when it is used, for example, in a futon as a magnetic therapy device, A good linear magnetic field can be formed, further enhancing the effectiveness of magnetic therapy.
なお、上記着磁方法及び着磁装置は楕円形、矩形、偏平
形状の他、帯状のものにも線状磁性体として適用するこ
とができる。Note that the above magnetization method and magnetization device can be applied to linear magnetic bodies in addition to elliptical, rectangular, and flat shapes as well as belt-shaped objects.
上記実施例では巻取機S7の巻取動作が間欠であったが
、巻き取りながら連続的に着磁することも可能である。In the above embodiment, the winding operation of the winding machine S7 was performed intermittently, but it is also possible to continuously magnetize while winding.
すなわち、毎分6mで線状磁性体を着磁するとして、例
えば充電時間がおよそ5秒で、放電時間がおよそ2ミリ
秒のコンデンサ式着磁電源装置5を使用した場合、上記
充電時間内に線状磁性体が移動する距離は50cmとな
り、上記放電時間内に線状磁性体が移動する距離は0゜
2mmとなる。従って、上記放電時間内の移動により着
磁される磁極の磁束密度へ与える影曽はほとんど無いの
で、1回の着磁寸法を50cm以上にすれば、巻取機S
7で線状磁性体を巻取りながら連続して着磁することが
できる。この場合、引j(1!機S6に引取量検出器を
設け、線状体が所定長だけ(若磁部2の長さ分だけ)引
き取られる毎に着磁電源5から導体線3に励磁電流が供
給され、磁極部2の各磁極片1bに磁界が発生するよう
にする。あるいは、着磁ヨークAに磁気検出器を設けて
磁化された線状磁性体の磁極数をモニターし、所定の磁
極数をカウントした時、着磁電源5から導体線3に励磁
電流が供給されるようにしてもよい。That is, assuming that a linear magnetic material is magnetized at a rate of 6 m/min, for example, if a capacitor-type magnetizing power supply device 5 with a charging time of approximately 5 seconds and a discharging time of approximately 2 milliseconds is used, the magnetization will be completed within the above charging time. The distance that the linear magnetic material moves is 50 cm, and the distance that the linear magnetic material moves within the above discharge time is 0.degree. 2 mm. Therefore, since there is almost no effect on the magnetic flux density of the magnetized magnetic pole due to movement within the above discharge time, if the dimension of one magnetization is set to 50 cm or more, the winding machine S
7, it is possible to continuously magnetize the linear magnetic material while winding it up. In this case, a pickup amount detector is provided in the pulling machine S6, and the conductor wire 3 is energized from the magnetizing power source 5 every time the linear body is pulled by a predetermined length (the length of the young magnetic part 2). A current is supplied to generate a magnetic field in each magnetic pole piece 1b of the magnetic pole part 2.Alternatively, a magnetic detector is provided on the magnetizing yoke A to monitor the number of magnetic poles of the magnetized linear magnetic material, and a magnetic field is generated in each magnetic pole piece 1b of the magnetic pole part 2. When the number of magnetic poles is counted, the excitation current may be supplied from the magnetizing power source 5 to the conductor wire 3.
以上説明したように、本発明に係る線状磁性体の着磁方
法では、適宜の長さを有する磁極部の所定長毎に線状磁
性体を磁化するようにしたので、着磁作業を迅速に行う
ことができる。また、巻取機で巻き取りながら着磁する
ようにすれば、着磁作業の効率化とともに製品のコスト
低減に寄与する。また、軸方向に対して所定寸法毎に磁
極の極性が反転するように磁化するようにしたので、線
状永久磁石の各磁極の磁束密度が均一に形成される。As explained above, in the method for magnetizing a linear magnetic material according to the present invention, the linear magnetic material is magnetized every predetermined length of the magnetic pole portion having an appropriate length, so that the magnetization work can be performed quickly. can be done. Furthermore, if the magnet is magnetized while being wound up with a winding machine, it will contribute to improving the efficiency of the magnetizing work and reducing the cost of the product. Moreover, since the magnetic poles are magnetized so that their polarities are reversed every predetermined dimension in the axial direction, the magnetic flux density of each magnetic pole of the linear permanent magnet is formed to be uniform.
また、本発明に係る着磁装置では、磁性体からなる基盤
の表面に、所定間隔で複数のスロットを形成し、導体線
を前記スロットにその終端部で折り返しながら波状に埋
設したので、線状磁性体をその軸方向に対して所定寸法
毎に磁極の極性が反転するように磁化することができる
。また、構造が簡素であるから保守点検等の取り扱いが
容易である。更に、上記スロットの間隔と磁極のピッチ
とが対応しているので、スロットの間隔の異なる着磁装
置を用いて線状磁性体を着磁すれば、磁極のピッチの異
なる線状永久磁石を簡単に製造することができる。Furthermore, in the magnetizing device according to the present invention, a plurality of slots are formed at predetermined intervals on the surface of the base made of a magnetic material, and the conductor wires are buried in the slots in a wavy manner while being folded back at their terminal ends. The magnetic body can be magnetized so that the polarity of the magnetic poles is reversed every predetermined dimension in the axial direction of the magnetic body. Furthermore, since the structure is simple, maintenance and inspection are easy. Furthermore, since the slot spacing and the magnetic pole pitch correspond to each other, if a linear magnetic material is magnetized using a magnetizing device with a different slot spacing, linear permanent magnets with different magnetic pole pitches can be easily produced. can be manufactured.
第1図は本発明に係る線状永久磁石の製造工程を示す図
、第2図は本発明に係る着磁装置の斜視図、第3図は上
記着磁装置の平面図、第4図は上記着磁装置の側断面図
、第5図は本発明に係る着磁装置で着磁した線状永久磁
石の磁極と磁界の分布図である。
1・・・基盤、1a・・・スロット、1b・・・磁極片
、2・・・磁極部、3・・・導体線、4・・・線状磁性
体、5・・・着磁電源。
第 3
図
h
特許出願人 アポロ医療器株式会社代 理 人
弁理士 小 谷 悦 川向
弁理士 長 1) 正
向 弁理士 伊 藤 孝 夫第
4図FIG. 1 is a diagram showing the manufacturing process of a linear permanent magnet according to the present invention, FIG. 2 is a perspective view of a magnetizing device according to the present invention, FIG. 3 is a plan view of the magnetizing device, and FIG. FIG. 5, a side sectional view of the magnetizing device, is a distribution diagram of magnetic poles and magnetic fields of a linear permanent magnet magnetized by the magnetizing device according to the present invention. DESCRIPTION OF SYMBOLS 1... Base, 1a... Slot, 1b... Magnetic pole piece, 2... Magnetic pole part, 3... Conductor wire, 4... Linear magnetic body, 5... Magnetizing power supply. Figure 3 h Patent applicant Apollo Medical Instruments Co., Ltd. Representative Patent attorney Etsu Kotani Kawamukai
Chief Patent Attorney 1) Masamukai Patent Attorney Takao Ito Figure 4
Claims (3)
複数構成された磁極部上に線状磁性体を載置した状態で
、各磁極片に磁界を発生させる第1の工程と、上記磁極
部の長さ分だけ上記線状磁性体をその軸方向に引き取る
第2の工程からなる線状磁性体の着磁方法。1. a first step of generating a magnetic field in each magnetic pole piece in a state in which a linear magnetic body is placed on a plurality of magnetic pole parts configured such that the polarity of the magnetic pole piece is alternately reversed every predetermined dimension; A method for magnetizing a linear magnetic material, comprising a second step of pulling the linear magnetic material in the axial direction by the length of the linear magnetic material.
複数構成された磁極部上で線状磁性体を所定速度でその
軸方向に引き取りながら、上記線状磁性体が上記磁極部
の長さ分だけ引取られる毎に各磁極片に磁界を発生させ
ることを特徴とする線状磁性体の着磁方法。2. While pulling a linear magnetic body in the axial direction at a predetermined speed on a plurality of magnetic pole parts configured such that the polarity of the magnetic pole piece is alternately reversed every predetermined dimension, the linear magnetic body is pulled over the length of the magnetic pole part. A method for magnetizing a linear magnetic material, characterized in that a magnetic field is generated in each magnetic pole piece each time the magnetic pole piece is drawn.
された磁性体からなる基盤と、上記スロットにその終端
部で折り返しながら波状に埋設された電源に接続される
両端を有する導体線とからなる線状磁性体の着磁装置。3. A wire consisting of a base made of a magnetic material on which a plurality of slots are formed at predetermined intervals in one direction on its surface, and a conductor wire having both ends buried in the slot in a wavy shape while folding back at its terminal end and connected to a power source. Magnetizing device for magnetic materials.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1046747A JPH07101650B2 (en) | 1989-02-27 | 1989-02-27 | Method and apparatus for magnetizing flexible plastic composite linear magnetic material for magnetic therapy |
KR1019890010575A KR940009302B1 (en) | 1989-02-27 | 1989-07-26 | Magnetizing method and magnetizer of linear magnetic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1046747A JPH07101650B2 (en) | 1989-02-27 | 1989-02-27 | Method and apparatus for magnetizing flexible plastic composite linear magnetic material for magnetic therapy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02224305A true JPH02224305A (en) | 1990-09-06 |
JPH07101650B2 JPH07101650B2 (en) | 1995-11-01 |
Family
ID=12755928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1046747A Expired - Lifetime JPH07101650B2 (en) | 1989-02-27 | 1989-02-27 | Method and apparatus for magnetizing flexible plastic composite linear magnetic material for magnetic therapy |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH07101650B2 (en) |
KR (1) | KR940009302B1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04120209U (en) * | 1991-04-15 | 1992-10-27 | 鐘淵化学工業株式会社 | magnetizing yoke |
US6975196B1 (en) | 2005-03-23 | 2005-12-13 | Visteon Global Technologies, Inc. | Process for circumferential magnetization of magnetoelastic shafts |
JP2010142466A (en) * | 2008-12-19 | 2010-07-01 | Komatsu Katsumi | String-shaped magnet |
JP2011119621A (en) * | 2009-12-07 | 2011-06-16 | Nippon Denji Sokki Kk | Magnetizer and magnetizing head |
JP2011249565A (en) * | 2010-05-27 | 2011-12-08 | Mglab Co Ltd | Magnetization device and magnetization head |
JP2015095642A (en) * | 2013-11-08 | 2015-05-18 | 株式会社エムジー | Magnet reducing magnetic flux density change with cavity fluctuation, and magnetization method thereof |
CN113647931A (en) * | 2011-09-06 | 2021-11-16 | 伊卓诺股份有限公司 | Apparatus and method for magnetizing an elongate medical device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101396161B1 (en) * | 2012-10-09 | 2014-05-19 | 한국타이어 주식회사 | shaping process method of independent generating vehicle belt and the vehicle belt include tire and the tire include vehicle |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5331558A (en) * | 1976-09-06 | 1978-03-24 | Toyoda Chuo Kenkyusho Kk | Method of fabricating press mold |
JPS5941295A (en) * | 1982-09-02 | 1984-03-07 | Mitsubishi Paper Mills Ltd | Method for manufacturing heat-sensitive recording sheet |
JPS622213U (en) * | 1985-06-20 | 1987-01-08 |
-
1989
- 1989-02-27 JP JP1046747A patent/JPH07101650B2/en not_active Expired - Lifetime
- 1989-07-26 KR KR1019890010575A patent/KR940009302B1/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5331558A (en) * | 1976-09-06 | 1978-03-24 | Toyoda Chuo Kenkyusho Kk | Method of fabricating press mold |
JPS5941295A (en) * | 1982-09-02 | 1984-03-07 | Mitsubishi Paper Mills Ltd | Method for manufacturing heat-sensitive recording sheet |
JPS622213U (en) * | 1985-06-20 | 1987-01-08 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04120209U (en) * | 1991-04-15 | 1992-10-27 | 鐘淵化学工業株式会社 | magnetizing yoke |
US6975196B1 (en) | 2005-03-23 | 2005-12-13 | Visteon Global Technologies, Inc. | Process for circumferential magnetization of magnetoelastic shafts |
JP2010142466A (en) * | 2008-12-19 | 2010-07-01 | Komatsu Katsumi | String-shaped magnet |
JP2011119621A (en) * | 2009-12-07 | 2011-06-16 | Nippon Denji Sokki Kk | Magnetizer and magnetizing head |
JP2011249565A (en) * | 2010-05-27 | 2011-12-08 | Mglab Co Ltd | Magnetization device and magnetization head |
CN113647931A (en) * | 2011-09-06 | 2021-11-16 | 伊卓诺股份有限公司 | Apparatus and method for magnetizing an elongate medical device |
JP2015095642A (en) * | 2013-11-08 | 2015-05-18 | 株式会社エムジー | Magnet reducing magnetic flux density change with cavity fluctuation, and magnetization method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH07101650B2 (en) | 1995-11-01 |
KR900013537A (en) | 1990-09-06 |
KR940009302B1 (en) | 1994-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02224305A (en) | Method and device for magnetization of linear magnetic material | |
JP3160109B2 (en) | Soft linear magnet | |
JPH0636404B2 (en) | Method and apparatus for forming a magnetized zone on a magnetizable object | |
Mohri et al. | Jitter-less pulse generator elements using amorphous bistable wires | |
AT364411B (en) | FINED POLE FOR ELECTRICAL MACHINES WITH EXCELLENT POLES AND METHOD FOR PRODUCING THE SAME | |
JPS58117718A (en) | Pulse generator | |
DE3337761A1 (en) | MAGNETIZING DEVICE FOR ANISOTROPAL PERMANENT MAGNETS | |
JP3160110B2 (en) | Soft linear magnet | |
JP7448266B1 (en) | String magnet and its magnetization method, magnetic treatment equipment and magnetization device | |
IT8348175A0 (en) | METHOD AND MEANS OF GENERATING ELECTRIC AND MAGNETIC FIELDS IN SALTWATER ENVIRONMENTS | |
Matsushita et al. | Power generating device using compound magnetic wire | |
US11972881B1 (en) | Magnetized cable for improved cable management | |
JP2002008448A (en) | Spiral formation conductor and device with spiral formation conductor | |
JP2002260923A (en) | Magnetizing method, magnetizing device and magnet | |
SU773751A1 (en) | Inductor for reversible magnetization | |
IT9020951A0 (en) | PERMANENT MAGNETS GENERATORS OF HOMOGENEOUS MAGNETIC FIELDS, PARTICULARLY FOR MRI, AND RELATED MANUFACTURING METHODS | |
JPS626825B2 (en) | ||
Enokizono et al. | Laminated eddy-current type solenoid coil for alternating high magnetic field | |
JPH0581152B2 (en) | ||
Chepurova et al. | The Distribution of Magnetisation in Amorphous Wire Specimens | |
JPS5583455A (en) | Linear pulse motor | |
JPH0539606Y2 (en) | ||
JPH0215834B2 (en) | ||
DE3782339D1 (en) | ELECTRIC MOTOR WITH A MULTIPOLE PERMANENT MAGNET. | |
JPS6027171B2 (en) | How to magnetize large magnets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091101 Year of fee payment: 14 |