[go: up one dir, main page]

JPH02214152A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH02214152A
JPH02214152A JP3369889A JP3369889A JPH02214152A JP H02214152 A JPH02214152 A JP H02214152A JP 3369889 A JP3369889 A JP 3369889A JP 3369889 A JP3369889 A JP 3369889A JP H02214152 A JPH02214152 A JP H02214152A
Authority
JP
Japan
Prior art keywords
oxide film
film
semiconductor device
cmosfet
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3369889A
Other languages
Japanese (ja)
Inventor
Shinji Kaneko
新二 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP3369889A priority Critical patent/JPH02214152A/en
Publication of JPH02214152A publication Critical patent/JPH02214152A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To easily obtain a semiconductor device provided with a high- breakdown-strength and comparatively-high-capacity MIS capacitor and with a high-speed COMS FET by forming the following: an insulating film composed of a thermal oxide film and a nitride film for a high-breakdown-strength MIS capacitor; a gate oxide film for a CMOSFET. CONSTITUTION:A field oxide film 2 for element isolation use, a silicon thermal oxide film 3 and a silicon nitride film 4 are formed one after another on a silicon substrate 1; a region used to form a high-breakdown-strength MIS(metal insulator semiconductor) capacitor is masked with a resist 5; only the nitride film 5 used to form a CMOSFET is removed. The oxide film 3 in the region used to form the CMOSFET is removed by making use of the nitride film 4 in the region used to form the MIS capacitor as a mask; a gate oxide film 6 is formed. Thereby, it is possible to easily obtain a bipolar CMOS semiconductor device which is provided with the following: the MIS capacitor whose reliability against a high voltage is high and whose capacity is comparatively large; the CMOSFET which is operated by a low voltage at high speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体装置、特に比較的高いコレクタ・エ
ミッタ間耐圧を有するバイポーラトランジスタと、比較
的薄いゲート絶縁膜を有する0MO3FETとを共存さ
せた半導体装置及びその製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a semiconductor device, in particular, a bipolar transistor having a relatively high collector-emitter breakdown voltage and an 0MO3FET having a relatively thin gate insulating film. The present invention relates to a semiconductor device and its manufacturing method.

〔従来の技術〕[Conventional technology]

従来、デジタル回路用の0MO3FETと、アナログ回
路用のバイポーラトランジスタを同一基板上に一体的に
共存させた、いわゆるデジタル・アナログ混在型のバイ
ポーラ・CMOS半導体装置が知られている。かかるバ
イポーラ・CMOS半導体装置において、アナログ回路
用のキャパシタとしては、PN接合キャパシタと比較し
て容量の電圧依存性が小さいことなどの理由から、0M
O3FETのゲート酸化膜を利用したM I S (m
etalinsulator semiconduct
or)キャパシタが一般に用いられている。
BACKGROUND ART Conventionally, a so-called digital/analog mixed type bipolar/CMOS semiconductor device is known in which an OMO3FET for a digital circuit and a bipolar transistor for an analog circuit are integrated on the same substrate. In such bipolar CMOS semiconductor devices, 0M capacitors are used as capacitors for analog circuits because the voltage dependence of the capacitance is smaller than that of PN junction capacitors.
M I S (m
etalinsulator semiconductor
or) capacitors are commonly used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、このように0MO3FETのゲート酸化膜を
利用してMISキャパシタを形成する場合、デジタル回
路とアナログ回路の動作電圧が同一であるときには格別
問題は生じない。しかしながら、デジタル回路としては
、5.5V以下の低電圧で動作し、且つ高速で消費電力
が小さい高度に微細化された薄いゲート酸化膜を有する
0MO3FETが要求され、一方アナログ回路としては
、9V以上の比較的高い動作電圧が要求される場合には
、0MO3FETの薄いゲート酸化膜を利用したMTS
キャパシタをアナログ回路に用いると、電界が高くなる
ため、素子の信頼性が低下する。
By the way, when a MIS capacitor is formed using the gate oxide film of an 0MO3FET in this way, no particular problem occurs when the operating voltages of the digital circuit and the analog circuit are the same. However, as a digital circuit, an 0MO3FET with a thin gate oxide film that is highly miniaturized and operates at a low voltage of 5.5 V or less, is fast, and has low power consumption is required, while as an analog circuit, a 0MO3FET that operates at a low voltage of 5.5 V or less is required. When a relatively high operating voltage is required, MTS using a thin gate oxide film of 0MO3FET is recommended.
When capacitors are used in analog circuits, the electric field increases, reducing the reliability of the device.

この問題に対処するには、MISキャパシタ及び0MO
3FETのゲート酸化膜を形成する工程において、適当
な厚さの熱酸化膜を形成し、通常のファトリソグラフィ
工程によって0MO3FETを形成する領域の酸化膜を
除去し、次いで該領域に所定のゲート酸化膜を形成する
方法が考えられる。この方法によれば、MISキャパシ
タの酸化膜をゲート酸化膜よりも厚くできるので、アナ
ログ回路に比較的高い動作電圧を用いても、MISキャ
パシタの信頼性は低下しない。
To address this issue, MIS capacitors and 0MO
In the process of forming the gate oxide film of the 3FET, a thermal oxide film of an appropriate thickness is formed, the oxide film is removed in the area where the 0MO3FET is to be formed by a normal photolithography process, and then a predetermined gate oxide film is formed on the area. One possible method is to form a According to this method, the oxide film of the MIS capacitor can be made thicker than the gate oxide film, so even if a relatively high operating voltage is used for the analog circuit, the reliability of the MIS capacitor does not deteriorate.

しかしながらこの方法を用いて形成した場合には、MI
Sキャパシタの容量が小さくなり集積度が低下するばか
りでなく、最初に形成された熱酸化膜の0MO3FET
の領域を除去する際に、シリコン表面が露出する。この
ときエツチング処理系の中でレジストによって、露出さ
れたシリコン表面が汚染されるので、その後で形成され
るゲート酸化膜の膜質が低下するという問題点が生ずる
However, when formed using this method, MI
Not only does the capacitance of the S capacitor become smaller and the degree of integration decreases, but also the thermal oxide film formed at the beginning of the 0MO3FET
When removing the area, the silicon surface is exposed. At this time, the resist in the etching system contaminates the exposed silicon surface, resulting in a problem that the quality of the gate oxide film subsequently formed is degraded.

本発明は、従来のバイポーラ・CMOS半導体装置にお
ける上記問題点を解決するためになされたもので、薄い
ゲート酸化膜をもつ高速の0MO3FETと高耐圧で比
較的大きな容量をもつアナログ回路用のMISキャパシ
タを備えたバイポーラ・CMOS半導体装置、及び製造
工程において0MO3FETのゲート酸化膜形成時のレ
ジストからの汚染を排除するようにした上記半導体装置
の製造方法を提供することを目的とする。
The present invention was made to solve the above-mentioned problems in conventional bipolar/CMOS semiconductor devices, and includes a high-speed 0MO3FET with a thin gate oxide film and a MIS capacitor for analog circuits with high withstand voltage and relatively large capacity. An object of the present invention is to provide a bipolar CMOS semiconductor device equipped with the above-mentioned semiconductor device, and a method for manufacturing the semiconductor device, which eliminates contamination from a resist during the formation of a gate oxide film of an OMO3FET in the manufacturing process.

〔課題を解決するための手段及び作用〕上記問題点を解
決するため、本発明は、比較的高いコレクタ・エミッタ
間耐圧を有す・るバイポーラトランジスタと比較的薄い
ゲート絶縁膜を有する0MO3FETを共存させた半導
体装置において、シリコン熱酸化膜とシリコン窒化膜の
少なくとも2層構造の絶縁膜で形成された高耐圧MIS
キャパシタとシリコン熱酸化膜のみで形成されたゲート
絶縁膜をもつ0MO3FETとを設けて半導体装置を構
成するものである。
[Means and effects for solving the problem] In order to solve the above problems, the present invention provides a method for coexisting a bipolar transistor with a relatively high collector-emitter breakdown voltage and an 0MO3FET with a relatively thin gate insulating film. In a semiconductor device manufactured by
A semiconductor device is constructed by providing a capacitor and an OMO3FET having a gate insulating film formed only of a silicon thermal oxide film.

このように構成することにより、MISキャパシタの絶
縁膜はゲート絶縁膜より厚い膜厚を有するので高い電圧
が印加された際の平均電界が緩和され、また窒化膜は酸
化膜よりも誘電率が高いので、高耐圧で比較的容量の大
なるMISキャパシタと高速の0MO3FETを備えた
バイポーラ・CMOS半導体装置が得られる。
With this configuration, the insulating film of the MIS capacitor is thicker than the gate insulating film, so the average electric field is relaxed when a high voltage is applied, and the nitride film has a higher dielectric constant than the oxide film. Therefore, a bipolar CMOS semiconductor device equipped with a MIS capacitor having a high breakdown voltage and a relatively large capacity and a high-speed OMO3FET can be obtained.

また本発明は、比較的高いコレクタ・エミッタ間耐圧を
有するバイポーラトランジスタと比較的薄いゲート絶縁
膜を有する0MO3FETを共存させた半導体装置の製
造方法において、半導体基板上にシリコン熱酸化膜とシ
リコン窒化膜とを順次形成する工程と、0MO3FET
を形成する領域のシリコン窒化膜を除去したのち、他の
領域のシリコン窒化膜をマスクとして0MO3FETを
形成する領域のシリコン熱酸化膜を選択的に除去する工
程と、前記シリコン窒化膜をマスクとして0MO3FE
Tを形成する領域を選択的に酸化してゲート絶縁膜を形
成する工程とにより、MISキャパシタの絶縁膜と0M
O3FETのゲート絶縁膜とを形成するものである。
The present invention also provides a method for manufacturing a semiconductor device in which a bipolar transistor having a relatively high collector-emitter breakdown voltage and an OMO3FET having a relatively thin gate insulating film coexist, in which a silicon thermal oxide film and a silicon nitride film are formed on a semiconductor substrate. and a step of sequentially forming 0MO3FET.
After removing the silicon nitride film in the region where the 0MO3FET is to be formed, using the silicon nitride film in another region as a mask, selectively removing the silicon thermal oxide film in the region where the 0MO3FET is to be formed;
By selectively oxidizing the region where the T is to be formed and forming a gate insulating film, the insulating film of the MIS capacitor and the 0M
It forms the gate insulating film of O3FET.

このようにして製造することにより、ゲート絶縁膜の形
成前の2層膜の下層酸化膜の除去と、次のゲート絶縁膜
形成工程は窒化膜をマスクとして行われるので、シリコ
ン表面のレジストによる汚染が回避され、高品質のゲー
ト絶縁膜をもつ0MO3FETを形成することが可能と
なる。
By manufacturing in this way, the removal of the lower oxide film of the two-layer film before the formation of the gate insulating film and the subsequent step of forming the gate insulating film are performed using the nitride film as a mask, so the silicon surface is contaminated by the resist. This makes it possible to form an OMO3FET with a high quality gate insulating film.

(実施例〕 次に実施例について説明する。第1図へ〜■は、本発明
に係る半導体装置の一実施例の製造工程を示す図であり
、いずれもMISキャパシタ碩域とCMOSFET形成
頭域の一部のみを示している。
(Example) Next, an example will be described. Figs. Only a part of it is shown.

まず第1図^に示すように、シリコン基板1に素子分離
のためのフィールド酸化膜2を形成する。
First, as shown in FIG. 1, a field oxide film 2 for element isolation is formed on a silicon substrate 1.

なおこの際、すでにシリコン基板1には、図示は省略し
ているが、バイポーラ素子の埋込拡散層や0MO3FE
Tのウェル拡散層など必要な拡散層は形成されているも
のとする。次に第1図田)に示すように、厚さ100人
のシリコン熱酸化膜3と厚さ300人のシリコン窒化膜
4を順次形成する。次いで第1図(0に示すように、通
常のフォトリソグラフィ工程で、高耐圧MISキャパシ
タを形成する領域をレジスト5でマスクして、0MO3
FETを形成する領域の窒化膜4のみを、例えばプラズ
マエツチングで除去する。
At this time, although not shown, the silicon substrate 1 has already been filled with a buried diffusion layer of a bipolar element and an 0MO3FE layer.
It is assumed that necessary diffusion layers such as a T well diffusion layer have been formed. Next, as shown in Figure 1), a silicon thermal oxide film 3 with a thickness of 100 thick and a silicon nitride film 4 with a thickness of 300 thick are successively formed. Next, as shown in FIG. 1 (0), the region where the high breakdown voltage MIS capacitor is to be formed is masked with resist 5 using a normal photolithography process, and 0MO3
Only the nitride film 4 in the region where the FET is to be formed is removed, for example, by plasma etching.

次に第1図の)に示すように、レジスト5を除去したの
ちに、MISキャパシタ形成領域の窒化膜4をマスクと
して、0MO3FETを形成する領域の酸化膜3を、例
えば希フッ酸で除去する。この酸化膜3の除去工程にお
いて0MO3FETを形成する領域のシリコン表面が曝
されるが、この際レジスト5は既に除去されているので
シリコン表面がレジストにより汚染されることはない。
Next, as shown in FIG. 1), after removing the resist 5, using the nitride film 4 in the MIS capacitor formation region as a mask, the oxide film 3 in the region where the 0MO3FET is to be formed is removed with dilute hydrofluoric acid, for example. . In this step of removing the oxide film 3, the silicon surface in the region where the 0MO3FET is to be formed is exposed, but since the resist 5 has already been removed at this time, the silicon surface is not contaminated by the resist.

続いて第1図[F]に示すように、ゲート酸化膜6を1
50人の厚さに形成する。このとき高耐圧MISキャパ
シタの形成領域は窒化膜4がマスクとなって殆ど酸化さ
れず、表面に僅かなオキシナイトライドが形成されるだ
けである。
Next, as shown in FIG. 1 [F], the gate oxide film 6 is
Form to a thickness of 50 people. At this time, the region where the high voltage MIS capacitor is to be formed is hardly oxidized because the nitride film 4 serves as a mask, and only a small amount of oxynitride is formed on the surface.

このようにして高耐圧M■Sキャパシタの熱酸化膜3と
窒化膜4とからなる絶縁膜と0MO3FETのゲート酸
化膜6が形成される。そして高耐圧MISキャパシタの
絶縁膜の膜厚は400人と厚いため、高い電圧を印加し
ても高い信顧性が得られ、しかも窒化膜は酸化膜よりも
誘電率が高いので比較的大きな容量が得られる。また0
MO3FETのゲート酸化膜は膜厚が150人と薄く、
しかも窒化膜をマスクとして形成されるので、レジスト
による汚染が発生せず、高速の0MO3FETを形成す
るのに適した高品質のゲート酸化膜が得られる。
In this way, an insulating film consisting of the thermal oxide film 3 and the nitride film 4 of the high voltage MS capacitor and the gate oxide film 6 of the OMO3FET are formed. The insulating film of the high-voltage MIS capacitor is 400 thick, so it has high reliability even when high voltage is applied, and the nitride film has a higher dielectric constant than the oxide film, so it has a relatively large capacity. is obtained. 0 again
The gate oxide film of MO3FET is as thin as 150mm thick.
Moreover, since it is formed using a nitride film as a mask, no contamination by resist occurs, and a high-quality gate oxide film suitable for forming a high-speed OMO3 FET can be obtained.

第1図■に示した工程の後は、高耐圧MISキャパシタ
の上部電極及び0MO3FETのゲート電極となるポリ
シリコン層又は高融点金属層等を形成し、次いで通常の
バイポーラ・CMOSプロセスの工程により必要な素子
を形成する。
After the process shown in Figure 1 (■), a polysilicon layer or a high melting point metal layer, etc., which will become the upper electrode of the high voltage MIS capacitor and the gate electrode of the 0MO3FET, is formed, and then the necessary steps of the normal bipolar/CMOS process are performed. form an element.

上記実施例においては、アナログ回路用のMISキャパ
シタを酸化膜と窒化膜の2層構造としたものを示したが
、第1図田)に示した工程の窒化膜形成後に酸化雰囲気
で長時間熱処理するなどを行って、窒化膜上に更に酸化
膜を形成することもできる。この工程を加えた場合は、
MISキャパシタは酸化膜、窒化膜、酸化膜の3層構造
となり、これによりMISキャパシタの上部電極と絶縁
膜の界面を更に安定化することができる。
In the above embodiment, a MIS capacitor for analog circuits has a two-layer structure of an oxide film and a nitride film, but after the nitride film is formed in the step shown in Figure 1), heat treatment is performed for a long time in an oxidizing atmosphere. It is also possible to further form an oxide film on the nitride film by doing the following. If you add this step,
The MIS capacitor has a three-layer structure of an oxide film, a nitride film, and an oxide film, and this makes it possible to further stabilize the interface between the upper electrode of the MIS capacitor and the insulating film.

〔発明の効果〕〔Effect of the invention〕

以上実施例に基づいて説明したように、本発明によれば
、高い印加電圧に対しても高信頼性を有し且つ比較的大
なる容量をもつアナログ回路用MIsキャパシタと、低
電圧で高速で動作する0MO3FETを備えたバイポー
ラ・CMO3半導体装置を容易に提供することができる
As described above based on the embodiments, the present invention provides an MIs capacitor for analog circuits that has high reliability even with high applied voltages and has a relatively large capacity, and an MIs capacitor that can be used at low voltage and high speed. A bipolar CMO3 semiconductor device equipped with an operating OMO3FET can be easily provided.

また本発明による製造方法によれば、汚染を排除した高
品質のゲート酸化膜をもつCMOS F ETを形成す
ることができる。
Further, according to the manufacturing method of the present invention, it is possible to form a CMOS FET having a high quality gate oxide film free from contamination.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図へ〜■は、本発明に係る半導体装置の一実施例の
製造工程を示す図である。 図において、lはシリコン基板、2はフィールド酸化膜
、3は熱酸化膜、4は窒化膜、5はレジスト、6はゲー
ト酸化膜を示す。 特許出願人 オリンパス光学工業株式会社第1図 1:シリコン基板 2:フィールド酸化膜 3:熱酸化膜 4:窒化膜 5ニレジスト 6:ケ―ト酸化戻
FIGS. 1 to 2 are diagrams showing the manufacturing process of an embodiment of the semiconductor device according to the present invention. In the figure, 1 is a silicon substrate, 2 is a field oxide film, 3 is a thermal oxide film, 4 is a nitride film, 5 is a resist, and 6 is a gate oxide film. Patent applicant: Olympus Optical Industry Co., Ltd. Figure 1: Silicon substrate 2: Field oxide film 3: Thermal oxide film 4: Nitride film 5 Resist 6: Kate oxidation back

Claims (1)

【特許請求の範囲】 1、比較的高いコレクタ・エミッタ間耐圧を有するバイ
ポーラトランジスタと比較的薄いゲート絶縁膜を有する
CMOSFETを共存させた半導体装置において、シリ
コン熱酸化膜とシリコン窒化膜の少なくとも2層構造の
絶縁膜で形成された高耐圧MISキャパシタとシリコン
熱酸化膜のみで形成されたゲート絶縁膜をもつCMOS
FETとを備えていることを特徴とする半導体装置。 2、前記バイポーラトランジスタは9V以上のコレクタ
・エミッタ間耐圧を有し、前記CMOSFETは250
Å以下のゲート絶縁膜を有していることを特徴とする請
求項1記載の半導体装置。 3、前記MISキャパシタの絶縁膜は、シリコン熱酸化
膜、シリコン窒化膜、シリコン熱酸化膜の3層構造とし
たことを特徴とする請求項1又は2記載の半導体装置。 4、比較的高いコレクタ・エミッタ間耐圧を有するバイ
ポーラトランジスタと比較的薄いゲート絶縁膜を有する
CMOSFETを共存させた半導体装置の製造方法にお
いて、半導体基板上にシリコン熱酸化膜とシリコン窒化
膜とを順次形成する工程と、CMOSFETを形成する
領域のシリコン窒化膜を除去したのち、他の領域上のシ
リコン窒化膜をマスクとしてCMOSFETを形成する
領域のシリコン熱酸化膜を選択的に除去する工程と、前
記シリコン窒化膜をマスクとしてCMOSFETを形成
する領域を選択的に酸化してゲート絶縁膜を形成する工
程とにより、MISキャパシタの絶縁膜とCMOSFE
Tのゲート絶縁膜とを形成することを特徴とする半導体
装置の製造方法。
[Claims] 1. In a semiconductor device in which a bipolar transistor having a relatively high collector-emitter breakdown voltage and a CMOSFET having a relatively thin gate insulating film coexist, at least two layers of a silicon thermal oxide film and a silicon nitride film are used. A CMOS with a high-voltage MIS capacitor made of structural insulating film and a gate insulating film made only of silicon thermal oxide film.
A semiconductor device comprising a FET. 2. The bipolar transistor has a collector-emitter breakdown voltage of 9V or more, and the CMOSFET has a breakdown voltage of 250V or more.
2. The semiconductor device according to claim 1, having a gate insulating film having a thickness of Å or less. 3. The semiconductor device according to claim 1 or 2, wherein the insulating film of the MIS capacitor has a three-layer structure of a silicon thermal oxide film, a silicon nitride film, and a silicon thermal oxide film. 4. In a method for manufacturing a semiconductor device in which a bipolar transistor having a relatively high collector-emitter breakdown voltage and a CMOSFET having a relatively thin gate insulating film coexist, a silicon thermal oxide film and a silicon nitride film are sequentially deposited on a semiconductor substrate. a step of removing the silicon nitride film in the region where the CMOSFET is to be formed, and then selectively removing the silicon thermal oxide film in the region where the CMOSFET is to be formed using the silicon nitride film on another region as a mask; By selectively oxidizing the region where the CMOSFET is to be formed using the silicon nitride film as a mask to form a gate insulating film, the insulating film of the MIS capacitor and the CMOSFE are separated.
1. A method of manufacturing a semiconductor device, comprising forming a gate insulating film of T.
JP3369889A 1989-02-15 1989-02-15 Semiconductor device and manufacture thereof Pending JPH02214152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3369889A JPH02214152A (en) 1989-02-15 1989-02-15 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3369889A JPH02214152A (en) 1989-02-15 1989-02-15 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02214152A true JPH02214152A (en) 1990-08-27

Family

ID=12393637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3369889A Pending JPH02214152A (en) 1989-02-15 1989-02-15 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02214152A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9300732A (en) * 1992-04-30 1993-11-16 Fuji Electric Co Ltd SEMICONDUCTOR DEVICE AND METHOD FOR PRODUCING THIS.
JP2005537652A (en) * 2002-09-02 2005-12-08 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Semiconductor device having field effect transistor and passive capacitor with reduced leakage current and improved capacitance per unit area
US7517738B2 (en) 1995-01-17 2009-04-14 Semiconductor Energy Laboratory Co., Ltd. Method for producing a semiconductor integrated circuit including a thin film transistor and a capacitor
US7615786B2 (en) 1993-10-01 2009-11-10 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor incorporating an integrated capacitor and pixel region
US7955975B2 (en) * 2002-04-09 2011-06-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US8835271B2 (en) 2002-04-09 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US9366930B2 (en) 2002-05-17 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Display device with capacitor elements

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9300732A (en) * 1992-04-30 1993-11-16 Fuji Electric Co Ltd SEMICONDUCTOR DEVICE AND METHOD FOR PRODUCING THIS.
US7615786B2 (en) 1993-10-01 2009-11-10 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor incorporating an integrated capacitor and pixel region
US7517738B2 (en) 1995-01-17 2009-04-14 Semiconductor Energy Laboratory Co., Ltd. Method for producing a semiconductor integrated circuit including a thin film transistor and a capacitor
US9406806B2 (en) 2002-04-09 2016-08-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US10050065B2 (en) 2002-04-09 2018-08-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US8835271B2 (en) 2002-04-09 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US8946717B2 (en) 2002-04-09 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US8946718B2 (en) 2002-04-09 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US9105727B2 (en) 2002-04-09 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US11101299B2 (en) 2002-04-09 2021-08-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US10854642B2 (en) 2002-04-09 2020-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US9666614B2 (en) 2002-04-09 2017-05-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US7955975B2 (en) * 2002-04-09 2011-06-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US10083995B2 (en) 2002-04-09 2018-09-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US10700106B2 (en) 2002-04-09 2020-06-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US10527903B2 (en) 2002-05-17 2020-01-07 Semiconductor Energy Laboratory Co., Ltd. Display device
US10133139B2 (en) 2002-05-17 2018-11-20 Semiconductor Energy Laboratory Co., Ltd. Display device
US9366930B2 (en) 2002-05-17 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Display device with capacitor elements
US11422423B2 (en) 2002-05-17 2022-08-23 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2005537652A (en) * 2002-09-02 2005-12-08 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Semiconductor device having field effect transistor and passive capacitor with reduced leakage current and improved capacitance per unit area

Similar Documents

Publication Publication Date Title
US6495416B1 (en) Semiconductor integrated circuit device with MOS transistor and MOS capacitor and method for manufacturing the same
JPH02214152A (en) Semiconductor device and manufacture thereof
JPS61222172A (en) MOSFET gate insulating film formation method
JPS5856263B2 (en) Manufacturing method of semiconductor device
US20070218636A1 (en) Method for forming ultra thin low leakage multi gate devices using a masking layer over the semiconductor substrate
JP2503621B2 (en) Method for manufacturing semiconductor device
KR19990071113A (en) Manufacturing method of semiconductor device
JPH11307745A (en) Nonvolatile semiconductor device and method of manufacturing the same
JPH039572A (en) Manufacture of semiconductor device
JPH03116968A (en) Manufacture of semiconductor device
JPH01257366A (en) Semiconductor device and its manufacture
JPH0621369A (en) Manufacture of mos integrated circuit
JPH01120051A (en) Semiconductor device
JPS60160666A (en) Manufacture of semiconductor device
US20030030101A1 (en) Semiconductor device and manufacturing method thereof
JPH06224413A (en) Mos type semiconductor integrated circuit and its manufacture
JPS62163341A (en) Patterning method for high melting point metal film
JPS5846666A (en) Manufacture of semiconductor device
JPS5918660A (en) Manufacture of semiconductor device
JPH01173748A (en) Semiconductor integrated circuit device
JPH0297057A (en) Manufacture of semiconductor device
JPS62174922A (en) semiconductor equipment
KR20050014225A (en) A method for forming a transistor of a semiconductor device
JPS6219076B2 (en)
KR19990004668A (en) Method of forming a duplex gate insulating film of a semiconductor device