[go: up one dir, main page]

JPH02222578A - Manufacture of mos field-effect transistor - Google Patents

Manufacture of mos field-effect transistor

Info

Publication number
JPH02222578A
JPH02222578A JP4457389A JP4457389A JPH02222578A JP H02222578 A JPH02222578 A JP H02222578A JP 4457389 A JP4457389 A JP 4457389A JP 4457389 A JP4457389 A JP 4457389A JP H02222578 A JPH02222578 A JP H02222578A
Authority
JP
Japan
Prior art keywords
film
gate
gate electrode
silicon
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4457389A
Other languages
Japanese (ja)
Inventor
Shuichi Saito
修一 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4457389A priority Critical patent/JPH02222578A/en
Publication of JPH02222578A publication Critical patent/JPH02222578A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To facilitate the manufacture of a MOSFET possessed of a gate very small in length by a method wherein a gate electrode and a gate insulating film are formed on an insulating film or the like, a side wall is provided, then a semiconductor film is formed on the upside, and then a source and a drain electrodes are formed on the sides of the side wall respectively thicker than the semiconductor film formed on the gate electrode. CONSTITUTION:A gate electrodes 3 and a gate insulating film are formed on an insulating substrate or a substrate 1 on which an insulating film has been formed, a side wall 7 is provided to both the ends of the gate electrode respectively, and a semiconductor film 8 is formed on the upside of the gate electrode 3. Then, a source electrode and a drain electrode 9 are formed on both the ends of the side wall 7 respectively thicker than the semiconductor film 8 formed on the gate electrode 3. For instance, the amorphous silicon 8 is made to adhere, arsenic is ion-implanted into the silicon 8, and then the amorphous silicon 8 is thermally treated to be monocrystallized. Then, the silicon 8 is flattened through a polishing method, a single crystal silicon 9 is formed on a region which is to serve as a source and a drain, an element isolating region 10 is formed, and an amorphous silicon 11 is made to adhere as thick as 50nm, which is thermally treated to be monocrystallized to form a channel region.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はMOS型電界効果トランジスタの製造方法、特
に5OI(Silicon On In5ulator
)基板に形成するMOS型電界効果トランジスタの製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a MOS field effect transistor, particularly a method for manufacturing a 5OI (Silicon On Inductor).
) This relates to a method of manufacturing a MOS field effect transistor formed on a substrate.

〔従来の技術〕[Conventional technology]

最近のVLSHにおいては、ゲート長が0.8.程度の
MOS型電界効果トランジスタが用いられており。
In recent VLSH, the gate length is 0.8. MOS type field effect transistors are used.

今後更に微細化が進むと考えられ、O,t、以下のチャ
ネル長を有するMOζトランジスタの製造技術を確立し
ておく必要がある。しかし、高集積化による微細化に伴
い、バンチスルーや短チヤネル効果という2次元効果の
ためにMOS型電界効果トランジスタの特性が劣化して
くる。一方、SOI基板に形成されるMOS型電界効果
トランジスタにおいては、従来、結晶成長が容易である
SOI膜厚が0.5μ程度の単結晶半導体薄膜が用いら
れていた。しかし、例えば、デバイスサイズが0.IJ
m以下のMOSトランジスタを形成する場合、0.5μ
と厚いSOX膜を用いた場合には、バルクシリコン基板
を用いた場合と同じように、パンチスルーや短チヤネル
効果という2次元効果のためにMOS型電界効果トラン
ジスタの特性は劣化する。しかし、このような2次元効
果や基板浮遊効果を低減するためには。
It is thought that further miniaturization will occur in the future, and it is necessary to establish a manufacturing technology for MOζ transistors having a channel length of O,t, or less. However, with miniaturization due to higher integration, the characteristics of MOS field effect transistors deteriorate due to two-dimensional effects such as bunch-through and short channel effects. On the other hand, in a MOS field effect transistor formed on an SOI substrate, a single crystal semiconductor thin film with an SOI film thickness of about 0.5 μm, which is easy to grow, has conventionally been used. However, for example, if the device size is 0. I.J.
When forming a MOS transistor of less than m, 0.5μ
When a thick SOX film is used, the characteristics of a MOS field effect transistor are degraded due to two-dimensional effects such as punch-through and short channel effects, just as when a bulk silicon substrate is used. However, in order to reduce such two-dimensional effects and substrate floating effects.

5OIWI厚を最大空乏層厚以下にすれば良いことが最
近報告されている。このため、薄いSOX膜の形成方法
としては、−度0.5−程度の厚いSOX膜を形成した
後1種々のエツチング法を用いて薄膜化する手法が行わ
れている。
It has recently been reported that it is sufficient to make the 5OIWI thickness less than or equal to the maximum depletion layer thickness. For this reason, a method of forming a thin SOX film is to form a thick SOX film of about -0.5 degrees and then thin the film using various etching methods.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

微細ゲート長を有するMOS型電界効果トランジスタに
おいては、ゲート領域のSOI膜厚を空乏層幅以下にし
なくては、2次元効果を十分に抑制することはできない
、そのため、ゲート領域あるいはトランジスタ全領域の
SOI膜の膜厚を50n m程度以下にしなければなら
ない、しかし、そのように薄いSOI膜を広い領域に形
成することは、従来のビームアニール法や固相成長法で
は困難であるばかりでなく、現在行われている厚いSO
I膜を種々のエツチング法を用いて薄くする方法におい
ても、均一性、制御性の面から極めて困難である。また
In a MOS field effect transistor with a fine gate length, the two-dimensional effect cannot be sufficiently suppressed unless the SOI film thickness in the gate region is less than the depletion layer width. The thickness of the SOI film must be approximately 50 nm or less, but it is not only difficult to form such a thin SOI film over a wide area using conventional beam annealing methods or solid phase growth methods. Thick SO currently being carried out
Even in methods of thinning the I film using various etching methods, it is extremely difficult in terms of uniformity and controllability. Also.

ソース・ドレイン領域の膜厚もきわめて薄くなるために
、ソース・ドレイン抵抗の増大も予想される。更に加工
も微細化してくるためにその下地の状態、例えば平坦性
なども改善しておく必要がある。また、ホットエレクト
ロン対策のためにはソース・ドレイン近傍の電界の変化
を緩やかにすればよく、そのためにこの領域に濃度勾配
を付けることも必要である。
Since the film thickness of the source/drain regions is also extremely thin, it is expected that the source/drain resistance will increase. Furthermore, as processing becomes finer, it is necessary to improve the condition of the underlying material, such as its flatness. Furthermore, in order to take measures against hot electrons, it is sufficient to make the change in the electric field near the source/drain gentle, and for this purpose it is also necessary to create a concentration gradient in this region.

本発明の目的はこのような従来の問題点を解消しうるM
OS型電界効果トランジスタの製造方法を提供すること
にある。
The purpose of the present invention is to solve the problems of the prior art.
An object of the present invention is to provide a method for manufacturing an OS type field effect transistor.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するため1本発明によるMOS型電界効
果トランジスタの製造方法においては、絶縁基板あるい
は絶縁膜を形成した基板上に、ゲート電極とゲート絶縁
膜とを形成し、該ゲート電極の両端にサイドウオールを
設ける工程と、前記ゲート電極の上面に半導体膜を形成
する工程と、前記サイドウオールの両端にソース及びド
レイン電極を前記ゲート電極の上に形成した半導体膜よ
り厚く形成する工程とを含むものである。
In order to achieve the above object, 1. a method for manufacturing a MOS field effect transistor according to the present invention includes forming a gate electrode and a gate insulating film on an insulating substrate or a substrate on which an insulating film is formed; The method includes a step of providing a sidewall, a step of forming a semiconductor film on the upper surface of the gate electrode, and a step of forming source and drain electrodes on both ends of the sidewall to be thicker than the semiconductor film formed on the gate electrode. It is something that

〔作用〕[Effect]

本発明において、微細ゲートを有するSOIデバイスを
形成するためにはSOIの膜厚を50n m以下にする
必要がある。従来用いられている方法でそのままこのよ
うな薄い膜を形成すると、単結晶の成長する距離は数−
であり、デバイス形成領域を全面に単結晶化することは
困難である。更にまた、ゲート長が短くなるとその加工
も容易でなく、特にその下地の平坦性も重要になってく
る。さらに。
In the present invention, in order to form an SOI device with a fine gate, the thickness of the SOI film must be 50 nm or less. If such a thin film is formed using conventional methods, the distance that a single crystal will grow will be several -
Therefore, it is difficult to monocrystallize the entire device formation region. Furthermore, as the gate length becomes shorter, it is not easy to process the gate, and the flatness of the underlying layer becomes particularly important. moreover.

薄膜のSOI膜形成と同時にゲートをセルファラインで
形成しなければならない、そこでまず、絶縁膜上にゲー
ト電極及びゲート絶縁膜を形成し、サイドウオールを形
成後シリコンを付着し、ソース・ドレイン領域を形成す
れば自動的にセルファライン構造になる。このときゲー
ト電極上にはシリコンが厚く付着するために、この時点
でソース・ドレインにイオン注入し、その後、平坦化を
行いゲート電極の上端と同じ高さにする。このようにす
れば、ソース・ドレイン領域の近傍では濃度勾配が自動
的に形成できる0次に、チャネルとなる領域の形成を行
う、この場合、ソース・ドレイン領域が単結晶化され1
次に薄膜のシリコン膜を付着し単結晶化するが、このと
き結晶化の距離は、チャネル長に相当する長さのために
短くてよく、薄膜のSOI膜でも十分に成長可能である
At the same time as forming the thin SOI film, the gate must be formed using self-line. Therefore, first, the gate electrode and gate insulating film are formed on the insulating film, and after forming the sidewalls, silicon is deposited, and the source/drain regions are formed. Once formed, it automatically becomes a self-line structure. At this time, silicon is deposited thickly on the gate electrode, so ions are implanted into the source and drain at this point, and then planarization is performed to make it the same height as the upper end of the gate electrode. In this way, a concentration gradient can be automatically formed in the vicinity of the source/drain region. In this case, the source/drain region is made into a single crystal, and the region that becomes the channel is formed.
Next, a thin silicon film is deposited and made into a single crystal. At this time, the crystallization distance may be short because the length corresponds to the channel length, and even a thin SOI film can be grown sufficiently.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図(−〜(a)は本発明の一実施例を示した模式的
断面図である。
FIG. 1(a) is a schematic sectional view showing an embodiment of the present invention.

第1図(a)において、シリコン基板1上に酸化膜2を
1p形成した後、酸化膜2の一部にシードを設け、ポリ
シリコンを全面に500n m付着し、さらに酸化膜を
0.4μ及び窒化膜0.1μ付着させる0次に、前記シ
ードを基に前記ポリシリコンを電子ビームを用いて溶融
させ、これを単結晶化させる。
In FIG. 1(a), after 1p of oxide film 2 is formed on a silicon substrate 1, a seed is provided on a part of the oxide film 2, 500 nm of polysilicon is deposited on the entire surface, and an oxide film of 0.4 μm is further deposited on the entire surface. Then, the polysilicon is melted using an electron beam based on the seed to form a single crystal.

3は単結晶シリコンである。このとき、電子ビームアニ
ールの条件は、加速電圧15kV、ビーム電流30mA
、走査速度120cs+/sea、基板温度1000℃
として0次に、前記酸化膜及び窒化膜を除去した後に改
めて前記単結晶化されたシリコン3の膜上に酸化膜4を
7nm熱酸化し、さらに窒化膜5を101付着した。こ
れら膜をパターニングし、第1図(a)に図示の構造を
形成した。このとき、シードは単結晶シリコン6で埋め
込まれた0次に、第1図(b)のように単結晶シリコン
3の側面に酸化膜7をエッチバック法を用いて形成し、
サイドウオールを設けた。前記試料をMBE装置にいれ
た後表面処理を行い、非晶質シリコン8を付着させて第
1図(c)の構造を形成した。このとき、同一真空中で
450°C20分間熱処理を行った後、砒素をイオン注
入した。
3 is single crystal silicon. At this time, the conditions for electron beam annealing are an acceleration voltage of 15 kV and a beam current of 30 mA.
, scanning speed 120cs+/sea, substrate temperature 1000℃
Next, after removing the oxide film and nitride film, the oxide film 4 was thermally oxidized to a thickness of 7 nm on the single crystallized silicon 3 film, and a nitride film 5 was further deposited. These films were patterned to form the structure shown in FIG. 1(a). At this time, the seed is embedded with single crystal silicon 6 and an oxide film 7 is formed on the side surface of the single crystal silicon 3 using an etch-back method as shown in FIG. 1(b).
A side wall was installed. After placing the sample in an MBE apparatus, surface treatment was performed, and amorphous silicon 8 was deposited to form the structure shown in FIG. 1(c). At this time, after heat treatment was performed at 450° C. for 20 minutes in the same vacuum, arsenic ions were implanted.

次に、この試料を窒素雰囲気中で600°C10時間熱
処理を行い非晶質シリコン8を単結晶化した。このとき
、砒素はイオン注入により表面より一定の深さに入るが
1次の熱処理によってはほとんど拡散しないために、次
に研磨法を用いて平坦化を行うことにより砒素の濃度は
単結晶シリコン3に向かって徐々に減少してくる。これ
により、第1図(d)のような構造が形成され、ソース
・ドレインとなるべき領域に単結晶シリコン9が形成さ
れた。
Next, this sample was heat-treated at 600° C. for 10 hours in a nitrogen atmosphere to form amorphous silicon 8 into a single crystal. At this time, arsenic enters a certain depth from the surface by ion implantation, but it is hardly diffused by the first heat treatment, so the arsenic concentration is reduced by planarization using a polishing method. It gradually decreases towards As a result, a structure as shown in FIG. 1(d) was formed, and single-crystal silicon 9 was formed in regions to become sources and drains.

次に、ソース・ドレイン領域を除いて酸化を行い。Next, oxidation is performed except for the source and drain regions.

素子分離領域10を形成した。その後、窒化膜5を除去
し、第1図(e)のように、非晶質シリコン11をMB
E装置を用いて50n■の厚みに付着し、600℃の熱
処理により単結晶かを行い、チャネル領域を形成した0
次に、酸化膜12を付着しこれを保護膜とした。
An element isolation region 10 was formed. Thereafter, the nitride film 5 is removed, and the amorphous silicon 11 is deposited on the MB as shown in FIG. 1(e).
The film was deposited to a thickness of 50 nm using an E equipment, and heat treated at 600°C to form a single crystal, forming a channel region.
Next, an oxide film 12 was deposited to serve as a protective film.

以上実施例においては、ソース・ドレイン及びチャネル
領域の単結晶膜を形成する方法として同相成長法を用い
たが、ビームアニーム法なども用いることができる。
In the above embodiments, the in-phase growth method was used as a method for forming the single crystal films of the source/drain and channel regions, but a beam annealing method or the like may also be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、従来のMO3型
電界効果トランジスタの製造方法とは異なり、チャネル
領域の薄いSOI膜は、厚いソース及びドレイン領域を
形成後、これらの領域を種に形成しているため、従来の
薄いSOI膜形成に必要であった高精度のエツチング法
や直接薄いSOI膜を大面積にわたり形成しなくてもよ
く、また薄いSO工膜の成長距離も数μと短くてすむ、
また、前記実施例において示したように、チャネル領域
の薄いSOI膜にI’lO5型電界効果トランジスタを
形成した場合でも、ソース・ドレイン領域を厚いシリコ
ン膜で形成できるので、ソース・ドレイン領域の抵抗を
上げずにトランジスタを作製できる。また。
As explained above, according to the present invention, unlike the conventional manufacturing method of MO3 type field effect transistors, the thin SOI film in the channel region is formed using these regions as seeds after forming thick source and drain regions. Therefore, there is no need for the high-precision etching method or direct formation of a thin SOI film over a large area, which was necessary for conventional thin SOI film formation, and the growth distance of the thin SOI film is short, only a few microns. Tesumu,
Furthermore, as shown in the above embodiment, even when an I'lO5 type field effect transistor is formed in a thin SOI film in the channel region, the source and drain regions can be formed in a thick silicon film, so the resistance of the source and drain regions is Transistors can be manufactured without increasing the cost. Also.

ゲートもセルファラインで形成でき、さらに、ソース・
ドレイン領域の近傍での不純物濃度勾配もソース・ドレ
インへのイオン注入と同時にでき。
The gate can also be formed using self-line, and the source and
The impurity concentration gradient near the drain region is also created at the same time as the ion implantation into the source and drain.

また、付着するシリコンの膜厚やイオン注入の工ネルギ
ーやドーズ量により制御可能である。
Further, it can be controlled by the thickness of the deposited silicon film and the energy and dose of ion implantation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(ω〜(dは本発明の一実施例を示した模式的断
面図である。
FIG. 1 (ω~(d) is a schematic cross-sectional view showing one embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁基板あるいは絶縁膜を形成した基板上に、ゲ
ート電極とゲート絶縁膜とを形成し、該ゲート電極の両
端にサイドウォールを設ける工程と、前記ゲート電極の
上面に半導体膜を形成する工程と、前記サイドウォール
の両端にソース及びドレイン電極を前記ゲート電極の上
に形成した半導体膜より厚く形成する工程とを含むこと
を特徴とするMOS型電界効果トランジスタの製造方法
(1) Forming a gate electrode and a gate insulating film on an insulating substrate or a substrate on which an insulating film is formed, providing sidewalls at both ends of the gate electrode, and forming a semiconductor film on the upper surface of the gate electrode. and forming source and drain electrodes at both ends of the sidewalls to be thicker than a semiconductor film formed on the gate electrode.
JP4457389A 1989-02-23 1989-02-23 Manufacture of mos field-effect transistor Pending JPH02222578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4457389A JPH02222578A (en) 1989-02-23 1989-02-23 Manufacture of mos field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4457389A JPH02222578A (en) 1989-02-23 1989-02-23 Manufacture of mos field-effect transistor

Publications (1)

Publication Number Publication Date
JPH02222578A true JPH02222578A (en) 1990-09-05

Family

ID=12695247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4457389A Pending JPH02222578A (en) 1989-02-23 1989-02-23 Manufacture of mos field-effect transistor

Country Status (1)

Country Link
JP (1) JPH02222578A (en)

Similar Documents

Publication Publication Date Title
US7067386B2 (en) Creation of high mobility channels in thin-body SOI devices
KR100392166B1 (en) Semiconductor device and method for manufacturing the same
US20020168802A1 (en) SiGe/SOI CMOS and method of making the same
US20040007737A1 (en) Ultra small size vertical MOSFET device and method for the manufacture thereof
JPH0476503B2 (en)
JPH04230071A (en) Integrated circuit with field effect transistor and its manufacturing method
JPS6336147B2 (en)
JPS61187224A (en) Method of making electric field effect device on silicon substrate
US9460971B2 (en) Method to co-integrate oppositely strained semiconductor devices on a same substrate
WO2000034548A1 (en) Multiple-thickness gate oxide formed by oxygen implantation
JPS63281465A (en) Method for manufacturing field effect transistors and intermediates thereof
JPH0395922A (en) Forming method for thin semiconductor film
CN100474513C (en) A method of manufacturing a semiconductor device and a semiconductor device manufactured by the method
US7091560B2 (en) Method and structure to decrease area capacitance within a buried insulator device
JPH02222578A (en) Manufacture of mos field-effect transistor
US20040014302A1 (en) Method of forming silicon on insulator wafers
US6037198A (en) Method of fabricating SOI wafer
JPH02222547A (en) Manufacture of mos field-effect transistor
JPH05299349A (en) Manufacture of soi substrate
JPH0533527B2 (en)
JP2600286B2 (en) Method for manufacturing semiconductor device
JPH03200319A (en) Formation of poly-crystalline silicon
JP2503626B2 (en) Method of manufacturing MOS field effect transistor
EP0851469A2 (en) Semiconductor device having a tapered implanted region and method of fabrication using spin-on glass
JPH03208373A (en) Soi type thin film transistor