[go: up one dir, main page]

JPH02222771A - Sewage purification equipment using electrolytic treatment method - Google Patents

Sewage purification equipment using electrolytic treatment method

Info

Publication number
JPH02222771A
JPH02222771A JP4254689A JP4254689A JPH02222771A JP H02222771 A JPH02222771 A JP H02222771A JP 4254689 A JP4254689 A JP 4254689A JP 4254689 A JP4254689 A JP 4254689A JP H02222771 A JPH02222771 A JP H02222771A
Authority
JP
Japan
Prior art keywords
treated
electrolytic treatment
electrode plates
water
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4254689A
Other languages
Japanese (ja)
Inventor
Shinobu Yamaguchi
忍 山口
Tetsuo Furuta
古田 哲男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP4254689A priority Critical patent/JPH02222771A/en
Publication of JPH02222771A publication Critical patent/JPH02222771A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To improve the efficiency in treatment by inclining both electrode plates to incline the passage between the electrode plates, passing an inlet passage for water to be treated through the lower end of the passage and providing a floc floating and accumulating part above both electrode plates. CONSTITUTION:A DC voltage is impressed on the electrode plates of first and second electrolysis parts 4 and 5. Electrode reactions such as the dissolution in the water to be treated and the oxidation, reduction, decomposition and deposition of suspended matter are carried out in the passage 8 between cathodes and anodes in the first electrolysis part 4. When a DC voltage is an impressed between the electrode plates 6 and 7, fine hydrogen gas bubbles are generated from the cathode plate 7, and aluminum ion is eluted from the anode plate 6. The hydrogen gas bubbles ascend vertically in the passage 8, collide with the surface of the anode plate 6, then descend and again ascend. Consequently, a gushing stream is generated in the passage 8, and the device can be used for a long time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は湖、沼、池、河川、運河、海域等に存在する濁
水や、厨房・下水等の生活廃水等の各汚水中に存在する
溶解・懸濁物質を電解処理により除去して該汚水を浄化
する汚水浄化装置に関する。
[Detailed description of the invention] (Industrial application field) The present invention is applicable to turbid water existing in lakes, marshes, ponds, rivers, canals, sea areas, etc., and various sewage such as domestic wastewater such as kitchens and sewage. The present invention relates to a sewage purification device that purifies sewage by removing dissolved and suspended substances through electrolytic treatment.

(従来の技術) 従来、生活廃水や工業廃水等の汚水浄化法として型処理
法が用いられている。これは、被処理汚水を陰・陽の両
電極間に通して電解処理することにより、溶解・懸濁物
質の酸化、還元、分解、析出、吸着、凝集、浮上、分離
がなされることを利用したものであり、この電解処理法
を利用した従来の装置は、電解処理室に陰・陽画極板を
互いに対向させておき、その電解槽内に被処理汚水をポ
ンプによって強制的に送り込み、その電解処理槽内を強
制流過される開に電解処理がなされるようにし、その間
に発生したフロックを浮上分離させるようにしたものが
一般的であった。
(Prior Art) Conventionally, a mold treatment method has been used as a method for purifying sewage such as domestic wastewater and industrial wastewater. This utilizes the fact that dissolved and suspended substances are oxidized, reduced, decomposed, precipitated, adsorbed, coagulated, floated, and separated by electrolytically treating wastewater by passing it between negative and positive electrodes. Conventional equipment using this electrolytic treatment method has negative and positive electrode plates facing each other in the electrolytic treatment chamber, and the sewage to be treated is forcibly fed into the electrolytic cell by a pump. Generally, the electrolytic treatment was carried out by forced flow through the electrolytic treatment tank, and the flocs generated during this time were floated and separated.

また、従来のこの種の装置では、画電極板が、それぞれ
垂直方向に向けられ、被処理汚水は電解処理槽内を垂直
の向きに上昇もしくは下降するように構成されていた。
Further, in the conventional apparatus of this kind, the picture electrode plates are each oriented in a vertical direction, and the wastewater to be treated is configured to rise or fall vertically within the electrolytic treatment tank.

(発明が解決しようとする課題) 上述の如き従来の装置は、平行に配置された垂直の向き
の陰・陽両極板間を被処理水がポンプ等の手段によって
強制流過されるようになっているなめ、陽極板近くを流
れる被処理汚水は、酸化作用を強く受け、陽極金属イオ
ンによる凝集作用を強く受ける。また、陰極板近くを流
れる被処理汚水は、還元作用を強く受けるとともに、f
#R極から発生する水素ガス泡は液の混合撹拌にあまり
寄与することなく浮上してしまうこととなって、全体が
均一に処理されずに流過してしまい、電解処理効率が低
いという問題があった。
(Problems to be Solved by the Invention) In the conventional apparatus as described above, the water to be treated is forced to flow between vertically oriented negative and anode plates arranged in parallel using means such as a pump. Because of this, the wastewater to be treated flowing near the anode plate is strongly oxidized and strongly coagulated by the anode metal ions. In addition, the wastewater to be treated flowing near the cathode plate is strongly reduced and
#Hydrogen gas bubbles generated from the R electrode float to the surface without contributing much to the mixing and stirring of the liquid, and the entire solution is not uniformly treated and flows through, resulting in a low electrolytic treatment efficiency. was there.

また、電解処理では、陽極酸化作用により、陽極板に酸
化被膜が生成されると陽極金属イオンの発生量が少なく
なり、この金属イオンによる凝集作用が低下する。この
ため従来のこの種の装置では、陽極金属イオンによる作
用を利用する場合には、頻繁に陽極板の酸化被膜の除去
作業が必要になり、その都度、陽極板を取り換えなけれ
ばならないという問題があった。
Furthermore, in the electrolytic treatment, when an oxide film is formed on the anode plate due to the anodic oxidation effect, the amount of anode metal ions generated decreases, and the aggregation effect of these metal ions is reduced. For this reason, in conventional devices of this type, when using the action of anode metal ions, it is necessary to frequently remove the oxide film on the anode plate, and the anode plate must be replaced each time. there were.

本発明は上述の如き従来の問題にかんがみ、流過する被
処理汚水全体が均一に、しかも少ないエイ・ルギーで効
率良く電解処理される汚水浄化装置の提供を目的とした
ものである。
SUMMARY OF THE INVENTION In view of the above-mentioned conventional problems, the present invention aims to provide a sewage purification device in which the entire wastewater to be treated flowing through the wastewater can be electrolytically treated uniformly and efficiently with less energy and energy.

(課題を達成するための手段〉 上述の如き従来の問題を解決し、所期の目的を達成する
ための本発明の特徴は、多数の活性陽極板と陰極板とを
互いに対向させて配置し、その電極板間を被処理汚水流
路となし、該流路内に被処理汚水を流過させ、その流過
中に電解処理する汚水浄化装置において、前記両極板を
傾斜させて該両極板間の流路を傾斜させ、かつ前記陽極
板を上側に、陰極板を下側にそれぞれ配置して互いに対
向させ、該両極板間の流路の下端に被処理水導入路を連
通させるとともに、該両極板の上方位置にフロック浮上
集積部を備え、前記電極板間における電解処理による湧
昇流によって被処理汚水を流過させるようにしたことに
ある。
(Means for Achieving the Object) A feature of the present invention for solving the above-mentioned conventional problems and achieving the intended purpose is that a large number of active anode plates and cathode plates are arranged facing each other. , in a sewage purification device in which the space between the electrode plates is used as a sewage flow path to be treated, the sewage to be treated is caused to flow through the flow path, and electrolytically treated during the flow, the bipolar plates are tilted. The flow path between the two electrode plates is inclined, and the anode plate is placed on the upper side and the cathode plate is placed on the bottom side so that they face each other, and the lower end of the flow path between the two electrode plates is communicated with the water introduction path, A floc floating accumulation section is provided above the electrode plates, and the wastewater to be treated is caused to flow by an upwelling flow caused by electrolytic treatment between the electrode plates.

(作用) この汚水浄化装置は、両極板間に例えば6V程度の直流
電圧を印加すると、画電極板間の被処理汚水中の溶解・
懸濁物質は酸化・還元・分解・析出といっな電極反応を
受けるとともに、上側の陽極板からは陽極金属イオンが
溶出し、下側の陰極板からは微細な水素ガス泡が発生す
る。この陽極反応生成物である金属イオンの働きで溶解
・懸濁物質は凝集される。一方陰極反応生成物である水
素ガスは下側の陰極板の表面にて生成され、傾斜してい
る両電極間の流路内において垂直に上昇し、陽極板の表
面に衝突し、降下し、再度上昇するという渦運動をする
。この運動中に陽極反応生成物で凝集された物質にガス
泡が付着し、フロ・yりを形成し、これが渦運動中に除
々に成長し、上昇する。更に、ガス泡が多く溶は込むと
流路内の気液混合の比重、即ち支持水頭が小さくなり、
被処理汚水導入路から新しい被処理汚水が流入してくる
(Function) In this sewage purification device, when a DC voltage of, for example, about 6 V is applied between the two electrode plates, dissolution and
The suspended solids undergo electrode reactions such as oxidation, reduction, decomposition, and precipitation, and anode metal ions are eluted from the upper anode plate, and fine hydrogen gas bubbles are generated from the lower cathode plate. Dissolved and suspended substances are aggregated by the action of metal ions, which are products of this anode reaction. On the other hand, hydrogen gas, which is a cathode reaction product, is generated on the surface of the lower cathode plate, rises vertically in the channel between the two inclined electrodes, collides with the surface of the anode plate, and descends. It moves up again in a vortex motion. During this movement, gas bubbles adhere to the substances aggregated by the anodic reaction products, forming a flow bubble, which gradually grows and rises during the vortex movement. Furthermore, when many gas bubbles enter the solution, the specific gravity of the gas-liquid mixture in the flow path, that is, the supporting water head, decreases.
New wastewater to be treated flows in from the wastewater introduction channel.

この二つの現象により、流路内には気液混合の渦現象を
伴った湧昇流が発生し、両極板に対する電圧の印加のみ
によって、ガス泡生成量に応じた水の流れが生じる。
Due to these two phenomena, an upwelling flow accompanied by a vortex phenomenon of gas-liquid mixing is generated in the flow path, and only by applying voltage to the bipolar plates, a flow of water is generated in accordance with the amount of gas bubbles generated.

また、この渦現象が室内液体の撹拌効率を高め。In addition, this vortex phenomenon increases the stirring efficiency of indoor liquid.

酸化・還元・分解・析出といった電極と被処理汚水間の
界面において直接電子の授受が行われる電極反応を促進
し、吸着・凝集・浮上といった電極反応生成物が被処理
汚水中の成分と反応する二次反応を促進する。
Promotes electrode reactions such as oxidation, reduction, decomposition, and precipitation in which electrons are directly exchanged at the interface between the electrode and the wastewater to be treated, and electrode reaction products such as adsorption, aggregation, and flotation react with components in the wastewater to be treated. Promote secondary reactions.

また、電極反応、二次反応が進行するとフロックはガス
泡を付着させて渦運動域を抜は出し、陽極板の表面まで
浮上して後、把大しながらこの面に沿って上昇し水面に
浮上する。水素ガスは還元力が大きく陽極面の酸化を抑
制する。またフロックが陽極面に沿って浮上することに
より陽極面は研磨され酸化被膜が付着しない、 (実施ρ1〉 次に本発明を水槽、池、湖沼等に設置して汚水浄化をお
こなわせる装置に実施した例を図面について説明する。
In addition, as the electrode reaction and secondary reaction progress, the floc attaches gas bubbles and escapes from the vortex motion region, floats to the surface of the anode plate, and then rises along this surface while condensing to the water surface. surface. Hydrogen gas has a large reducing power and suppresses oxidation of the anode surface. In addition, as the flocs float along the anode surface, the anode surface is polished and no oxide film adheres to it. An example of this will be explained with reference to the drawings.

図において1は水槽、池、湖、沼等の浄化しようとする
被処理汚水溜の水面であり、2はこの水面1上に浮べ°
な電解処理槽である。電解処理槽2内には、仕切板3を
隔てて第一、第二の電解処理部4.5が設けられている
In the figure, 1 is the water surface of a sewage tank to be treated, such as an aquarium, pond, lake, marsh, etc., and 2 is a water surface floating on the water surface 1.
This is an electrolytic treatment tank. Inside the electrolytic treatment tank 2, first and second electrolytic treatment sections 4.5 are provided with a partition plate 3 in between.

第−電解処理部4には第3図、第4図に示すように多数
のアルミニウムからなる活性陽極板6と、同材料の陰極
板7とを互いに対向させ、その両極板6.7間を被処理
・水流路8,8・・・・・・としている。
As shown in FIGS. 3 and 4, the electrolytic treatment section 4 has a large number of active anode plates 6 made of aluminum and cathode plates 7 made of the same material facing each other, with a gap between the two plates 6 and 7. To be treated/water flow paths 8, 8...

この両極板6,7は、第2図、第3図に示すにように絶
縁基板9の一方の面に陽極板6を、他方の面に陰極板7
を重ね固着し、−枚のt極板10を構成し、この電極板
10を約60’に傾斜させ、3C11程度の間隔を隔て
、多数平行に配置して電解処理槽2内を多数に仕切り、
この電極板10間を被処理水流路8.8・・・・・・と
じている。
As shown in FIGS. 2 and 3, the bipolar plates 6 and 7 have an anode plate 6 on one side of an insulating substrate 9 and a cathode plate 7 on the other side.
The electrode plates 10 are stacked and fixed to form -t electrode plates 10, and the electrode plates 10 are tilted at an angle of about 60' and arranged in parallel at intervals of about 3C11 to partition the inside of the electrolytic treatment tank 2 into a large number. ,
A water passage to be treated 8.8 is closed between the electrode plates 10.

第一電解処理部4の底部には、各電極板10の下端が上
面に当接した底板11があり、この底板11と電解処理
槽2の底板2bとの間が被処理水導入路12となってい
る。底板11には、各電極板10間の位置に上下に貫通
開口したスリット状の通水口13.13・・・・・・が
開口されている。
At the bottom of the first electrolytic treatment section 4, there is a bottom plate 11 with the lower end of each electrode plate 10 in contact with the upper surface, and the space between this bottom plate 11 and the bottom plate 2b of the electrolytic treatment tank 2 is a water introduction path 12 for water to be treated. It has become. In the bottom plate 11, slit-shaped water holes 13, 13, .

第二電解処理部5は、電解処理槽2の上部を介して第一
電解処理部4と連続しており、その内部には、直立配置
に多数の黒鉛板からなる不活性陽極板14とアルミニウ
ムからなる陰極板15とが互いに対向して配置されてい
る。この両極板1415は、前述の電極板と同様に絶縁
基板16の一方の面に陽極板14が、他方の面に陰極板
15が重ねて合わされて固着され、−枚の電極板17と
なっており、これを間隔を隔てて直立に配置し、電解処
理槽2を仕切り、上下に開放された多数の流路18,1
8・・・・・・を構成している。この流路18.18・
・・・・・の下端は電解処理槽2の底部の排出流1/?
+19に連通している。
The second electrolytic treatment section 5 is continuous with the first electrolytic treatment section 4 through the upper part of the electrolytic treatment tank 2, and inside it, an inert anode plate 14 consisting of a large number of graphite plates arranged upright and an aluminum The cathode plates 15 consisting of the above are arranged to face each other. This bipolar plate 1415 is made by stacking and fixing the anode plate 14 on one side of the insulating substrate 16 and the cathode plate 15 on the other side to form - electrode plates 17 in the same manner as the above-mentioned electrode plates. These are arranged vertically at intervals to partition the electrolytic treatment tank 2, and form a large number of channels 18, 1 which are open to the top and bottom.
It consists of 8... This flow path 18.18・
The lower end of ... is the discharge flow 1/? from the bottom of the electrolytic treatment tank 2?
It is connected to +19.

電解処理槽2の上方開口部分は、第一、第二の電解処理
部4,5に共通したフロック浮上集積部20となってい
る。
The upper opening portion of the electrolytic treatment tank 2 serves as a floc flotation and accumulation section 20 common to the first and second electrolytic treatment sections 4 and 5.

電解処理槽2の上部の一方側側面外にはスカム回収ピッ
ト21が設けられている。このスカム回収ピット21と
フロック浮上集積部20との間には、電解処理槽2の他
の部分の上縁より低い溢流堰22が設けられている。
A scum collection pit 21 is provided outside one side of the upper part of the electrolytic treatment tank 2 . An overflow weir 22 is provided between the scum recovery pit 21 and the floc floating accumulation section 20, which is lower than the upper edge of the other portions of the electrolytic treatment tank 2.

次に上述した構成の装置を使用した汚水浄化処理につい
て説明する。
Next, a sewage purification process using the apparatus configured as described above will be explained.

この装置の使用に際しては、溢流堰22の上縁の高さが
水面1より稍高くなる高さになるように電解処理槽2を
水面lに浮上させる。なお、この溢流堰22の水面1か
らの高さは、後述する電解処理によって生じる湧昇流に
より、電解処理槽2内の水位が上昇しても、内部の処理
水が溢れ出ることがなく、かつ、水面上に浮上分離され
たフロックが溢れ出る高さとする。一方被処理水導入路
12の先端開口12aを取水点の水面1下に開口させる
とともに、排出流路19の先端開口19aを排水点の水
面1下に開口させる。
When using this device, the electrolytic treatment tank 2 is floated above the water surface 1 so that the height of the upper edge of the overflow weir 22 is slightly higher than the water surface 1. The height of this overflow weir 22 from the water surface 1 is such that even if the water level in the electrolytic treatment tank 2 rises due to the upwelling flow generated by the electrolytic treatment described later, the treated water inside will not overflow. , and the height is such that the floated and separated flocs overflow on the water surface. On the other hand, the tip opening 12a of the water introduction path 12 to be treated is opened below the water surface 1 at the water point, and the tip opening 19a of the discharge channel 19 is opened below the water surface 1 at the drain point.

この状態で第一、第二電解処理部4.5の各電極板に直
流電圧を印加する。これによって第一電解処理部4の各
陰陽両電極間の流!?88内では被処理水中の溶解・懸
濁物質は、酸化・還元・分解・析出といった電極反応が
なされる。一方両電極板6.7にアルミニウム板を用い
ているため、この画電極板6.7間に例えば6Vの直流
電圧を印加すると、陰極板7から微細な水素ガス泡が発
生し、陽極板6からアルミニウムイオンが溶出する。こ
の@極反応生成物であるアルミニウムイオンの働きで懸
濁物質が凝集され、更にその凝集物に電極反応生成物で
ある水素ガスが付着する。これによって、懸濁物質は見
掛は比重の極めて小さいフロックとなって浮上する。
In this state, a DC voltage is applied to each electrode plate of the first and second electrolytic treatment sections 4.5. As a result, the flow between each negative and positive electrode of the first electrolytic treatment section 4! ? In 88, dissolved and suspended substances in the water to be treated undergo electrode reactions such as oxidation, reduction, decomposition, and precipitation. On the other hand, since aluminum plates are used for both electrode plates 6.7, when a DC voltage of, for example, 6V is applied between the picture electrode plates 6.7, minute hydrogen gas bubbles are generated from the cathode plate 7, and the anode plate 6. Aluminum ions are eluted from. The suspended solids are aggregated by the action of aluminum ions, which are the @ electrode reaction products, and hydrogen gas, which is the electrode reaction product, is further attached to the aggregates. As a result, the suspended matter appears to float as flocs with extremely low specific gravity.

また、第3図に示すように水素ガス泡は傾斜している流
路8内において垂直に上昇し、陽極板6の表面に衝突し
、下降し、再度上昇するという運動をする。更に、ガス
泡が多く溶は込むと流8@8内の気液混合の比重、即ち
支持水頭が小さくなり、底板11の通水口から新しい被
処理汚水が流入してくる。この二つの現象により、流#
18内には気液混合の渦現象を伴った湧昇流が発生する
。気液混合体の比重ρは電流密度を例えば50アンペア
/ m’ /hrとするとき、はぼp □0.98 (
lrf/cm ’となる。湧昇流速は電流密度、電解槽
の深さ等に左右されるが、取水点の水位と槽内の水位の
差を調整することで最終的にコントロールできる。
Further, as shown in FIG. 3, the hydrogen gas bubbles rise vertically in the inclined channel 8, collide with the surface of the anode plate 6, descend, and rise again. Furthermore, when many gas bubbles are dissolved, the specific gravity of the gas-liquid mixture in the stream 8@8, that is, the supporting water head becomes smaller, and new wastewater to be treated flows in from the water outlet of the bottom plate 11. Due to these two phenomena, flow #
18, an upwelling flow accompanied by a vortex phenomenon of gas-liquid mixing occurs. The specific gravity ρ of the gas-liquid mixture is p□0.98 (when the current density is 50 amperes/m'/hr, for example)
lrf/cm'. The upwelling flow rate depends on current density, depth of the electrolytic tank, etc., but can ultimately be controlled by adjusting the difference between the water level at the water intake point and the water level inside the tank.

この渦現象が室内液体の撹拌効率を高め、酸化・還元・
分解・析出といった電極と被処理汚水間の界面において
直接電子の授受が行われる型際反応を促進しなり、吸着
・凝集・浮上といった電極反応生成物が被処理汚水中の
成分と反応する二次反応を促進することになる。
This vortex phenomenon increases the stirring efficiency of the indoor liquid, causing oxidation, reduction, and
It promotes cross-type reactions, such as decomposition and precipitation, in which electrons are exchanged directly at the interface between the electrode and the wastewater to be treated, and secondary reactions, in which electrode reaction products such as adsorption, aggregation, and flotation, react with components in the wastewater to be treated. This will promote the reaction.

また、電極反応、二次反応が進行するとフロックはガス
泡を付着させて渦運動域を抜は出し、陽極6の表面まで
浮上して後肥大しながらこの面に沿って上昇し水面に浮
上する。水素ガスは還元力が大きく陽極面の酸化を抑制
する。またフロックが陽極面に沿って浮上することによ
り陽極面は研磨され酸化被膜が付着しない。第4図にお
いて、aは流路8内の活性陽極板6の表面に沿って浮上
するフロック、bは流路8を離れて電解処理槽2の上部
へ浮上するフロック、Cは浮上集積部20に浮上したフ
ロックをそれぞれ示している。
In addition, as the electrode reaction and secondary reaction progress, the floc attaches gas bubbles and moves out of the vortex motion region, floats up to the surface of the anode 6, and then ascends along this surface while becoming enlarged and floats to the water surface. . Hydrogen gas has a large reducing power and suppresses oxidation of the anode surface. Furthermore, since the flocs float along the anode surface, the anode surface is polished and no oxide film is attached. In FIG. 4, a shows the flocs floating along the surface of the active anode plate 6 in the channel 8, b shows the flocs leaving the channel 8 and floats to the upper part of the electrolytic treatment tank 2, and C shows the floating accumulation section 20. The flocs that floated to the surface are shown respectively.

第一電解処理部4にてフロックの大部分か除去された一
次処理水は、第二処理部5の不活性陽極板14と陰極板
15間の流路18に送られ、第一電解処理部4にて浮上
しきれなかったフロックは、陰極板15面に生成される
10〜30μの大きさの微細ガス泡が付着し、水流に逆
らって浮上分離される。なお、このときのカスの付着し
たフロックの浮上速度は20m/hr程度であり、−次
処理水の流路18内の落下速度がこれ以下になるように
設計されている。従って一次処理水内に残ったフロック
<SS>は完全に除去されて処理水は排出流路1つを通
り、排出点の開口19aから放流される。
The primary treated water from which most of the flocs have been removed in the first electrolytic treatment section 4 is sent to the flow path 18 between the inert anode plate 14 and the cathode plate 15 of the second treatment section 5, and is then sent to the first electrolytic treatment section. The flocs that could not be completely floated in Step 4 are attached to fine gas bubbles of 10 to 30 μm in size generated on the surface of the cathode plate 15, and are floated and separated against the water flow. Note that the floating speed of the flocs with debris attached at this time is about 20 m/hr, and the design is such that the falling speed in the flow path 18 of the secondary treated water is less than this. Therefore, the flocs <SS> remaining in the primary treated water are completely removed, and the treated water passes through one discharge channel and is discharged from the opening 19a at the discharge point.

一方、第一、第二の画一解処理部4.5にて分解された
フロックは、電解処理槽2の上部のフロック浮上集積部
20に、下側より順次集積される。
On the other hand, the flocs decomposed in the first and second uniform solution processing sections 4.5 are accumulated in the floc flotation and accumulation section 20 in the upper part of the electrolytic treatment tank 2 in order from the bottom.

このようにフロックが集積してできたスカムCは、その
集積厚さの約半分は水面上に押しげられるため、下側か
らフロックが順次集積されるとスカム上面は除々に上昇
し、溢流堰22を乗り越えてスカム回収ビット21内に
流れ込む。
Approximately half of the accumulated thickness of the scum C formed by the accumulation of flocs is pushed above the water surface, so as the flocs are accumulated sequentially from the bottom, the top surface of the scum gradually rises, causing overflow. The scum passes over the weir 22 and flows into the scum recovery bit 21.

この乗り越えは、溢流堰22の高さを電解処理部2内の
水面高さより51程度以下とすることによって可能とな
る。また、充分な時間をとってスカムを発達させた状態
で乗り越えさせると、スカムの大水率を80%以下とす
ることができる。
This overcoming is possible by setting the height of the overflow weir 22 to about 51 degrees or less higher than the water surface height in the electrolytic treatment section 2. In addition, if sufficient time is allowed to allow the scum to develop and get over it, the water content of the scum can be reduced to 80% or less.

なお、上述の実施例では、第一、第二の画一解処理部に
て二段階に電解処理するようにしているが、−段階のみ
の電解処理でも良いことはいうまでもない。
In the above-mentioned embodiment, the electrolytic treatment is performed in two stages in the first and second uniform processing units, but it goes without saying that the electrolytic treatment may be performed in only the negative stage.

(発明の効果) 上述したように本発明の電解処理法による汚水処理装置
は、互いに対向する陰・陽画電極板を、該陽極板を上側
にして傾斜させて配置し、両極板間の電解作用によって
生じる湧昇流によって被処理汚水を強制的に流過させる
ようにしたことにより、下側の陰極板から生成される微
細ガス泡が−E昇し、陽極板への衝突して下降する一連
の運動が生じ、その渦現象によって、両極間の流路内の
撹拌効率が高くなって、電極反応が促進されるとともに
、電極生成物による二次反応が促進され、しかも、これ
らの反応が流過する処理汚水全体に対して均一に行なわ
れることとなり、処理効率が高くなったものである。更
に、活性陽極板には、陰極板にて生成された還元力の大
きい水素ガスが常に接し、しかもフロックがこれに沿っ
て接触しつつ上昇されるため、陽極間の酸化が抑制され
るとともに表面が研磨作用を受け、酸化被膜が付着せず
、特別な研磨を必要とせずに長時間使用できることとな
ったものである。
(Effects of the Invention) As described above, in the sewage treatment apparatus using the electrolytic treatment method of the present invention, negative and positive electrode plates facing each other are arranged in an inclined manner with the anode plate facing upward, so that the electrolytic action between the two electrode plates is reduced. By forcing the sewage to be treated to flow through the upwelling flow generated by movement occurs, and the vortex phenomenon increases the stirring efficiency in the flow path between the two electrodes, promoting electrode reactions and secondary reactions caused by electrode products. The process is uniformly applied to the entire treated wastewater, resulting in higher treatment efficiency. Furthermore, the active anode plate is always in contact with the highly reducing hydrogen gas generated on the cathode plate, and since the flocs are raised along the active anode plate while being in contact with it, oxidation between the anodes is suppressed and the surface is subjected to a polishing action, no oxide film is attached, and it can be used for a long time without the need for special polishing.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示したもので、第1図は全体の
概略を示す断面図、第2図は第1図中の、9 ■−■線
断面図、第3図は第一電解処理部における作用を示す拡
大断面図、第4図は同フロック上昇状態を示す拡大断面
図、第5図は第二電解処理部の部分拡大断面図である。 a、b、c・・・・・・フロック、1・・・・・・水面
、2・・・・・・電解処理槽、2c・・・・・・底板、
3・・・・・・仕切板、4・・・・・・第一電解処理部
、5・・・・・・第二電解処理部、6・・・・・・活性
陽極板、7・・・・・・陰極板、8・・・・・・被処理
水流路、9・・・・・・絶縁基板、10・・・・・・電
極板、11・・・・・・底板、12・・・・・・被処理
水導入路、12a・・・・・・先端開口、13・・・・
・・通水口、14・・・・・・不活性陽極板、5・・・
・・・Ifji極板、16・・・・・・絶縁基板、7・
・・・・・電極板、18・・・・・・流路、9・・・・
・・排出流路、20・・・・・・フロック浮上集積部、
1・・・・・・スカム回収ピット、22・・・・・・溢
流堰。
The drawings show an embodiment of the present invention. Figure 1 is a sectional view showing the overall outline, Figure 2 is a sectional view taken along line 9 - ■ in Figure 1, and Figure 3 is a cross-sectional view of the first electrolyte. FIG. 4 is an enlarged sectional view showing the operation in the treatment section, FIG. 4 is an enlarged sectional view showing the floc rising state, and FIG. 5 is a partially enlarged sectional view of the second electrolytic treatment section. a, b, c...floc, 1...water surface, 2...electrolytic treatment tank, 2c...bottom plate,
3... Partition plate, 4... First electrolytic treatment section, 5... Second electrolytic treatment section, 6... Active anode plate, 7... ... Cathode plate, 8 ... Water flow path to be treated, 9 ... Insulating substrate, 10 ... Electrode plate, 11 ... Bottom plate, 12. ...Water introduction channel to be treated, 12a...Tip opening, 13...
...Water port, 14...Inert anode plate, 5...
... Ifji electrode plate, 16 ... Insulating substrate, 7.
... Electrode plate, 18 ... Channel, 9 ...
...Discharge channel, 20...Floc floating accumulation section,
1... Scum collection pit, 22... Overflow weir.

Claims (1)

【特許請求の範囲】[Claims] 多数の活性陽極板と陰極板とを互いに対向させて配置し
、その電極板間を被処理汚水流路となし、該流路内に被
処理汚水を流過させ、その流過中に電解処理する汚水浄
化装置において、前記両極板を傾斜させて該両極板間の
流路を傾斜させ、かつ前記陽極板を上側に、陰極板を下
側にそれぞれ配置して互いに対向させ、該両極板間の流
路の下端に被処理水導入路を連通させるとともに、該両
極板の上方位置にフロック浮上集積部を備え、前記電極
板間における電解処理による湧昇流によって被処理汚水
を流過させるようにしたことを特徴としてなる電解処理
法による汚水浄化装置。
A large number of active anode plates and cathode plates are arranged to face each other, and the space between the electrode plates is used as a flow path for wastewater to be treated.The wastewater to be treated is caused to flow through the flow path, and electrolytic treatment is performed during the flow. In the sewage purification device, the bipolar plates are inclined to make the flow path between the bipolar plates incline, and the anode plate is arranged on the upper side and the cathode plate is arranged on the bottom side so as to face each other, A water introduction passage to be treated is communicated with the lower end of the flow path, and a floc floating accumulation part is provided above the electrode plates, so that the wastewater to be treated is caused to flow by an upwelling flow due to electrolytic treatment between the electrode plates. A sewage purification device using an electrolytic treatment method.
JP4254689A 1989-02-22 1989-02-22 Sewage purification equipment using electrolytic treatment method Pending JPH02222771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4254689A JPH02222771A (en) 1989-02-22 1989-02-22 Sewage purification equipment using electrolytic treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4254689A JPH02222771A (en) 1989-02-22 1989-02-22 Sewage purification equipment using electrolytic treatment method

Publications (1)

Publication Number Publication Date
JPH02222771A true JPH02222771A (en) 1990-09-05

Family

ID=12639056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4254689A Pending JPH02222771A (en) 1989-02-22 1989-02-22 Sewage purification equipment using electrolytic treatment method

Country Status (1)

Country Link
JP (1) JPH02222771A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104591350A (en) * 2015-01-30 2015-05-06 江翠珍 Sewage degradation purifying device
CN104817138A (en) * 2015-05-13 2015-08-05 陕西孚嘉石化科技有限公司 Electric flocculation device with inclined plate electrodes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140871A (en) * 1974-10-04 1976-04-06 Mitsubishi Electric Corp HANDOTA ISOCHI
JPS5143871A (en) * 1974-08-12 1976-04-14 Sargent Industries

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143871A (en) * 1974-08-12 1976-04-14 Sargent Industries
JPS5140871A (en) * 1974-10-04 1976-04-06 Mitsubishi Electric Corp HANDOTA ISOCHI

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104591350A (en) * 2015-01-30 2015-05-06 江翠珍 Sewage degradation purifying device
CN104817138A (en) * 2015-05-13 2015-08-05 陕西孚嘉石化科技有限公司 Electric flocculation device with inclined plate electrodes

Similar Documents

Publication Publication Date Title
CN102936072B (en) Nano-catalysis, electrolysis, flocculation and air-floatation device
US4908109A (en) Electrolytic purification system utilizing rapid reverse current plating electrodes
US3756933A (en) Method of purifying sewage efluent and apparatus therefor
US4732661A (en) Electrolytic purification system
US3783114A (en) Method of electrolytic treatment of waste water
CN103723867B (en) A kind of economic benefits and social benefits air bearing algae blooms water processing equipment and its treatment process
CN202519115U (en) Nano-catalysis, electrolysis, flocculation and air-floatation device
JPH04244291A (en) Apparatus for purifying contaminated water by electrolytic treatment
CN113856254A (en) Inclined tube sedimentation tank capable of being cleaned on line
JPH02222771A (en) Sewage purification equipment using electrolytic treatment method
JPH02222770A (en) Sewage purification method by electrolytic treatment
CN111087106B (en) A kind of pretreatment process of metal electroplating wastewater and its treatment device
CN211546036U (en) Electrolysis air-float equipment
JP2001000979A (en) Septic apparatus
JPH08108173A (en) Spiral flow type flotation separation apparatus
JP4237582B2 (en) Surplus sludge reduction device and method
JPH1085754A (en) Electrolytic cell and process for fine oil droplet separation
CN209493358U (en) Electrolytic air floatation machine
CN217264978U (en) Novel electrocoagulation air flotation device
CN220684793U (en) Dosing-free efficient coagulating sedimentation integrated device
JPH06218373A (en) Cleaning apparatus for polluted water by electrolytic treatment method
CN217077074U (en) Electrochemical treatment device for circulating cooling water
CN214218436U (en) An advective two-stage electrolytic dephosphorization device
CN218665480U (en) Sewage treatment air supporting machine
SU1411289A1 (en) Apparatus for electrochemical purification of waste water