[go: up one dir, main page]

JPH02216424A - Thermocouple - Google Patents

Thermocouple

Info

Publication number
JPH02216424A
JPH02216424A JP3877489A JP3877489A JPH02216424A JP H02216424 A JPH02216424 A JP H02216424A JP 3877489 A JP3877489 A JP 3877489A JP 3877489 A JP3877489 A JP 3877489A JP H02216424 A JPH02216424 A JP H02216424A
Authority
JP
Japan
Prior art keywords
thermocouple
melt
temperature
arc
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3877489A
Other languages
Japanese (ja)
Inventor
Toru Miyayasu
宮保 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3877489A priority Critical patent/JPH02216424A/en
Publication of JPH02216424A publication Critical patent/JPH02216424A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔概 要〕 熱電対、特に単結晶成長における融液温度測定用熱電対
の構造に関し、 少なくとも先端部が屈曲し、且つ高温の半導体融液中に
おいても変形することなく、しかも融液の汚染を生じな
い熱電対の提供を目的とし、少なくとも被測定物内に挿
入される部分が、熱電対素線が挿入された1体の円弧状
を有する絶縁管と、該絶縁管と同一半径の円弧状を有し
、該熱電対素線が挿入された円弧状絶縁管を内包する石
英保護管とにより構成される。
[Detailed Description of the Invention] [Summary] Regarding the structure of a thermocouple, especially a thermocouple for measuring melt temperature in single crystal growth, at least the tip part is bent and does not deform even in high temperature semiconductor melt. The purpose of the present invention is to provide a thermocouple that does not cause contamination of the melt. and a quartz protection tube that has an arcuate shape with the same radius as the tube and encloses an arcuate insulating tube into which the thermocouple element wire is inserted.

〔産業上の利用分野〕[Industrial application field]

本発明は熱電対、特に半導体単結晶成長における融液温
度測定用熱電対の構造に関する。
The present invention relates to a thermocouple, and particularly to the structure of a thermocouple for measuring the temperature of a melt in semiconductor single crystal growth.

シリコン(Si)、ガリウム砒素(GaAs)、インジ
ウムv4(InP)等の半導体単結晶は、融液から成長
させて作られる。特に、その成長にはチョクラルスキー
法(CZ)法と呼ばれる単結晶引上げ法が多く用いられ
るが、欠陥の少ない比抵抗分布の均一な良質の単結晶を
引き上げるためには、成長時における融液の温度分布、
温度の揺らぎ、経時変化等を正確に把握し、的確に制御
することが必要であり、その場合引上げつつある単結晶
直下部の温度の把握が最も重要である。またSi単結晶
の引上げに際しては融液の温度が1500〜1600°
C程度の高温になる。一方、かかる単結晶引上げに際し
ての融液温度の′測定には熱電対が用いられるが、この
熱電対には、結晶直下の融液温度の測定が容易な構造を
有し、更に上記高温において融液の汚染及び自身の変形
を生じない構造が要望される。
Semiconductor single crystals such as silicon (Si), gallium arsenide (GaAs), and indium v4 (InP) are grown from melts. In particular, a single crystal pulling method called the Czochralski method (CZ) method is often used for its growth, but in order to pull a high quality single crystal with few defects and a uniform resistivity distribution, it is necessary to temperature distribution,
It is necessary to accurately understand and control temperature fluctuations, changes over time, etc. In this case, it is most important to understand the temperature directly below the single crystal that is being pulled. Furthermore, when pulling a Si single crystal, the temperature of the melt is 1500 to 1600°.
The temperature will be around C. On the other hand, a thermocouple is used to measure the temperature of the melt when pulling a single crystal. A structure that does not cause contamination of the liquid or deformation of itself is desired.

〔従来の技術〕[Conventional technology]

第4図はCZ法によるSi単結晶の引上げ状態を示す模
式側断面図で、図中、50はカーボンヒータ、51はカ
ーボンるつぼ、52は石英るつぼ、53はSt融液、5
4は石英るつぼ(カーボンるつぼ)回転用シャフト、5
5はSi単結晶、56は種結晶、57は結晶クランパ、
58は結晶引上げワイヤ、mIは引上げ方向矢印、m2
は時計方向の回転を表す矢印、1Y13は反時計方向の
回転を表す矢印を示す。
FIG. 4 is a schematic side cross-sectional view showing the pulled state of a Si single crystal by the CZ method. In the figure, 50 is a carbon heater, 51 is a carbon crucible, 52 is a quartz crucible, 53 is an St melt, 5
4 is a shaft for rotating a quartz crucible (carbon crucible), 5
5 is a Si single crystal, 56 is a seed crystal, 57 is a crystal clamper,
58 is a crystal pulling wire, mI is a pulling direction arrow, m2
indicates an arrow indicating clockwise rotation, and 1Y13 indicates an arrow indicating counterclockwise rotation.

この方法でSi単結晶55を引き上げる際には、先ず石
英るつぼ52中に多結晶Siを入れ、これをカーボンヒ
ータ50によりカーボンるつぼ51を介し直流加熱によ
り例えば時計方向m2に回転しながら1500〜160
0″C程度に加熱し上記多結晶Siを溶融して所定温度
のSi融液53とする。なお雰囲気はアルゴン等の不活
性雰囲気とする。そして、結晶引上げワイヤ5日を下降
し、種結晶55をSi融液53に浸漬した後、反時計方
向m、に回転しなからmlの方向に所定の速度で徐々に
引上げ、種結晶56の先端にSi単結晶55を順次柱状
に成長させる。この成長において、結晶の成長状態を制
御する上に最も有効な測温部分はA、の領域である。ま
た多結晶Stが溶融される際に、石英るつぼ52の上部
に溶融されない大きなSi結晶粒59が残留することが
ある。
When pulling the Si single crystal 55 using this method, first, polycrystalline Si is placed in a quartz crucible 52, and then heated by a carbon heater 50 through a carbon crucible 51 by direct current heating, for example, while rotating in a clockwise direction m2.
The polycrystalline Si is heated to about 0''C and melted to form a Si melt 53 at a predetermined temperature.The atmosphere is an inert atmosphere such as argon.Then, the crystal pulling wire is lowered to remove the seed crystal. 55 is immersed in the Si melt 53, it is rotated in the counterclockwise direction m and then gradually pulled up in the ml direction at a predetermined speed, so that the Si single crystal 55 is sequentially grown in a columnar shape at the tip of the seed crystal 56. In this growth, the most effective temperature measurement part for controlling the crystal growth state is the region A.Also, when polycrystalline St is melted, large Si crystal grains that are not melted are located in the upper part of the quartz crucible 52. 59 may remain.

一方、従来多く用いられていた熱電対は第5図にその軸
方向断面(a)及び軸と直角方向の断面ら)を示すよう
に、熱電対素線60を骨材(梁)を兼ねる長い直線状の
絶縁管61の素線挿入孔62に挿入し、これを直線状の
石英保護管63内に挿入内包せしめた直線状の構造を有
していた。
On the other hand, as shown in FIG. 5, which shows an axial cross section (a) and a cross section perpendicular to the axis, the thermocouple that has been widely used in the past has a long thermocouple wire 60 that also serves as an aggregate (beam). It had a linear structure in which the wire was inserted into a wire insertion hole 62 of a straight insulating tube 61 and then inserted into a straight quartz protection tube 63 to be enclosed therein.

そのため第4図に鎖線64で示すようにこの熱電対を斜
めに挿入しても、引上げられるSi単結晶55の底面に
近いその直下部の温度を検出することができず、また回
転している石英坩堝52の上部にSi結晶粒59が付着
している場合には、同図に鎖線64で熱電対を示したよ
うに81結晶粒59が邪魔をして坩堝52の側壁近傍の
^2の領域の融液53温度の測定ができないという問題
があった。
Therefore, even if this thermocouple is inserted diagonally as shown by the chain line 64 in FIG. When Si crystal grains 59 are attached to the upper part of the quartz crucible 52, the 81 crystal grains 59 obstruct the thermocouples near the side wall of the crucible 52, as shown by the chain line 64 in the figure. There was a problem in that the temperature of the melt 53 in the area could not be measured.

そこで第6図に軸方向の模式断面を示すように、屈曲し
た石英保護管内に挿入することを可能にするために細分
化した絶縁管161を用い、これをL形の石英保護管1
63に封入したL形勢電対(a)、或いはJ形の石英保
護管263に封入したJ形態電対(b)等を試作し、S
i単結晶直下部及びSi結晶粒下部の融液温度の測定を
可能にする試みもなされた(60は熱電対素線)。
Therefore, as shown in the schematic cross section in the axial direction in FIG.
An L-shaped electrocouple (a) enclosed in a J-shaped quartz protection tube 263 or a J-shaped electrocouple (b) enclosed in a J-shaped quartz protection tube 263 was prototyped.
An attempt was also made to make it possible to measure the melt temperature directly under the i single crystal and under the Si crystal grains (60 is a thermocouple wire).

しかしながら、これら従来の屈曲形態電対においては絶
縁管161が細分化されていて骨材(梁)としての機能
を果たさないために、1500〜1600°C程度の石
英の軟化温度より高い温度のSi融液中に長時間浸漬さ
れた際には、石英保護管163.263等が軟化しSt
融液によって受ける浮力によって上方に向かって徐々に
変形するため、一定の場所の温度を長時間にわたって測
定することが不可能になるという問題があった。
However, in these conventional curved couplers, the insulating tube 161 is segmented and does not function as an aggregate (beam). When immersed in the melt for a long time, the quartz protection tube 163, 263, etc. softens and St
Because the buoyant force exerted by the melt gradually deforms it upward, there is a problem in that it becomes impossible to measure the temperature of a fixed location over a long period of time.

〔発明が解決しようとする課題] 半導体単結晶の引上げにおいては、半導体融液を汚染す
ることなく、単結晶直下部や、上部に結晶粒が付着しが
ちなるつぼ側壁近傍の一定した場所の融液温度を長時間
にわたって測定しなければならないが、上記のように従
来の熱電対においては、その構造上の不適或いは熱変形
等によってその測定が殆ど不可能な状態であった。
[Problems to be Solved by the Invention] When pulling a semiconductor single crystal, it is possible to remove the melt directly below the single crystal or in a certain area near the side wall of the crucible where crystal grains tend to adhere to the top, without contaminating the semiconductor melt. It is necessary to measure the liquid temperature over a long period of time, but as mentioned above, with conventional thermocouples, this measurement is almost impossible due to structural inadequacies or thermal deformation.

そこで本発明は、上記測定を可能にするために、少なく
とも先端部が屈曲し、且つ高温の半導体融液中において
も変形することなく、しかも融液の)η染を生じない熱
電対の提供を目的とする。
Therefore, in order to make the above measurement possible, the present invention provides a thermocouple that has at least a bent tip, does not deform even in high-temperature semiconductor melt, and does not cause η staining of the melt. purpose.

〔課題を解決するための手段〕 上記課題は、少なくとも被測定物内に挿入される部分が
、熱電対素線が挿入された1体の円弧状を有する絶縁管
と、該絶縁管と同一半径の円弧状を有し該熱電対素線が
挿入された円弧状絶縁管を内包する石英保護管とにより
構成されてなる本発明による熱電対によって解決される
[Means for Solving the Problem] The above problem is solved by an insulating tube having at least the part inserted into the object to be measured having a single arc shape into which a thermocouple element wire is inserted, and an insulating tube having the same radius as the insulating tube. This problem is solved by the thermocouple according to the present invention, which is constituted by a quartz protection tube containing an arc-shaped insulating tube having an arc shape and into which the thermocouple element wire is inserted.

〔作 用〕[For production]

即ち本発明においては、熱電対素線が差し込まれる絶縁
管とこの絶縁管が挿入される石英保護管とを同一半径を
有する円弧状に形成して、細分化されず一体構造の円弧
状に屈曲した絶縁管を円弧状に屈曲した石英保護管の末
端から先端部まで容易に挿入することが可能にする。こ
れによって、極度に高い軟化点を有し半導体融液の温度
程度では変形することがない一体の絶縁管が石英保護管
内に骨休(梁)となって存在することになり、融液温度
測定中にその浮力によって熱電対が変形することが防止
される。
That is, in the present invention, the insulating tube into which the thermocouple element wire is inserted and the quartz protection tube into which the insulating tube is inserted are formed into an arc shape having the same radius, and are bent into an arc shape with an integral structure without being segmented. To easily insert a curved insulating tube from the end to the tip of a quartz protection tube bent into an arc shape. As a result, an integral insulating tube that has an extremely high softening point and does not deform at the temperature of the semiconductor melt exists as a beam inside the quartz protective tube, allowing the temperature of the melt to be measured. The buoyancy inside the thermocouple prevents it from deforming.

以上により、結晶の引上げ成長において、融液を汚染さ
せない保護管に内包されて、単結晶直下部や、上部に結
晶粒が付着しがちなるつぼ側壁近傍の融液温度の測定が
可能な屈曲形状を有し、且つ融液温度測定中に変形を生
じない熱電対が提供される。
As a result, during crystal pulling growth, the bent shape allows measurement of the temperature of the melt directly below the single crystal and near the side walls of the crucible, where crystal grains tend to adhere to the upper part, while being enclosed in a protective tube that does not contaminate the melt. Provided is a thermocouple which has the following properties and does not undergo deformation during melt temperature measurement.

〔実施例] 以下本発明を、図示実施例により具体的に説明する。〔Example] The present invention will be specifically explained below with reference to illustrated embodiments.

第1図は本発明の一実施例の軸方向模式断面図(a)及
び軸に直角方向の模式断面図ら)、第2図は本発明の一
実施例に係る融液温度測定状態模式図で(a)は引上げ
単結晶直下部、(ロ)は結晶粒下部のるつぼ側壁近傍領
域の測定状態を示し、第3図は本発明の他の実施例の軸
方向模式断面図である。
FIG. 1 is a schematic axial cross-sectional view (a) and a schematic cross-sectional view perpendicular to the axis of an embodiment of the present invention, and FIG. 2 is a schematic diagram of a melt temperature measurement state according to an embodiment of the present invention. (a) shows the measurement state directly below the pulled single crystal, (b) shows the measurement state of the region near the side wall of the crucible below the crystal grain, and FIG. 3 is a schematic axial cross-sectional view of another example of the present invention.

全図を通じ同一対象物は同一符合で示す。Identical objects are indicated by the same reference numerals throughout the figures.

本発明に係る熱電対は、例えば第1図(a)、Cb)に
示すように、先端から末端部までが完全な円弧状を有し
、円弧の半径rは20〜200 mm、円弧の開口角度
θは90度を存し、内径3.5 mm、肉厚0.5 m
m、程度の一端部(先端部)が閉じられた円弧状石英保
護管1と、この保護管1に挿入された外形3IIIII
I程度で、直径1ffII11程度の2本の素線挿入孔
3A、3Bを有する円弧状絶縁管2と、この絶縁管2の
素線挿入孔3A、3Bに差し込まれた直径0.5mm程
度の白金−白金・ロジウムまたはタングステン−タング
ステン・レニウム等よりなる熱電対素線4とによって構
成される。
The thermocouple according to the present invention has a complete arc shape from the tip to the end, as shown in FIGS. 1(a) and Cb), the radius r of the arc is 20 to 200 mm, and the opening of the arc is The angle θ is 90 degrees, the inner diameter is 3.5 mm, and the wall thickness is 0.5 m.
m, an arc-shaped quartz protection tube 1 with one end (tip) closed, and an external shape 3III inserted into this protection tube 1
An arc-shaped insulating tube 2 having two wire insertion holes 3A and 3B with a diameter of about 1ffII11 and a platinum wire with a diameter of about 0.5 mm inserted into the wire insertion holes 3A and 3B of this insulating tube 2. - Thermocouple wire 4 made of platinum/rhodium or tungsten/tungsten/rhenium.

なお、上記、円弧状石英保護管1と円弧状絶縁管2とは
完全な円弧状で、且つ同一の円弧半径を有するので、円
弧状石英保護管1内への該円弧状絶縁管2の挿入は容易
である。
Note that since the arc-shaped quartz protection tube 1 and the arc-shaped insulating tube 2 are completely arc-shaped and have the same arc radius, insertion of the arc-shaped insulating tube 2 into the arc-shaped quartz protection tube 1 is is easy.

なおまた、熱電対素線4がタングステン−タングステン
・レニウムのように固く可撓性に乏しい場合には、この
熱電対素線4も同一半径の円弧状に予め形成される。
Furthermore, when the thermocouple wire 4 is hard and has poor flexibility, such as tungsten-tungsten-rhenium, the thermocouple wire 4 is also formed in advance into an arc shape with the same radius.

第2図(a)はこの実施例の完全円弧状熱電対5によっ
てSi単結晶引上げに際して引上げられつつあるSi単
結晶55直下の底面近傍領域A、のSi融液53の温度
を測定している状態を示し、6は熱電対クランパ、7は
熱電対素線の保護誘導管、50はカーボンヒータ、51
はカーボンるつぼ、52は石英るつぼ、54は回転シャ
フト、56は種結晶、57は結晶クランパ、58は結晶
引上げワイヤを示す。
FIG. 2(a) shows the temperature of the Si melt 53 in the area A near the bottom directly below the Si single crystal 55 that is being pulled up during the pulling of the Si single crystal using the fully arcuate thermocouple 5 of this embodiment. 6 is a thermocouple clamper, 7 is a protective guide tube for the thermocouple wire, 50 is a carbon heater, 51
52 is a carbon crucible, 52 is a quartz crucible, 54 is a rotating shaft, 56 is a seed crystal, 57 is a crystal clamper, and 58 is a crystal pulling wire.

また第2図rb>は、上記完全円弧状熱電対5によって
石英るつぼ52側壁の上部に完全に熔融せずに付着し石
英るつぼ52と共に回転しているSi結晶粒59の下方
に位置する石英るつぼ52側壁近傍領域^2のSi融液
53の温度を測定している状態を示し、上記以外の符号
は第2図(a)と同一対象物を示す。
In addition, FIG. 2 rb> shows a quartz crucible located below Si crystal grains 59 that are attached to the upper part of the side wall of the quartz crucible 52 without being completely melted and are rotating together with the quartz crucible 52 due to the perfectly circular thermocouple 5. 52 shows a state in which the temperature of the Si melt 53 in the region ^2 near the side wall is being measured, and the symbols other than the above indicate the same objects as in FIG. 2(a).

以上第2図(a)、ら)に示されるように、本発明に係
る完全円弧状熱電対5においてはSi単結晶55或いは
Si結晶粒59等の下部に隠れた領域の融液温度の測定
が容易になされる。しかも第1図に示されたように、熱
電対5の内部には円弧状絶縁管2が骨材(梁)として存
在しているので、円弧状石英保護管1がSi融液53の
高温によって変形しようとした際にも上記絶縁管2の骨
材機能によってその変形は抑止される。従って、−尾領
域の長時間測定が精度良く行われれる。
As shown in FIGS. 2(a) and 2), the fully arcuate thermocouple 5 according to the present invention can measure the temperature of the melt in the region hidden under the Si single crystal 55 or the Si crystal grains 59. is easily done. Moreover, as shown in FIG. 1, since the arc-shaped insulating tube 2 exists as an aggregate (beam) inside the thermocouple 5, the arc-shaped quartz protection tube 1 is exposed to the high temperature of the Si melt 53. Even when an attempt is made to deform, the deformation is suppressed by the aggregate function of the insulating tube 2. Therefore, long-term measurement of the -tail region can be performed with high accuracy.

第3図は上記完全円弧状熱電対5に、素線挿入孔(図示
せず)を有する直線状絶縁管8と直線状石英保護管9よ
りなる直線状支持部10を設けた他の実施例である。こ
の構造は、完全円弧状熱電対5の熱電対素線4を長く残
し7ておき、この素線4を直線状絶縁管8に挿入し、円
弧状絶縁管2と直線状絶縁管8との接合部を例えばモリ
ブデン(Mo)バイブ11のかしめ等によって固着した
後、直線状絶縁管8に直線状石英保護管9を被せ、円弧
状石英保護管1と直線状石英保護管9との接合部を溶着
(12は溶着部)等によって固着することによって形成
する。
FIG. 3 shows another embodiment in which the above-described fully arcuate thermocouple 5 is provided with a linear support portion 10 consisting of a linear insulating tube 8 having a wire insertion hole (not shown) and a linear quartz protection tube 9. It is. In this structure, the thermocouple wire 4 of the complete arc-shaped thermocouple 5 is left long 7, the wire 4 is inserted into a straight insulating tube 8, and the arc-shaped insulating tube 2 and the straight insulating tube 8 are connected. After the joint is fixed, for example, by caulking the molybdenum (Mo) vibrator 11, the straight quartz protection tube 9 is placed over the straight insulating tube 8, and the joint between the arcuate quartz protection tube 1 and the straight quartz protection tube 9 is fixed. It is formed by fixing by welding (12 is a welded part) or the like.

この構造の場合は、熱電対の支持が直線状支持部10に
よってなされるが、前記のように骨材の機能を持つ円弧
状絶縁管2と同様骨材の機能を持つ直線状絶縁管8と力
(Moパイプ11のかしめ等によって強固に固着されて
いるので、融液温度の測定に際し融液中に挿入された部
分が変形して浮上し、測定位置が変動するようなことは
ない。
In this structure, the thermocouple is supported by the linear support part 10, but as described above, the arc-shaped insulating tube 2 which has the function of an aggregate and the linear insulating tube 8 which has the function of an aggregate. Since the Mo pipe 11 is firmly fixed by caulking or the like, there is no possibility that the part inserted into the melt will be deformed and floated when measuring the melt temperature, and the measurement position will not change.

なお、前記完全円弧状に比べこの実施例の構造の方が、
実用に際しての支持、取扱が一層容易である。
It should be noted that the structure of this embodiment is better than the above-mentioned complete arc shape.
It is easier to support and handle in practical use.

〔発明の効果〕〔Effect of the invention〕

以上説明のように、本発明によれば石英保護管に内包さ
れていて半導体融液の汚染がなく、且つ引上げられつつ
ある単結晶の底面近傍の直下部や粒状の付着物の下部等
上面から隠れた領域の融液温度が容易に測定でき、しか
も融液温度によって変形を生じないので長時間にわたっ
て一定の場所を高精度に測定することが可能な熱電対が
提供される。従って本発明はCZ法により引上げられる
半導体単結晶の品質向上に有効である。
As explained above, according to the present invention, there is no contamination of the semiconductor melt contained in the quartz protection tube, and from the top surface, such as directly below the bottom surface of the single crystal being pulled up or from the bottom of granular deposits, etc. Provided is a thermocouple that can easily measure the temperature of the melt in a hidden region, and that is not deformed by the temperature of the melt, so that it can measure a fixed location with high precision over a long period of time. Therefore, the present invention is effective in improving the quality of semiconductor single crystals pulled by the CZ method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の模式図で、(a)は軸方向
断面図、(b)は軸に直角方向の断面図、第2図は本発
明の一実施例による融液温度測定状態の模式図で、(a
)は単結晶直下部、(1))はるつぼ側壁近傍部、 第3図は本発明の他の実施例の軸方向模式断面図、 第4図はCZ法によるSi単結晶引上げ状態の模式断面
図、 第5図は従来の直線最熱電対の模式図で、(a)は軸方
向断面図、(b)は軸に直角方向の断面図、第6図は従
来の屈曲形態電対の軸方向模式断面図で、(a)はL形
、(b)はJ形 である。 図において、 1は円弧状石英保護管、 2は円弧状絶縁管、 3A、3Bは熱電対素線挿入孔、 4は熱電対素線、 を示す。 (α〕m方口方面 断 面’o)軸に(至)自1向の断I A\烟’aFILy)−砕ト方邑すIJのネ丈弓ヤロ)
 1 日 ソト4場シ日月(う一廖鰺叩ちくシーFJ (;Jる紅
勺〉−ラ占6、べjシ司ワ4プ;甲千どう巧{々デ弓\
゛6七]第 CLF比《二xるSL輸紹ふ51hげ゛1欠ビの轟式゛
ば4“i図第 4 口 (0−)馳1菌前面 (bノ妬(;直南方前4rめ 復粂0嶺婢形許友対の漣式゛り 第 5 ■ 声 名 (αノ L 形 (lo) J 形 従f:め屁曲形幣電対功軸方句)Jk餉一面a第 6 
FIG. 1 is a schematic diagram of an embodiment of the present invention, in which (a) is an axial cross-sectional view, (b) is a cross-sectional view perpendicular to the axis, and FIG. 2 is a melt temperature according to an embodiment of the present invention. A schematic diagram of the measurement state, (a
) is directly below the single crystal, (1)) near the side wall of the crucible, FIG. 3 is a schematic axial cross-sectional view of another embodiment of the present invention, and FIG. 4 is a schematic cross-section of a Si single crystal pulled by the CZ method. Figure 5 is a schematic diagram of a conventional straight thermocouple, (a) is a cross-sectional view in the axial direction, (b) is a cross-sectional view in the direction perpendicular to the axis, and Figure 6 is an axial cross-sectional view of a conventional bent thermocouple. In the schematic directional cross-sectional views, (a) is an L-shape, and (b) is a J-shape. In the figure, 1 is an arcuate quartz protection tube, 2 is an arcuate insulating tube, 3A and 3B are thermocouple wire insertion holes, and 4 is a thermocouple wire. (α〕m direction cross section 'o) A section in the direction of (to) the axis I
1st Soto 4th place Sun Moon (Uichi Liao Mackerel Hit Chiku Sea FJ (; Jru Hongzhu> - La fortune 6, Bej Shishiwa 4 Pu; Ko Sendo Takumi {Zade Bow
゛67] 2nd CLF ratio 2x SL introduction 51h 1 missing roar type 4th return to the 4th round of the 4th round of the 4th round of the 4th round of the 4th round. 6
6

Claims (1)

【特許請求の範囲】 少なくとも被測定物内に挿入される部分が、熱電対素線
が挿入された1体の円弧状を有する絶縁管と、 該絶縁管と同一半径の円弧状を有し、該熱電対素線が挿
入された円弧状絶縁管を内包する石英保護管とにより構
成されてなることを特徴とする熱電対。
[Scope of Claims] An insulated tube in which at least a portion inserted into the object to be measured has an arc shape into which a thermocouple wire is inserted, and an arc shape with the same radius as the insulated tube, 1. A thermocouple comprising: a quartz protection tube enclosing an arc-shaped insulating tube into which the thermocouple wire is inserted;
JP3877489A 1989-02-17 1989-02-17 Thermocouple Pending JPH02216424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3877489A JPH02216424A (en) 1989-02-17 1989-02-17 Thermocouple

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3877489A JPH02216424A (en) 1989-02-17 1989-02-17 Thermocouple

Publications (1)

Publication Number Publication Date
JPH02216424A true JPH02216424A (en) 1990-08-29

Family

ID=12534638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3877489A Pending JPH02216424A (en) 1989-02-17 1989-02-17 Thermocouple

Country Status (1)

Country Link
JP (1) JPH02216424A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108570706A (en) * 2017-03-13 2018-09-25 Ftb研究所株式会社 The grower and its growing method of heavy caliber CZ monocrystalline
JP2019109215A (en) * 2017-12-18 2019-07-04 國家中山科學研究院 Device for measuring temperature field distribution inside crucible

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108570706A (en) * 2017-03-13 2018-09-25 Ftb研究所株式会社 The grower and its growing method of heavy caliber CZ monocrystalline
JP2018150219A (en) * 2017-03-13 2018-09-27 Ftb研究所株式会社 Large diameter CZ single crystal growth apparatus and growth method thereof
CN108570706B (en) * 2017-03-13 2021-07-06 Ftb研究所株式会社 Large diameter CZ single crystal growth device and growth method
JP2019109215A (en) * 2017-12-18 2019-07-04 國家中山科學研究院 Device for measuring temperature field distribution inside crucible

Similar Documents

Publication Publication Date Title
Bleay et al. The growth of single crystals of some organic compounds by the Czochralski technique and the assessment of their perfection
Sasaki et al. Density variation of molten silicon measured by an improved archimedian method
TW463224B (en) Method for producing silicon single crystal and apparatus for producing the same, and single crystal and wafer produced with the method
JPH0431386A (en) Pulling up semiconductor single crystal
TW470787B (en) Apparatus for fabricating single-crystal silicon
Kuroda et al. The effect of temperature oscillations at the growth interface on crystal perfection
US5723337A (en) Method for measuring and controlling the oxygen concentration in silicon melts and apparatus therefor
JPH02216424A (en) Thermocouple
US10006145B2 (en) Liquid doping systems and methods for controlled doping of single crystal semiconductor material
KR102409211B1 (en) Method for controlling convection pattern of silicon melt, and method for manufacturing silicon single crystal
US6176923B1 (en) Crucible with differentially expanding release mechanism
TW202217086A (en) Chai Crucible
US6514337B2 (en) Method of growing large-diameter dislocation-free<110> crystalline ingots
TW202204274A (en) Silica glass crucible
JPH0310598B2 (en)
Martin et al. Application of a Heat Pipe to Czochralski Growth: Part I: Growth and Segregation Behavior of Ga‐Doped Ge
JP2705832B2 (en) Single crystal pulling device
JPS5950627B2 (en) Single crystal silicon pulling equipment
JPH11349398A (en) Production of silicon single crystal
JPH05238883A (en) Production of single crystal silicone rod and apparatus for production
JP2007076974A (en) Crucible for pulling silicon single crystal
JPH11278992A (en) Pulling of single crystal silicon, device for pulling up the same and graphite crucible or quartz crucible
Watanabe et al. Modification of heat and mass transfers and their effect on the crystal-melt interface shape of Si single crystal during Czochralski crystal growth
JP2982123B2 (en) Method and apparatus for measuring oxygen potential in silicon melt
WO2023209867A1 (en) Group iii-v compound semiconductor single crystal substrate and manufacturing method therefor