[go: up one dir, main page]

JPH02221847A - Optical axis adjusting method and optical axis adjusting jig of x-ray diffraction apparatus for micropart - Google Patents

Optical axis adjusting method and optical axis adjusting jig of x-ray diffraction apparatus for micropart

Info

Publication number
JPH02221847A
JPH02221847A JP4164589A JP4164589A JPH02221847A JP H02221847 A JPH02221847 A JP H02221847A JP 4164589 A JP4164589 A JP 4164589A JP 4164589 A JP4164589 A JP 4164589A JP H02221847 A JPH02221847 A JP H02221847A
Authority
JP
Japan
Prior art keywords
optical axis
collimator
jig
ray
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4164589A
Other languages
Japanese (ja)
Inventor
Noboru Osawa
大沢 登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Denki Co Ltd
Rigaku Corp
Original Assignee
Rigaku Denki Co Ltd
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Denki Co Ltd, Rigaku Corp filed Critical Rigaku Denki Co Ltd
Priority to JP4164589A priority Critical patent/JPH02221847A/en
Publication of JPH02221847A publication Critical patent/JPH02221847A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To allow safe and exact optical axis adjustment by adjusting the position of a collimator in accordance with X-ray intensity by using a jig having an edge. CONSTITUTION:A shielding cover 6 is mounted to a position sensitive type proportional counter tube 1 of a curved type and the counter tube 1 is rotated by about 3 deg. clockwise from an ordinary detection position. An X-ray is then emitted from the collimator 4 and is measured by the counter tube 1 before the jig 5 is mounted to a sample holder 2. Then, the jig 5 is mounted to the holder 2. The holder 2 is kept inclined at 20 deg. angle from a perpendicular axis. The jig 5 is so positioned that its edge extends in the forward and backward direction of the plane of the figure. A microscope 3 is fixed in a 55 deg. angle position from the perpendicular axis and the edge of the jig 5 is observed by this microscope 3. The X-ray is emitted from the collimator 4 and the X-ray intensity is measured by the counter tube 1. Further, the vertical position of the collimator 4 is so adjusted that the X-ray intensity of this time decreases to a half. The positioning of the collimator 4 in the vertical position thereof is completed in this way. The holder 2 is phi-rotated by 90 deg. to adjust the position of the collimator 4 in the forward and backward direction of the plane of the figure.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、試料の微小部をX線回折測定する微小部X
線回折装置の光軸調整方法と、この方法に使用する光軸
調整治具とに関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a microscopic part X for measuring a microscopic part of a sample by X-ray diffraction.
The present invention relates to an optical axis adjustment method for a linear diffraction device and an optical axis adjustment jig used in this method.

[従来の技術] 微小部X線回折装置では、試料の微小部にX線を正確に
照射する必要があるので、コリメータを使用している。
[Prior Art] A microscopic X-ray diffractometer uses a collimator because it is necessary to accurately irradiate X-rays onto a microscopic region of a sample.

そして、このコリメータの位置を正確に調節するために
、光軸調整用の蛍光物質を利用している。第5図は、従
来の光軸調整治具を示す。この先軸調整治具21は試料
ホルダに取り付けて使用する。この治具21の先端面の
中央には直径が0.03mmの蛍光物質22が埋め込ま
れている。X線がこの蛍光物質に当たると蛍光が出てく
るので、これによってコリメータの位置決めができる。
In order to accurately adjust the position of this collimator, a fluorescent material for optical axis adjustment is used. FIG. 5 shows a conventional optical axis adjustment jig. This tip axis adjustment jig 21 is used by being attached to a sample holder. A fluorescent material 22 with a diameter of 0.03 mm is embedded in the center of the tip surface of this jig 21. When X-rays hit this fluorescent material, fluorescence is emitted, which allows the collimator to be positioned.

この治具21を利用した光軸調整方法は以下の通りであ
る。まず、この治具21を試料ホルダに取り付ける。そ
して、顕微鏡の視野の中心にこの治具21の蛍光物質2
2が来るように、試料ホルダの位置を調節する。なお、
顕微鏡の視野の中心は、常に、試料ホルダの3軸回転中
心に一致している。次に、コリメータからX線を出射し
、X線が蛍光物質21に当たるように、光軸に垂直な面
内でコリメータの位置を2次元的に調節する。
The optical axis adjustment method using this jig 21 is as follows. First, this jig 21 is attached to a sample holder. Then, the fluorescent material 2 of this jig 21 is placed in the center of the field of view of the microscope.
Adjust the position of the sample holder so that 2 is placed. In addition,
The center of the field of view of the microscope always coincides with the three-axis rotation center of the sample holder. Next, the collimator emits X-rays, and the position of the collimator is two-dimensionally adjusted in a plane perpendicular to the optical axis so that the X-rays hit the fluorescent substance 21.

[発明が解決しようとする課題] 上述した従来の光軸調節方法には次の欠点がある。[Problem to be solved by the invention] The conventional optical axis adjustment method described above has the following drawbacks.

(a)蛍光物質からの発光を確認することによってコリ
メータの位置調節を行なっているので、作業者の目に頼
ることになり、光軸調整の精度が劣る。
(a) Since the position of the collimator is adjusted by checking the light emitted from the fluorescent substance, it relies on the operator's eyes, and the accuracy of optical axis adjustment is poor.

(b) X線を出しながら作業者は顕微鏡をのぞいてコ
リメータの調節をしなければならず、X線に近付いて危
険である。
(b) Workers must look through the microscope and adjust the collimator while emitting X-rays, which is dangerous as they come close to the X-rays.

この発明はこのような欠点を解消しようとするものであ
り、その目的は、安全かつ正確に微小部X線回折装置の
光軸調整ができる方法とそのための治具を提供すること
を目的とする。
The present invention aims to eliminate such drawbacks, and its purpose is to provide a method and a jig for adjusting the optical axis of a microscopic X-ray diffraction device safely and accurately. .

[課題を解決するための手段とその作用]上記の目的を
達成するために、この発明に係る光軸調整方法は以下の
各段階を有している。
[Means for Solving the Problems and Their Effects] In order to achieve the above object, the optical axis adjustment method according to the present invention has the following steps.

(a)回転可能な試料ホルダに、エツジを有する光軸調
整治具を取り付ける段階。
(a) A step of attaching an optical axis adjustment jig having an edge to a rotatable sample holder.

(b)前記エツジが顕微鏡の視野の中心を横切るように
、前記試料ホルダの位置を調節する段階。
(b) adjusting the position of the sample holder so that the edge crosses the center of the field of view of the microscope;

(c) X線をコリメータから出射して前記光軸調整治
具のエツジ付近を通過させ、このときのX線強度を検出
する段階。
(c) A step of emitting X-rays from the collimator and passing near the edge of the optical axis adjustment jig, and detecting the X-ray intensity at this time.

(d)前記(C)の段階で求めたX線強度が、コリメー
タからのX線が直接検出されたときのX線強度の半分に
なるように、前記コリメータを光軸に垂直な方向に位置
調節する段階。
(d) Position the collimator in a direction perpendicular to the optical axis so that the X-ray intensity obtained in step (C) above is half the X-ray intensity when the X-rays from the collimator are directly detected. Adjustment stage.

(e)前記試料ホルダを90度回転してから、前記(b
) (c) (d)の段階を繰り返して、前記(d)の
段階でのコリメータ位置調節方向と垂直な方向において
もコリメータの位置調節をする段階。
(e) Rotate the sample holder 90 degrees, and then
) (c) Repeating step (d) to adjust the position of the collimator also in a direction perpendicular to the collimator position adjustment direction in step (d).

X線は、光軸調整治具のエツジのところで部分的に遮断
されて検出器に到達す名ことになる。したがって、X線
検出強度が半分になるようにコリメータの位置を調節す
れば、このときのX線の光軸は、ちょうど治具のエツジ
上にあることになる。
The X-rays are partially blocked at the edge of the optical axis adjustment jig and reach the detector. Therefore, if the position of the collimator is adjusted so that the X-ray detection intensity is halved, the optical axis of the X-rays at this time will be exactly on the edge of the jig.

これにより、光軸に垂直な面内でコリメータの1次元方
向の位置調節ができる。試料ホルダを90度回転して同
様の調節をすれば、コリメータの2次元方向の位置調節
が完了する。
This makes it possible to adjust the position of the collimator in one dimension within a plane perpendicular to the optical axis. By rotating the sample holder 90 degrees and making similar adjustments, the two-dimensional position adjustment of the collimator is completed.

なお、微小部X線回折装置のX線検出器として湾曲形の
位置敏感形比例計数管を利用している場合は、光軸調整
の際に、この計数管の検出窓に、X線通過用の孔を形成
した散乱X線遮断カバーを被せておくことが好ましい。
In addition, if a curved position-sensitive proportional counter tube is used as the X-ray detector of a microscopic X-ray diffraction device, when adjusting the optical axis, place a It is preferable to cover the cover with a scattered X-ray blocking cover having holes formed therein.

また、この発明に係る光軸調整治具は、微小部X線回折
装置の回転可能な試料ホルダに取り付けて使用するもの
であって、この治具は、エツジを有していて弾性変形可
能な変位部と、この変位部に接触して変位部のエツジの
位置を微動調節する微動調節ねじとを有している。
Further, the optical axis adjustment jig according to the present invention is used by being attached to a rotatable sample holder of a microscopic X-ray diffraction apparatus, and this jig has an edge and is elastically deformable. It has a displacement part and a fine adjustment screw that contacts the displacement part and finely adjusts the position of the edge of the displacement part.

この微動調節ねじをねじ込むと、変位部が変形して、そ
のエツジが微動し、顕微鏡の視野の中心にエツジを正し
く位置決め°できる。
When this fine adjustment screw is screwed in, the displacement part deforms and the edge moves slightly, allowing the edge to be correctly positioned in the center of the field of view of the microscope.

[実施例] 次に、図面を参照してこの発明の詳細な説明する。[Example] Next, the present invention will be described in detail with reference to the drawings.

第1図は、この発明の方法を実施するための微小部X線
回折装置の一例を示す要部側面図である。
FIG. 1 is a side view of essential parts showing an example of a microscopic X-ray diffraction apparatus for carrying out the method of the present invention.

この微小部X線回折装置は、X線検出器として、湾曲形
の位置敏感形比例計数管1(以下、PSPCと呼ぶ。)
を利用している。この回折装置は、そのほかに、3軸回
転が可能な試料ホルダ2と、試料の微小部を観察する顕
微鏡3と、X線を試料の微小部に正確に照射するための
コリメータ4と、X線源(図示せず)とを有する。光軸
調整の際は、試料ホルダ2に光軸調整治具5を取り付け
、湾曲形PSPCIの検出窓には散乱X線遮断カバー6
を取り付ける。
This microscopic X-ray diffraction device uses a curved position-sensitive proportional counter 1 (hereinafter referred to as PSPC) as an X-ray detector.
is used. This diffraction device also includes a sample holder 2 that can rotate on three axes, a microscope 3 for observing minute parts of the sample, a collimator 4 for accurately irradiating the minute parts of the sample with X-rays, and an X-ray a source (not shown). When adjusting the optical axis, an optical axis adjustment jig 5 is attached to the sample holder 2, and a scattered X-ray blocking cover 6 is attached to the detection window of the curved PSPCI.
Attach.

第2図に光軸調整治具5の詳細を示す。この治具5は円
筒を半分にしたような形状をしており、この半円筒部分
には、縦方向に溝54が切ってあって、薄い変位部51
と、厚い半月部55とに分割されている。変位部51は
、その側面が治具51の中心線上に位置する上部511
と、上部511よりも少しだけ引っ込んでいる下部51
2とからなる。上部511にはAu製の先端部材52が
一体に固定されている。先端部材52のエツジ53は、
治具5の中心線上にある。半月部55にはねじ孔があっ
て、このねじ孔に微動調節ねじ56をねじ込むようにな
っている(第1図をも参照)。微動調節ねじ56の先端
は変位部51に接触し、微動調節ねじ56をねじ込むと
変位部51は第2図の手前に変位する。微動調節ねじ5
6を引っ込めると、変位部51は自身の弾性によって元
にもどる。したがって、エツジ53は矢印58の方向に
位置調節できる。この治具5は、シャフト57によって
試料ホルダ2に取り付けられる。
FIG. 2 shows details of the optical axis adjustment jig 5. This jig 5 has the shape of a cylinder cut in half, and this half cylinder part has a groove 54 cut in the vertical direction, and a thin displacement part 51.
and a thick half-moon portion 55. The displacement part 51 has an upper part 511 whose side surface is located on the center line of the jig 51.
And the lower part 51 is slightly recessed than the upper part 511.
It consists of 2. A tip member 52 made of Au is integrally fixed to the upper part 511. The edge 53 of the tip member 52 is
It is located on the center line of the jig 5. The half-moon portion 55 has a screw hole into which a fine adjustment screw 56 is screwed (see also FIG. 1). The tip of the fine adjustment screw 56 contacts the displacement portion 51, and when the fine adjustment screw 56 is screwed in, the displacement portion 51 is displaced toward the front in FIG. Fine adjustment screw 5
When 6 is retracted, the displaced portion 51 returns to its original state due to its own elasticity. Edge 53 is therefore adjustable in position in the direction of arrow 58. This jig 5 is attached to the sample holder 2 by a shaft 57.

第3図は、散乱X線遮断カバー6の一部の斜視図である
。このカバー6には直径5〜10mm程度の孔61が形
成されていて、X線はこの孔61を通過できる。光軸調
整の際に孔61以外に到達するX線は散乱X線であり、
これはすべてカバー6で遮断されて、湾曲形PSPCI
には達しない。
FIG. 3 is a perspective view of a portion of the scattered X-ray blocking cover 6. FIG. A hole 61 with a diameter of about 5 to 10 mm is formed in this cover 6, and X-rays can pass through this hole 61. X-rays that reach areas other than the hole 61 during optical axis adjustment are scattered X-rays,
This is all blocked by cover 6 and the curved PSPCI
does not reach.

次に、この微小部X線回折装置の光軸調整方法を説明す
る。第1図において、まず、湾曲形PSPCIに散乱X
線遮断カバー6を取り付ける。そして、湾曲形PSPC
Iを通常の検出位置から3度程度、図面の時計方向に回
転する。その理由は次の通りである。湾曲形PSPCI
は約180度の検出領域を持っているが、通常の配置で
は、コリメータ4に向かい合う位置では検出可能領域の
一番端に当たる。したがって、光軸調整時のX線検出を
確実にするために、このように3度程度、内側の検出領
域を使う。
Next, a method for adjusting the optical axis of this micro X-ray diffraction device will be explained. In FIG. 1, first, the scattered X
Attach the line interruption cover 6. And curved PSPC
Rotate I clockwise in the drawing by about 3 degrees from the normal detection position. The reason is as follows. Curved PSPCI
has a detection area of about 180 degrees, but in a normal arrangement, the position facing the collimator 4 is at the extreme edge of the detectable area. Therefore, in order to ensure X-ray detection during optical axis adjustment, a detection area about 3 degrees inside is used in this way.

次に、試料ホルダ2に治具5を付ける前に、コリメータ
4からX線を出射してこれを湾曲形PSPCIで測定す
る。このときのX線強度をIとする。
Next, before attaching the jig 5 to the sample holder 2, X-rays are emitted from the collimator 4 and measured by the curved PSPCI. Let the X-ray intensity at this time be I.

次に、試料ホルダ2に治具5を取り付ける。試料ホルダ
2は、鉛直軸から20度の角度で傾けておく。そして、
治具5のエツジは、紙面の前後方向に延びるようにして
おく。顕微鏡3は、鉛直軸から55度の角度位置に固定
されているが、この顕微鏡3で治具5のエツジを観察す
る。第4図は、顕微鏡3の視野31を示したものである
。視野31には十字線32があって、その交点Aが視野
31の中心である。治具のエツジ53がこの交点Aを横
切るように、試料ホルダ2を位置調節する。
Next, the jig 5 is attached to the sample holder 2. The sample holder 2 is tilted at an angle of 20 degrees from the vertical axis. and,
The edges of the jig 5 are made to extend in the front-rear direction of the paper. The microscope 3 is fixed at an angular position of 55 degrees from the vertical axis, and the edge of the jig 5 is observed using this microscope 3. FIG. 4 shows the field of view 31 of the microscope 3. There is a crosshair 32 in the visual field 31, and the intersection A of the crosshairs is the center of the visual field 31. The position of the sample holder 2 is adjusted so that the edge 53 of the jig crosses this intersection A.

なお、顕微鏡の視野31の交点Aおよびその焦点深度は
、試料ホルダの3軸回転の中心に位置決めされている。
Note that the intersection point A of the field of view 31 of the microscope and its depth of focus are positioned at the center of the three-axis rotation of the sample holder.

次に、コリメータ4からX線を出射して、湾曲形PSP
CIでX線強度を測定する。そして、このときのX線強
度が1/2となるように、コリメータ4の上下位置を調
節する。すなわち、コリメータ4から出射されたX線の
上半分は治具5のエツジで遮断されて、下半分だけが湾
曲形pspc1に到達することになる。これにより、コ
リメータ4の上下方向の位置決めが完了する。
Next, the collimator 4 emits X-rays to form a curved PSP.
Measure X-ray intensity with CI. Then, the vertical position of the collimator 4 is adjusted so that the X-ray intensity at this time becomes 1/2. That is, the upper half of the X-rays emitted from the collimator 4 is blocked by the edge of the jig 5, and only the lower half reaches the curved shape pspc1. This completes the vertical positioning of the collimator 4.

次に、試料ホルダ2を90度だけφ回転して、治具5の
エツジが第1図の左右方向に延びるようにする。そして
、上述と同様の作業を行ない、コリメータ4の、紙面の
前後方向の位置を調節する。
Next, the sample holder 2 is rotated φ by 90 degrees so that the edge of the jig 5 extends in the left-right direction in FIG. Then, the same operation as described above is performed to adjust the position of the collimator 4 in the front-rear direction of the paper.

以上の作業により、光軸に垂直な面内でコリメタ4の2
次元の位置調節が完了する。
By the above operations, two parts of the collimator 4 are aligned in the plane perpendicular to the optical axis.
Dimension position adjustment is complete.

上述の実施例では、微動調節ねじを有する治具を使用し
ているが、この発明の光軸調整方法を実施するには、必
ずしも微動調節ねじはなくてもよい。すなわち、第2図
に示す溝54や微動調節ねじ56を備えていない治具も
使用できる。この場合は、治具としては単にエツジ53
を備えていれば足りる。このような治具を使用する場合
は、第1図の試料ホルダ2に付属しているXY調整機構
によって、治具を試料ホルダの軸線に垂直な面内で2次
元方向に移動調節でき、これによって治具のエツジを顕
微鏡の視野の中心に合わせることができる。
In the above-described embodiment, a jig having a fine adjustment screw is used, but the fine adjustment screw does not necessarily need to be used to carry out the optical axis adjustment method of the present invention. That is, a jig without the groove 54 or fine adjustment screw 56 shown in FIG. 2 can also be used. In this case, the jig is simply the edge 53.
It is sufficient to have the following. When using such a jig, the XY adjustment mechanism attached to the sample holder 2 shown in Figure 1 allows the jig to be adjusted in two-dimensional directions within a plane perpendicular to the axis of the sample holder. This allows the edge of the jig to be centered in the field of view of the microscope.

[発明の効果] 以上説明したようにこの発明に係る光軸調整方法は、エ
ツジを有する治具を用いてX線強度に基づいてコリメー
タの位置調節を行なっているので、次の効果がある。
[Effects of the Invention] As explained above, the optical axis adjustment method according to the present invention uses a jig with edges to adjust the position of the collimator based on the X-ray intensity, and therefore has the following effects.

(a) X線強度に基づいてコリメータの位置調節を行
なっているので、従来の作業者による蛍光の観察と比較
して、光軸調整の精度が向上する。
(a) Since the position of the collimator is adjusted based on the X-ray intensity, the accuracy of optical axis adjustment is improved compared to the conventional observation of fluorescence by an operator.

(b) X線が出ているときには作業者は顕微鏡をのぞ
かなくてすみ、安全である。
(b) Workers do not have to look into the microscope when X-rays are being emitted, making it safer.

(c) X線強度に基づいてコリメータの位置調節がで
きるので、光軸調整の自動化がしやすい。
(c) The position of the collimator can be adjusted based on the X-ray intensity, making it easy to automate optical axis adjustment.

また、この発明に係る光軸調整治具は、微動調節ねじに
よって変位部を弾性変形させるだけでエツジの位置調節
ができ、構造が極めて簡単である。
Further, the optical axis adjustment jig according to the present invention has an extremely simple structure, as the position of the edge can be adjusted simply by elastically deforming the displacement portion using the fine adjustment screw.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法を実施するための微小部X線回
折装置の一例を示す要部側面図、第2図はこの発明に係
る光軸調整治具の一実施例の斜視図、 第3図は散乱X線遮断カバーの一部の斜視図、第4図は
顕微鏡の視野を示す説明図、 第5図は従来の光軸調整治具の斜視図である。 1・・・湾曲形の位置敏感形比例計数管2・・・試料ホ
ルダ 3・・・顕微鏡 4・・・コリメータ 5・・・光軸調整治具 51・・・変位部 53・・・エツジ 56・・・微動調節ねじ 6・・・散乱X線カバー 61・・・孔
FIG. 1 is a side view of essential parts showing an example of a microscopic X-ray diffraction apparatus for carrying out the method of the present invention, and FIG. 2 is a perspective view of an embodiment of the optical axis adjustment jig according to the present invention. FIG. 3 is a perspective view of a portion of the scattered X-ray blocking cover, FIG. 4 is an explanatory view showing the field of view of the microscope, and FIG. 5 is a perspective view of a conventional optical axis adjustment jig. 1... Curved position-sensitive proportional counter tube 2... Sample holder 3... Microscope 4... Collimator 5... Optical axis adjustment jig 51... Displacement part 53... Edge 56 ... Fine adjustment screw 6 ... Scattered X-ray cover 61 ... Hole

Claims (3)

【特許請求の範囲】[Claims] (1)次の各段階を有する微小部X線回折装置の光軸調
整方法。 (a)回転可能な試料ホルダに、エッジを有する光軸調
整治具を取り付ける段階。 (b)前記エッジが顕微鏡の視野の中心を横切るように
、前記試料ホルダの位置を調節する段階。 (c)X線をコリメータから出射して前記光軸調整治具
のエッジ付近を通過させ、このときのX線強度を検出す
る段階。 (d)前記(c)の段階で求めたX線強度が、コリメー
タからのX線が直接検出されたときのX線強度の半分に
なるように、前記コリメータを光軸に垂直な方向に位置
調節する段階。 (e)前記試料ホルダを90度回転してから、前記(b
)(c)(d)の段階を繰り返して、前記(d)の段階
でのコリメータ位置調節方向と垂直な方向においてもコ
リメータの位置調節をする段階。
(1) A method for adjusting the optical axis of a microscopic X-ray diffraction device having the following steps. (a) A step of attaching an optical axis adjustment jig having an edge to a rotatable sample holder. (b) adjusting the position of the sample holder so that the edge crosses the center of the field of view of the microscope; (c) A step of emitting X-rays from the collimator and passing near the edge of the optical axis adjustment jig, and detecting the X-ray intensity at this time. (d) Position the collimator in a direction perpendicular to the optical axis so that the X-ray intensity obtained in step (c) above is half the X-ray intensity when the X-rays from the collimator are directly detected. Adjustment stage. (e) Rotate the sample holder 90 degrees, and then
)(c) Repeating step (d) to adjust the position of the collimator also in a direction perpendicular to the collimator position adjustment direction in step (d).
(2)前記微小部X線回折装置のX線検出器は湾曲形の
位置敏感形比例計数管であり、光軸調整の際は、この計
数管の検出窓に、X線通過用の孔を形成した散乱X線遮
断カバーを被せておくことを特徴とする請求項1記載の
方法。
(2) The X-ray detector of the microscopic X-ray diffraction device is a curved position-sensitive proportional counter tube, and when adjusting the optical axis, a hole for X-ray passage is made in the detection window of this counter tube. 2. The method of claim 1, further comprising a formed scattering X-ray blocking cover.
(3)微小部X線回折装置の回転可能な試料ホルダに取
り付け可能な光軸調整治具において、 エッジを有していて弾性変形可能な変位部と、この変位
部に接触して変位部のエッジの位置を微動調節する微動
調節ねじ とを有することを特徴とする光軸調整治具。
(3) In an optical axis adjustment jig that can be attached to a rotatable sample holder of a microscopic X-ray diffraction device, there is a displaceable part that has an edge and is elastically deformable, and a displaceable part that comes into contact with the displaceable part. An optical axis adjustment jig characterized by having a fine adjustment screw for finely adjusting the position of an edge.
JP4164589A 1989-02-23 1989-02-23 Optical axis adjusting method and optical axis adjusting jig of x-ray diffraction apparatus for micropart Pending JPH02221847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4164589A JPH02221847A (en) 1989-02-23 1989-02-23 Optical axis adjusting method and optical axis adjusting jig of x-ray diffraction apparatus for micropart

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4164589A JPH02221847A (en) 1989-02-23 1989-02-23 Optical axis adjusting method and optical axis adjusting jig of x-ray diffraction apparatus for micropart

Publications (1)

Publication Number Publication Date
JPH02221847A true JPH02221847A (en) 1990-09-04

Family

ID=12614075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4164589A Pending JPH02221847A (en) 1989-02-23 1989-02-23 Optical axis adjusting method and optical axis adjusting jig of x-ray diffraction apparatus for micropart

Country Status (1)

Country Link
JP (1) JPH02221847A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018087739A (en) * 2016-11-29 2018-06-07 新日鐵住金株式会社 Sample holder and method of setting x-ray irradiation position

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018087739A (en) * 2016-11-29 2018-06-07 新日鐵住金株式会社 Sample holder and method of setting x-ray irradiation position

Similar Documents

Publication Publication Date Title
US5359640A (en) X-ray micro diffractometer sample positioner
JPH02236106A (en) Thickness measuring apparatus for thin layer
TWI650551B (en) Closed loop control of X-ray edge
CN108318509A (en) Two-way focusing method and focusing mechanism for ray detection
EP0239260A2 (en) Grading orientation errors in crystal specimens
JPH02221847A (en) Optical axis adjusting method and optical axis adjusting jig of x-ray diffraction apparatus for micropart
JPH1144662A (en) Minute part x-ray analysis device
JP2004198416A (en) Instrument for measuring thickness of thin layer
JP2007255932A (en) Sample position adjusting method for X-ray apparatus and X-ray apparatus
JP3629542B2 (en) X-ray fluorescence analyzer
JP3462910B2 (en) X-ray incident angle setting method and mechanism for grazing incidence X-ray apparatus
JPH0968507A (en) X-ray diffraction device
JP3635606B2 (en) Collimator setting device
JP3412852B2 (en) Single crystal ingot marking device
JPS63151843A (en) Sample holder for x-ray analysis
JP2565771B2 (en) Method and apparatus for detecting inclination of work surface
JP3462909B2 (en) X-ray extraction angle setting method and mechanism for vertical X-ray diffractometer
JPS6352329B2 (en)
JP2653084B2 (en) Surface analyzer
JPH04307400A (en) Collimator of x-rays device
JPS6349684Y2 (en)
JP2003149179A (en) Orientation measuring device for monocrystal
JPH05332956A (en) X-ray analizer
JP2004361100A (en) X-ray crystal structure analysis device
JPH0225738A (en) X-ray diffraction apparatus