[go: up one dir, main page]

JPH0221851A - Ultrasonic device - Google Patents

Ultrasonic device

Info

Publication number
JPH0221851A
JPH0221851A JP19935688A JP19935688A JPH0221851A JP H0221851 A JPH0221851 A JP H0221851A JP 19935688 A JP19935688 A JP 19935688A JP 19935688 A JP19935688 A JP 19935688A JP H0221851 A JPH0221851 A JP H0221851A
Authority
JP
Japan
Prior art keywords
doppler
tomographic image
dimensional
image
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19935688A
Other languages
Japanese (ja)
Other versions
JPH0221810B2 (en
Inventor
Koji Tanabe
田辺 浩二
Tokiyoshi Ichikawa
祝善 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP19935688A priority Critical patent/JPH0221851A/en
Publication of JPH0221851A publication Critical patent/JPH0221851A/en
Publication of JPH0221810B2 publication Critical patent/JPH0221810B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To grasp a portion where abnormal blood flow occurs by simultaneously reading out stored tomographic signal and Doppler image signal and displaying real time two-dimensional tomographic image and real time two-dimensional Doppler image in such a manner to lie one on top of another. CONSTITUTION:Ultrasonic beams are transmitted and received twice in the same direction to detect the blood flow speed in that direction, and sequentially the transmitting and receiving directions of ultrasonic beams are switched under the control of a control circuit 7 and scanned to obtain two-dimensional tomographic image and two-dimensional Doppler image in a short time. When an image data input switching device 13 is connected to A contact point side, the tomographic image data is stored in a memory 14 and when it is connected to B contact point side, the Doppler image data is stored in the memory 14. When the control for switching the input switching device 13 and the control for writing and reading data in and from the memory 14 are made by a control circuit 16, two-dimensional tomographic image data and Doppler image can be taken in substantially in real time. Further, in order to simultaneously display the two-dimensional tomographic image and Doppler image in such a manner as to lie one on top of another, two sets of memories for tomographic image and Doppler image are provided in the memory 14, and the contents are simultaneously read out to be displayed on a display device.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超音波装置に関するものであり、特にドプラ
像(血流速分布像)をリアルタイム(極短時間)で表示
する機構を備えた超音波装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an ultrasonic device, and particularly an ultrasonic device equipped with a mechanism for displaying a Doppler image (blood flow velocity distribution image) in real time (very short time). This invention relates to an ultrasonic device.

〔従来技術〕[Prior art]

従来、超音波パルスドプラ技術を用いて、例えば血流の
速度を測ることが行われている。
Conventionally, ultrasonic pulsed Doppler technology has been used to measure, for example, the velocity of blood flow.

すなわち、単一の振動子を有する探触子によって超音波
を皮膚上から被検体内の血管に向けて発射すると、被検
体内の臓器組織からの反射波とともに血管内の血球から
も反射波が得られる。この血球からの反射波は、[6L
管内の血液の流れによってその周波数が発射超音波に対
して変化しており。
In other words, when ultrasonic waves are emitted from the skin toward the blood vessels inside the subject using a probe with a single transducer, waves are reflected from the blood cells in the blood vessels as well as reflected waves from the organ tissues inside the subject. can get. The reflected wave from this blood cell is [6L
The frequency of the transmitted ultrasound changes depending on the flow of blood within the tube.

発射超音波と反射波との周波数の差、すなわち超音波ド
プラ偏位周波数f d  (f d =f、 −fl 
=2Vcosθ・f+/c、ここで、fo=発射超音波
の周波数、fに反射波の周波数、C:その媒体内の音速
The difference in frequency between the emitted ultrasonic wave and the reflected wave, that is, the ultrasonic Doppler deviation frequency f d (f d = f, −fl
=2Vcosθ·f+/c, where fo=frequency of the emitted ultrasonic wave, f the frequency of the reflected wave, and C: the speed of sound in the medium.

V:反射体の運動の速さ、θ:超音波パルスの方向と反
射体の運動方向との間の角度である)から血流速度を測
るというものである。
V: the speed of movement of the reflector; θ: the angle between the direction of the ultrasonic pulse and the direction of movement of the reflector) to measure the blood flow velocity.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述の単一振動子を有する探触子を用いて超音波ドプラ
偏位周波数fdを求めるには、超音波ドプラ周波数の1
周期以上の時間超音波ビーム、即ち探触子の方向を固定
しておかねばならない。そして血流速分布等を断面上に
二次元的に表示するには、ドプラサンプルの位置検出機
構が必要となる。また、探触子のスキャンに時間がかか
るため生体に応用するには、ECG等のトリガをかけな
ければならない等の問題があった。したがって、血流速
分布像を被検体の断面に対応した二次元像としてリアル
タイムで表示するということは不可能であった。
To determine the ultrasound Doppler deviation frequency fd using the above-mentioned probe with a single transducer, 1 of the ultrasound Doppler frequency
The direction of the ultrasonic beam, that is, the probe, must be fixed for a period longer than the period. In order to two-dimensionally display blood flow velocity distribution and the like on a cross section, a Doppler sample position detection mechanism is required. Furthermore, since it takes time to scan the probe, there are problems such as the need to trigger an ECG or the like in order to apply it to a living body. Therefore, it has been impossible to display a blood flow velocity distribution image in real time as a two-dimensional image corresponding to a cross section of the subject.

本発明は、前記I?FINi点を解消するためになさ九
たものである。
The present invention provides the above-mentioned I? This was done in order to eliminate the FINi point.

本発明の目的は、リアルタイム二次元断層像とリアルタ
イム二次元ドプラ像を重ねて表示することができる超音
波装置を提供することにある。
An object of the present invention is to provide an ultrasound apparatus that can display a real-time two-dimensional tomographic image and a real-time two-dimensional Doppler image in a superimposed manner.

本発明の他の目的は、能率的なスキャンが可能であり、
かつリアルタイムで被検体の断面に対応した血流速度の
二次元分布像(二次元ドプラ像)の表示が可能な超音波
装置を提供することにある。
Another object of the present invention is to enable efficient scanning;
Another object of the present invention is to provide an ultrasonic device capable of displaying a two-dimensional distribution image (two-dimensional Doppler image) of blood flow velocity corresponding to a cross section of a subject in real time.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は以下に記すような技術的手段を備えた超音波
装置によって達成される。
The above object is achieved by an ultrasound device equipped with the technical means described below.

即ち、本発明の目的は、超音波を送受信する単一の高速
電子スキャン形探触子と、該探触子により被検体内の心
臓又は血管等の血流を有する所定部位へ1スキャンに対
し一方向当り腹数回ずつ超音波パルスビームを送受波し
、その送受信方向をずらしながら走査する超音波走査手
段と、該超音波走査手段によって受信した一方向当り1
つずつの受信信号から断層像信号を得るとともに、前記
一方向当り複数の受信信号rJ1で送受信の1周期分の
時間を遅延させる遅延回路を用いてドプラ偏位周波数に
対応した位相変化量を検出し被検体内の各深さにおける
ドプラ像信号を得る手段と、各送受信方向からの前記断
層像信号とドプラ像信号とを記憶する記憶手段と、該記
憶手段に記憶された断層像信号とドプラ像信号とを同時
に読み出しリアルタイム二次元断層像とこの断層像に対
応したリアルタイム二次元ドプラ像とを重ねて表示させ
る手段とを具備したことを主な特徴とする超音波装置に
よって達成される。
That is, an object of the present invention is to provide a single high-speed electronic scanning probe that transmits and receives ultrasonic waves, and a single high-speed electronic scanning probe that transmits and receives ultrasonic waves, and a single high-speed electronic scanning probe that transmits and receives ultrasound waves to a predetermined region with blood flow, such as the heart or blood vessels, in a subject per scan. an ultrasonic scanning means that transmits and receives an ultrasonic pulse beam several times per direction and scans while shifting the transmission and reception direction;
A tomographic image signal is obtained from each received signal, and the amount of phase change corresponding to the Doppler deviation frequency is detected using a delay circuit that delays one period of transmission and reception using the plurality of received signals rJ1 per direction. means for obtaining Doppler image signals at each depth within the subject; storage means for storing the tomographic image signals and Doppler image signals from each transmission/reception direction; This is achieved by an ultrasound apparatus whose main feature is that it is equipped with means for simultaneously reading out image signals and displaying a real-time two-dimensional tomographic image and a real-time two-dimensional Doppler image corresponding to this tomographic image in a superimposed manner.

〔作用〕[Effect]

前記目的達成のための手段によれば、高速電子スキャン
形探触子より超音波パルスビームを1方向に対し複数回
送波し各送波毎に反射信号を受信し、その反射信号の1
つにより断層像データを。
According to the means for achieving the above object, an ultrasonic pulse beam is transmitted multiple times in one direction from a high-speed electronic scanning probe, a reflected signal is received for each transmitted wave, and one of the reflected signals is
tomographic data.

そして各反射信号間で被検体内の血流からのドプラ偏位
周波数に対応する位相変化量を検出しつつ、超音波の送
受波方向を順次ずらしながらスキャンすることにより、
各送受波方向の断層像データとドプラ信号データとをほ
ぼリアルタイムで得ることができる。そして、これらの
データを記憶手段に記憶して、同時に読み出すことで被
検体の断面に対応した二次元断層像と二次元ドプラ像(
二次元血流速分布像)をほぼリアルタイムで重ねて表示
することができる。そして、二次元ドプラ像及び二次元
断層像を重ね合せて表示することにより、異常血流の発
生部を容易にかつ正確に把握することができるので1診
断上極めて有効である。
Then, by scanning while sequentially shifting the ultrasound transmission/reception direction while detecting the amount of phase change corresponding to the Doppler deviation frequency from the blood flow within the subject between each reflected signal,
Tomographic image data and Doppler signal data in each wave transmission/reception direction can be obtained almost in real time. Then, by storing these data in a storage means and reading them out simultaneously, a two-dimensional tomographic image and a two-dimensional Doppler image (
Two-dimensional blood flow velocity distribution images) can be superimposed and displayed in almost real time. By superimposing and displaying the two-dimensional Doppler image and the two-dimensional tomographic image, it is possible to easily and accurately grasp the location where abnormal blood flow occurs, which is extremely effective in terms of diagnosis.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の好ましい実施例の超音波装置を図面を用
いて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An ultrasonic device according to a preferred embodiment of the present invention will be described in detail below with reference to the drawings.

第1図は5本発明の一実施例の超音波装置の概略構成を
説明するためのブロック構成図である。
FIG. 1 is a block configuration diagram for explaining the schematic configuration of an ultrasonic device according to an embodiment of the present invention.

第1図において、1は高速電子スキャンが可能な探触子
で好ましくは電子セクタ形の探触子、2は電子スイッチ
回路であり、高速に振動子の送受信の切り換えを行って
高速スキャンを行うためのものである。3は送受信回路
、4は遅延回路であり、受信された信号を整相するため
のものである。
In Fig. 1, 1 is a probe capable of high-speed electronic scanning, preferably an electronic sector type probe, and 2 is an electronic switch circuit, which performs high-speed scanning by switching the transmission and reception of the transducer at high speed. It is for. 3 is a transmitting/receiving circuit, and 4 is a delay circuit for phasing the received signal.

5は位相合成アンプ、6は検波回路、7は前記電子スイ
ッチ回路2.遅延回路4及びCRT表示装置15の掃引
信号の制御御を行う制御回路、8は遅延回路であり、ド
プラ像(血流速分布像)を検出するために位相合成アン
プ5の出力信号に対し超音波の打ち出し一周期分の時間
の遅延をかけるためのものである。9は90度移相回路
であり、前記位相合成アンプ5の出力を90度位相をず
らすためのものである。
5 is a phase synthesis amplifier, 6 is a detection circuit, and 7 is the electronic switch circuit 2. A control circuit 8 is a delay circuit that controls the sweep signals of the delay circuit 4 and the CRT display device 15. This is to apply a time delay of one cycle of the sound wave launch. Reference numeral 9 denotes a 90 degree phase shift circuit for shifting the phase of the output of the phase synthesis amplifier 5 by 90 degrees.

10A、IOBはリミットアンプ、11は位相検波回路
、12は低帯域通過フィルタ、13は断層像データとド
プラ像データとをメモリ14へ入力するための像データ
入力切換器であり、A接点側は断層像データ、B接点側
がドプラ像データをそれぞれメモリ14へ入力する。メ
モリ14は。
10A and IOB are limit amplifiers, 11 is a phase detection circuit, 12 is a low band pass filter, 13 is an image data input switch for inputting tomographic image data and Doppler image data to the memory 14, and the A contact side is The tomographic image data and the Doppler image data from the B contact side are input into the memory 14, respectively. The memory 14 is.

前記低帯域通過フィルタ12の出力信号又は検波回路6
の出力信号を記憶するためのものである。
Output signal of the low band pass filter 12 or detection circuit 6
It is used to store the output signal of.

15はCRT表示装置であり、このCRT表示装置15
の水平(X)及び垂直(Y)の掃引信号は超音波パルス
のビーム方向と同じ方向になるように前記制御回路7か
ら出力される。16は前記像データ入力切換器13の切
換制御及びメモリ14の書き込み、読み出し制御を行う
制御回路である。
15 is a CRT display device, and this CRT display device 15
The horizontal (X) and vertical (Y) sweep signals are outputted from the control circuit 7 in the same direction as the beam direction of the ultrasonic pulse. A control circuit 16 controls switching of the image data input switch 13 and controls writing and reading of the memory 14.

第2図は5本実施例の受信信号の位相変化量検出動作を
説明するための波形図である。
FIG. 2 is a waveform diagram for explaining the phase change amount detection operation of the received signal in the fifth embodiment.

第2図において、aは位相合成アンプ5の出力信号であ
り、n回目の超音波パルスの送受信時の固定物体の受信
信号(エコー信号)イと移動物体の受信信号(エコー信
号)口が位相合成さ九たものである。
In Fig. 2, a is the output signal of the phase synthesis amplifier 5, and the received signal (echo signal) A of the fixed object and the received signal (echo signal) of the moving object at the time of transmitting and receiving the n-th ultrasonic pulse are in phase. It is a composite of nine things.

bは遅延回路8の出力信号であり、n−1回目の超音波
パルスの送受信時の固定物体の受信信号(エコー信号)
イと移動物体の受信信号(エコー信号)口が位相合成さ
れたものである。
b is the output signal of the delay circuit 8, which is the received signal (echo signal) of the fixed object at the time of transmitting and receiving the n-1th ultrasonic pulse.
A and the received signal (echo signal) of the moving object are phase-combined.

Cは90度移相回路9の出力信号であり、前記信号口よ
り90度位相をずらしたものである。
C is an output signal of the 90 degree phase shift circuit 9, which is shifted in phase by 90 degrees from the signal port.

d、eはそれぞれリミットアンプIOA、10Bの出力
信号、fは位相検波回路11の出力信号、gは低帯域通
過フィルタ12の出力信号である。
d and e are the output signals of the limit amplifiers IOA and 10B, f is the output signal of the phase detection circuit 11, and g is the output signal of the low band pass filter 12, respectively.

次に、本実施例の超音波装置の動作を説明する。Next, the operation of the ultrasonic device of this embodiment will be explained.

第1図において、制御回路7からフォーカスデータ及び
超音波パルスビームの偏向データと共に打ち出しクロッ
クが出力され5その内容に従って探触子1から打ち出さ
れる超音波の打ち出し信号に、遅延回路4で所定種類の
遅延がかけられる。
In FIG. 1, a control circuit 7 outputs a launch clock along with focus data and ultrasonic pulse beam deflection data, and a delay circuit 4 outputs a predetermined type of launch clock to the ultrasound launch signal launched from the probe 1 according to the contents. A delay is applied.

例えば、10チヤンネルであれば10通りの遅延。For example, if there are 10 channels, there will be 10 different delays.

32チヤンネルであれば32通りの遅延がかけられる。If there are 32 channels, 32 types of delays can be applied.

これらの遅延がかけられた打ち出し信号によって送受信
回路3から高電圧パルスが出力され、探触子lの所定の
素子に印加され、所定の方向へ超音波パルスビームがn
回ずつ送波される。
A high voltage pulse is output from the transmitter/receiver circuit 3 by these delayed launch signals, and is applied to a predetermined element of the probe l, so that an ultrasonic pulse beam is directed in a predetermined direction.
The waves are transmitted once at a time.

探触子lから打ち出された超音波ビームの各反射信号は
、送受信回路3により増幅され、遅延回路4でその位相
がそろえられ、位相合成アンプ5で合成され、検波回路
6で検波され断層像信号として出力され、像データ入力
切換器13のA接点を介してメモリ14へ入力される。
Each reflected signal of the ultrasonic beam emitted from the probe l is amplified by the transmitter/receiver circuit 3, aligned in phase by the delay circuit 4, synthesized by the phase synthesis amplifier 5, and detected by the detection circuit 6 to produce a tomographic image. It is output as a signal and input to the memory 14 via the A contact of the image data input switch 13.

一方位和合成アンプ5の出力信号aは、第2図に示され
るように、血流速分布を検出するために遅延回路8で超
音波の打ち出し一周期分の時間の遅延がかけられ、リミ
ットアンプIOAに入力される。そして前記位相合成ア
ンプ5の出力信号aは、90度移相回路9で90度位相
がずらされ、リミットアンプ1OBに入力される。この
とき、遅延回路8の出力信号すはn−1回目の受信信号
であり、90度移相回路9の出力信号Cはn回目の受信
信号であるため、前記各リミットアンプIOA、IOB
の出力信号d、eは、位相検波回路11において、位相
差に応じたパルス幅となり、低帯域通過フィルタ12の
出力電圧信号gの大きさが位相差、即ち反射体(血流)
の移動速さを示すことが可能である。したがって、前記
受信信号の位相変化の大きさをドプラ周波数の大きさと
して検出し、その位相変化量を検出するために、本実施
例では基準となる1回目の超音波パルスの送信時の反射
信号と変化量を持った2回目の超音波パルスの送信時の
反射信号が得られるように、超音波ビームの送信・受信
を同一方向で複数回、具体的には2回行う。
As shown in FIG. 2, the output signal a of the one-way sum synthesis amplifier 5 is delayed by one cycle of ultrasonic wave launch in a delay circuit 8 in order to detect the blood flow velocity distribution, and then It is input to the amplifier IOA. Then, the output signal a of the phase synthesis amplifier 5 is shifted in phase by 90 degrees by a 90 degree phase shift circuit 9, and is input to the limit amplifier 1OB. At this time, the output signal C of the delay circuit 8 is the n-1th received signal, and the output signal C of the 90 degree phase shift circuit 9 is the nth received signal, so each of the limit amplifiers IOA, IOB
In the phase detection circuit 11, the output signals d and e have a pulse width corresponding to the phase difference, and the magnitude of the output voltage signal g of the low bandpass filter 12 is determined by the phase difference, that is, the reflector (blood flow).
It is possible to show the moving speed of Therefore, in order to detect the magnitude of the phase change of the received signal as the magnitude of the Doppler frequency, and to detect the amount of phase change, in this embodiment, the reflected signal at the time of transmission of the first ultrasonic pulse, which is a reference, is used. The ultrasonic beam is transmitted and received in the same direction multiple times, specifically twice, so that a reflected signal at the time of the second ultrasonic pulse transmission having a variation amount is obtained.

このようにして、°同一方向で超音波ビームの送信・受
信を2回行うことによりその方向の血流速を検出し、順
次制御回路7の制御で超音波ビームの送受信方向を切り
換えてスキャンする(高速電子スキャン)ことにより、
極めて短時間に二次元断層像と二次元ドプラ像が得られ
る。
In this way, by transmitting and receiving an ultrasound beam twice in the same direction, the blood flow velocity in that direction is detected, and the transmission and reception direction of the ultrasound beam is sequentially switched under the control of the control circuit 7 for scanning. (high speed electronic scanning)
Two-dimensional tomographic images and two-dimensional Doppler images can be obtained in an extremely short time.

そして、前記像データ入力切換器13をA接点側に接続
すれば断層像データが、B接点側に接続すればドプラ像
データがそれぞれメモリ14に記憶される。前記入力切
換器13の切換制御及びメモリ14の書き込み、読み出
しの制御は制御回路16によって行う0例えば、前記受
信動作において、n−1回の受信信号に対しては入力切
換器をA接点側へ、n回目の受信信号に対してはB接点
側に接続する。これによって二次元断層像データと二次
元ドプラ像データがほぼリアルタイムで取り込める。そ
して、二次元断層像及び二次元ドプラ像を同時に重ねて
表示するには、メモリ14に断層像用とドプラ像用の二
組のメモリを設け、その内容を同時に読み出して、表示
装置に表示すればよい。
When the image data input switch 13 is connected to the A contact side, tomographic image data is stored in the memory 14, and when it is connected to the B contact side, Doppler image data is stored in the memory 14. Switching control of the input switch 13 and control of writing and reading from the memory 14 are performed by the control circuit 16. For example, in the receiving operation, for n-1 received signals, the input switch is moved to the A contact side. , for the n-th received signal, connect to the B contact side. This allows two-dimensional tomographic image data and two-dimensional Doppler image data to be captured almost in real time. In order to simultaneously display the two-dimensional tomographic image and the two-dimensional Doppler image in an overlapping manner, the memory 14 should be provided with two sets of memories, one for the tomographic image and one for the Doppler image, and the contents should be simultaneously read out and displayed on the display device. Bye.

以上の説明かられかるように1本実施例によれば、超音
波ビームの送信・受信を同一方向で複数回行う手段と、
超音波ビームの走査及び偏向を高速スキャン装置で行う
手段と、打ち出された超音波ビームの被検体内の各深さ
におけるドプラ偏位周波数に比例した位相変化量を検出
する手段を備えたことにより、リアルタイムの二次元ド
プラ像が得られるので、診断上極めて有効である。
As can be seen from the above description, according to the present embodiment, means for transmitting and receiving an ultrasonic beam multiple times in the same direction;
By having means for scanning and deflecting the ultrasonic beam using a high-speed scanning device, and means for detecting the amount of phase change proportional to the Doppler deviation frequency at each depth within the subject of the emitted ultrasonic beam. , it is extremely effective for diagnosis because it allows real-time two-dimensional Doppler images to be obtained.

例えば、従来のECG)−ツガ法ではラスク数100本
、超音波パルス繰り返し時1!ff200μsecでド
プラ像を得ようとすれば、■心拍の周期を1secとし
て100secかかるが、本実施例によれば。
For example, in the conventional ECG)-Hemlock method, the number of rusks is 100, and when repeating ultrasound pulses, it is 1! If you try to obtain a Doppler image with ff of 200 μsec, it will take 100 seconds (1) assuming the heartbeat period is 1 second, but according to this embodiment.

200μ5ecX2X100=40+*secで得るこ
とができるのでl sec当り約20〜25フレームの
画像表示が可能である。また、高速電子スキャナ等の高
速電子スキャン装置を用いているので能率的にスキャン
ができる。
Since it can be obtained in 200μ5ecX2X100=40+*sec, it is possible to display an image of about 20 to 25 frames per lsec. Furthermore, since a high-speed electronic scanning device such as a high-speed electronic scanner is used, scanning can be performed efficiently.

また、前記位相変化量を格納しておくメモリ及び断層像
を格納しておくメモリを備え、前記手段によって得られ
たリアルタイム二次元断層像とリアルタイム二次元ドプ
ラ像を重ね合せて表示することにより、異常血流の発生
部を容易にかつ正確に把握することができるので1診断
上極めて有効である6 本実施例はリアルタイム二次元断層像及びリアルタイム
二次元ドプラ像に関するものとして説明したが、本発明
はこの実施例に限定されることなく、流体の検査等にお
ける断層像及び流速分布像を表示する検査手段にも適用
できることは言うまでもない。
Further, the present invention includes a memory for storing the amount of phase change and a memory for storing the tomographic image, and displays the real-time two-dimensional tomographic image obtained by the means and the real-time two-dimensional Doppler image in a superimposed manner. This is extremely effective in terms of diagnosis because the site where abnormal blood flow occurs can be easily and accurately identified. It goes without saying that the present invention is not limited to this embodiment, but can also be applied to inspection means for displaying tomographic images and flow velocity distribution images in fluid inspection, etc.

そして、本実施例では、超音波ビームを一方向当り複数
回送受波するとともに順次その送受波方向をずらしてス
キャンする方法で説明したが、本発明はこのような方法
に限定されることなく、前述の従来技術で述べた発射超
音波と反射波との周波数の差からドプラ偏位周波数を求
め送受信方向を順次ずらしてスキャンする方法を用いて
も良いことは明らかであろう。
In the present embodiment, a method has been described in which the ultrasound beam is transmitted and received multiple times in one direction and scanned by sequentially shifting the transmission and reception directions, but the present invention is not limited to such a method. It is obvious that the method of determining the Doppler deviation frequency from the frequency difference between the emitted ultrasonic wave and the reflected wave and scanning by sequentially shifting the transmission and reception directions as described in the prior art described above may also be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、リアルタイムの
二次元ドプラ像が得られるので1診断上極めて有効であ
る。また、リアルタイム二次元断層像とリアルタイム二
次元ドプラ像を重ね合わせて表示することにより、異常
血流の発生部を容易にかつ正確に把握することができる
ので、診断上極めて有効である。
As explained above, according to the present invention, a real-time two-dimensional Doppler image can be obtained, which is extremely effective for one diagnosis. Furthermore, by superimposing and displaying a real-time two-dimensional tomographic image and a real-time two-dimensional Doppler image, it is possible to easily and accurately grasp the location where abnormal blood flow occurs, which is extremely effective for diagnosis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の超音波装置の概略構成を
説明するためのブロック構成図、第2図は、本実施例の
受信信号の位相変化量検出動作を説明するための波形図
である。 図中、l・・・探触子、2・・・電子スイッチ回路、3
・・・送受信回路、4,8・・・遅延回路、5・・・位
相合成アンプ、6・・・検波回路、7,16・・・制御
回路、9・・・90度移相回路、IOA、IOB・・・
リミットアンプ、11.・・・位相検波回路、12・・
・低帯域通過フィルタ、13・・・像データ入力切換器
、14・・・メモリ、15・・・CRT表示装置である
。 特許出願人 株式会社日立メディコ
FIG. 1 is a block configuration diagram for explaining the schematic configuration of an ultrasonic device according to an embodiment of the present invention, and FIG. 2 is a waveform diagram for explaining the phase change amount detection operation of a received signal according to the present embodiment. It is a diagram. In the figure, l... probe, 2... electronic switch circuit, 3
... Transmission/reception circuit, 4, 8... Delay circuit, 5... Phase synthesis amplifier, 6... Detection circuit, 7, 16... Control circuit, 9... 90 degree phase shift circuit, IOA , IOB...
Limit amplifier, 11. ...Phase detection circuit, 12...
-Low band pass filter, 13...image data input switch, 14...memory, 15...CRT display device. Patent applicant Hitachi Medical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)超音波を送受信する単一の高速電子スキャン形探
触子と、該探触子により被検体内の心臓又は血管等の血
流を有する所定部位へ1スキャンに対し一方向当り複数
回ずつ超音波パルスビームを送受波し、その送受信方向
をずらしながら走査する超音波走査手段と、該超音波走
査手段によって受信した一方向当り1つずつの受信信号
から断層像信号を得るとともに、前記一方向当り複数の
受信信号間で送受信の1周期分の時間を遅延させる遅延
回路を用いてドプラ偏位周波数に対応した位相変化量を
検出し被検体内の各深さにおけるドプラ像信号を得る手
段と、各送受信方向からの前記断層像信号とドプラ像信
号とを記憶する記憶手段と、該記憶手段に記憶された断
層像信号とドプラ像信号とを同時に読み出しリアルタイ
ム二次元断層像とこの断層像に対応したリアルタイム二
次元ドプラ像とを重ねて表示させる手段とを具備したこ
とを特徴とする超音波装置。
(1) A single high-speed electronic scanning probe that transmits and receives ultrasonic waves, and multiple times per direction per scan to a predetermined region with blood flow such as the heart or blood vessels within the subject using the probe. an ultrasonic scanning means that transmits and receives an ultrasonic pulse beam and scans while shifting the direction of transmission and reception, and obtains a tomographic image signal from one reception signal per direction received by the ultrasonic scanning means; Using a delay circuit that delays one period of transmission and reception between multiple received signals per direction, the amount of phase change corresponding to the Doppler deviation frequency is detected to obtain Doppler image signals at each depth within the subject. storage means for storing the tomographic image signal and Doppler image signal from each transmission/reception direction; and a storage means for simultaneously reading out the tomographic image signal and Doppler image signal stored in the storage means to produce a real-time two-dimensional tomographic image and this tomographic image. An ultrasonic device characterized by comprising means for superimposing and displaying a real-time two-dimensional Doppler image corresponding to the image.
JP19935688A 1988-08-10 1988-08-10 Ultrasonic device Granted JPH0221851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19935688A JPH0221851A (en) 1988-08-10 1988-08-10 Ultrasonic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19935688A JPH0221851A (en) 1988-08-10 1988-08-10 Ultrasonic device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8486180A Division JPS5711640A (en) 1980-06-23 1980-06-23 Ultrasonic device

Publications (2)

Publication Number Publication Date
JPH0221851A true JPH0221851A (en) 1990-01-24
JPH0221810B2 JPH0221810B2 (en) 1990-05-16

Family

ID=16406400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19935688A Granted JPH0221851A (en) 1988-08-10 1988-08-10 Ultrasonic device

Country Status (1)

Country Link
JP (1) JPH0221851A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995023555A1 (en) * 1994-03-04 1995-09-08 Commonwealth Scientific And Industrial Research Organisation - (Division Of Radiophysics) Display of vessels encoded by features of flow measured by ultrasound
US6907311B2 (en) 2002-05-20 2005-06-14 Mitsubishi Denki Kabushiki Kaisha Electrical discharge machining apparatus and electrical discharge machining simulator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554941A (en) * 1978-10-20 1980-04-22 Tokyo Shibaura Electric Co Ultrasoniccwave disgnosis device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554941A (en) * 1978-10-20 1980-04-22 Tokyo Shibaura Electric Co Ultrasoniccwave disgnosis device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995023555A1 (en) * 1994-03-04 1995-09-08 Commonwealth Scientific And Industrial Research Organisation - (Division Of Radiophysics) Display of vessels encoded by features of flow measured by ultrasound
US6907311B2 (en) 2002-05-20 2005-06-14 Mitsubishi Denki Kabushiki Kaisha Electrical discharge machining apparatus and electrical discharge machining simulator

Also Published As

Publication number Publication date
JPH0221810B2 (en) 1990-05-16

Similar Documents

Publication Publication Date Title
US5172343A (en) Aberration correction using beam data from a phased array ultrasonic scanner
US5230340A (en) Ultrasound imaging system with improved dynamic focusing
US5349960A (en) Ultrasonic diagnosis apparatus
US5165413A (en) Steered linear color doppler imaging
KR100749973B1 (en) Prf adjustment method and apparatus, and ultrasonic wave imaging apparatus
EP0359130A2 (en) Steered linear color doppler imaging
JPH0653117B2 (en) Ultrasonic blood flow automatic measurement device
US20040210137A1 (en) Ultrasonographic apparatus, ultrasonographic data processing method, and ultrasonographic data processing program
JPS6120540A (en) Ultrasonic imaging apparatus
JPH0614932B2 (en) Ultrasonic diagnostic equipment
JPS63317141A (en) Ultrasonic diagnostic apparatus
JPS6247537B2 (en)
JPH0571253B2 (en)
US4744367A (en) Apparatus for measuring blood flow speed using an ultrasonic beam
JPH0790026B2 (en) Ultrasonic diagnostic equipment
JPH0221851A (en) Ultrasonic device
JPH0258B2 (en)
JP3180958B2 (en) Ultrasound diagnostic equipment
JPS6357061B2 (en)
JP2006223736A (en) Ultrasonic diagnostic apparatus
JPH08117227A (en) Ultrasonic diagnostic device
JPS6099237A (en) Ultrasonic vibrator apparatus
JPH03267052A (en) Ultrasonic diagnostic apparatus
JPH0531110A (en) Ultrasonic doppler diagnostic system
JPS62231631A (en) Ultrasonic diagnostic apparatus