JPH02209135A - Ultrasonic transmitter/receiver - Google Patents
Ultrasonic transmitter/receiverInfo
- Publication number
- JPH02209135A JPH02209135A JP1028731A JP2873189A JPH02209135A JP H02209135 A JPH02209135 A JP H02209135A JP 1028731 A JP1028731 A JP 1028731A JP 2873189 A JP2873189 A JP 2873189A JP H02209135 A JPH02209135 A JP H02209135A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- aperture
- transducers
- output
- probe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000523 sample Substances 0.000 claims abstract description 34
- 230000003321 amplification Effects 0.000 claims 1
- 238000003199 nucleic acid amplification method Methods 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 abstract description 8
- 238000010586 diagram Methods 0.000 description 24
- 238000000034 method Methods 0.000 description 6
- 238000002604 ultrasonography Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Landscapes
- Ultra Sonic Daignosis Equipment (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
この発明は例えば超音波診断装置等に使用する超音波送
受信装置、特にダレイティングサイドローブを抑圧する
ようにビーム指向特性を改善した超音波送受信装置に関
するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to an ultrasonic transmitting/receiving device used in, for example, an ultrasonic diagnostic device, and particularly an ultrasonic transmitting/receiving device with improved beam directivity characteristics so as to suppress dalating sidelobes. It is related to the device.
[従来の技術]
第1O図は従来の超音波送受信装置のブロック図であり
、図において、1−1−1−32は#1から#32まで
の振動子で超音波送受波の開口を形成するもの、10は
例えば振動子1−1〜1−32を一定間隔で直線状に配
列した探触子(一般にリニアアレイ探触子という)、2
はプリアンプ、3はフォーカス回路、4はログアンプ(
対数増幅器)、31はプリアンプ2、フォーカス回路3
及びログアンプ4を内蔵する受信部、5はアナログ・デ
ジタル変換器(以下AD変換器という)、20は一般に
送信用フォーカス回路をも含む送信部、80はデジタル
・スキャンφコンバータ(以下DSCという)、70は
表示器である。[Prior Art] Fig. 1O is a block diagram of a conventional ultrasonic transmitting/receiving device. In the figure, 1-1-1-32 is a transducer from #1 to #32 forming an aperture for transmitting and receiving ultrasonic waves. 10 is, for example, a probe in which transducers 1-1 to 1-32 are arranged linearly at regular intervals (generally referred to as a linear array probe);
is a preamplifier, 3 is a focus circuit, and 4 is a log amplifier (
(logarithmic amplifier), 31 is preamplifier 2, focus circuit 3
5 is an analog-to-digital converter (hereinafter referred to as AD converter); 20 is a transmitting unit that generally also includes a transmission focus circuit; and 80 is a digital scan φ converter (hereinafter referred to as DSC). , 70 is a display.
第1O図の動作を説明する。送信部20は一定の周期毎
に例えば周波数1〜10MHz程度のバースト波で探触
子10内の各振動子1−1〜1−32をそれぞれ対応す
る遅延時間を有する遅延素子を介して励振する。この遅
延素子を介して振動子を励振する方法を電子フォーカス
法と言い、第3図においてその詳細を説明する。この電
子フォー・カス法により電気信号の印加された各振動子
1−1〜1−32は電気信号を音響信号に変換し、それ
ぞれ超音波出力信号として探触子10の長方形開口面よ
り送波する。ここで各振動子1−1〜1−32はりニア
アレイ構造となっているため、各振動子よりの出力波が
合成された超音波音響信号は長方形開口面に対しである
指向特性を有する。探触子IOより送波された超音波音
響信号は媒体中(例えば人体中)を伝播し、音響インピ
ーダンスの変化点である反射物体からの反射信号は再び
探触子10に受波され、各振動子1−1〜1−32は受
波した超音波音響信号をそれぞれ電気信号に変換し出力
する。この32チヤネル分の受信信号はそれぞれ受信部
31内のプリアンプ2でチャネル別に増幅され、フォー
カス回路3へ供給される。The operation of FIG. 1O will be explained. The transmitter 20 excites each of the transducers 1-1 to 1-32 in the probe 10 with a burst wave having a frequency of approximately 1 to 10 MHz at regular intervals via delay elements each having a corresponding delay time. . The method of exciting the vibrator through this delay element is called the electronic focusing method, and its details will be explained with reference to FIG. Each of the transducers 1-1 to 1-32 to which an electric signal is applied by this electronic focusing method converts the electric signal into an acoustic signal, and transmits it from the rectangular aperture of the probe 10 as an ultrasonic output signal. do. Here, since each of the transducers 1-1 to 1-32 has a linear array structure, the ultrasonic acoustic signal obtained by combining the output waves from each transducer has a certain directional characteristic with respect to the rectangular aperture surface. The ultrasonic acoustic signal transmitted from the probe IO propagates through a medium (for example, inside the human body), and the reflected signal from the reflecting object, which is the point of change in acoustic impedance, is received by the probe 10 again, and each The transducers 1-1 to 1-32 each convert the received ultrasonic acoustic signals into electrical signals and output them. The received signals for these 32 channels are each amplified by the preamplifier 2 in the receiving section 31 for each channel, and then supplied to the focus circuit 3.
第3図はフォーカス回路が内蔵する遅延素子の遅延時間
を説明する図である。即ち従来のフォーカス回路は前記
リニアアレイ配置の両端の振動子1−1及び1−32か
ら得られる信号には最少の遅延時間を、前記アレイ配置
の中央の振動子1−18及び1−17から得られる信号
には最大の遅延時間を、また前記アレイ配置の両端と中
央の中間の振動子から得られる信号には、それぞれの振
動子の配列位置に応じた中間の遅延時間を与えて・、所
望のフォーカス距離における反射物体からの反射信号の
到達時間を等しくさせるように調整するものである。FIG. 3 is a diagram illustrating the delay time of a delay element included in the focus circuit. That is, the conventional focus circuit provides the minimum delay time for the signals obtained from the transducers 1-1 and 1-32 at both ends of the linear array arrangement, and the minimum delay time for the signals obtained from the transducers 1-18 and 1-17 at the center of the array arrangement. The maximum delay time is given to the obtained signal, and the intermediate delay time corresponding to the arrangement position of each transducer is given to the signal obtained from the transducers located between both ends and the center of the array arrangement. Adjustments are made so that the arrival times of reflected signals from a reflecting object at a desired focus distance are made equal.
従ってこの遅延時間の特性はフォーカス距離に対応して
設定される。フォーカス回路3は入力される32チヤネ
ルの信号毎に対応する上記説明の遅延時間を付与して取
り出された出力信号を1つの信号に加算合成し、ログア
ンプ4へ供給する。ログアンプ4は対数特性により入力
信号を増幅し、出力信号をAD変換器5へ供給する。A
D変換器5は入力アナログ信号を量子化し、デジタル信
号をDSC60へ供給する。DSC60は内蔵するフレ
ームメモリに入力信号を一旦記憶し、これを超音波映像
信号として表示器70により表示する。Therefore, the characteristic of this delay time is set corresponding to the focus distance. The focus circuit 3 adds and synthesizes the output signals taken out by adding the delay time described above to each of the input 32 channels of signals, and supplies the signal to the log amplifier 4. The log amplifier 4 amplifies the input signal using logarithmic characteristics and supplies the output signal to the AD converter 5. A
The D converter 5 quantizes the input analog signal and supplies a digital signal to the DSC 60. The DSC 60 temporarily stores the input signal in a built-in frame memory, and displays this as an ultrasound video signal on the display 70.
第11図は従来の超音波送受信装置のビーム指向特性を
示す図である。同図は前記リニアアレイ探触子の長方形
開口面の中央に垂線を設け、該垂線を通り開口面のアレ
イ配列方向に沿う面(以下水平面という)のビーム指向
特性であり、横軸は前記垂線の方向を0度とし、前記水
平面における垂線の左側を負、同右側を正とした角度で
ある。縦軸は前記水平面における超音波受信信号の最大
信号振幅値をOdBとして正規化した各角度における受
信信号振幅値である。第11図は送波周波数を5)Il
fz s振動素子数を32、振動素子間隔を送波周波数
の1波長の長さλとした場合の前記水平面指向特性であ
り、同図により中央位置0度におけるメインローブのほ
かに、±40度付近に不要なグレイティングサイドロー
ブが発生していることが分る。FIG. 11 is a diagram showing beam directivity characteristics of a conventional ultrasonic transmitter/receiver. The figure shows a perpendicular line in the center of the rectangular aperture surface of the linear array probe, and the beam directivity characteristic of a plane passing through the perpendicular line and along the array arrangement direction of the aperture surface (hereinafter referred to as the horizontal plane), and the horizontal axis is the perpendicular line. This is an angle where the direction of is 0 degrees, the left side of the perpendicular to the horizontal plane is negative, and the right side is positive. The vertical axis represents the received signal amplitude value at each angle, which is normalized using the maximum signal amplitude value of the ultrasonic received signal in the horizontal plane as OdB. Figure 11 shows the transmission frequency 5) Il
fz s This is the horizontal plane directivity characteristic when the number of vibration elements is 32 and the interval between vibration elements is the length of one wavelength of the transmission frequency λ, and as shown in the figure, in addition to the main lobe at the center position of 0 degrees, It can be seen that unnecessary grating side lobes are generated nearby.
一般にこのグレイティングサイドローブは振動子の送波
周波数と振動素子の間隔(ピッチ)により発生する角度
が決まり、偽像発生の原因となっている。Generally, the angle at which this grating sidelobe occurs is determined by the transmission frequency of the vibrator and the interval (pitch) between the vibrating elements, and is a cause of false images.
[発明が解決しようとする課題]
上記のような従来の超音波送受信装置では、超音波の送
受信ビーム指向特性にメインローブのほかに好ましくな
いグレイティングサイドローブを生じるため、偽像が発
生する場合があり、超音波診断装置に適用した場合には
誤診の原因となるという問題点があった。[Problems to be Solved by the Invention] In the conventional ultrasonic transmitting/receiving device as described above, in addition to the main lobe, undesirable grating side lobes are generated in the ultrasonic transmitting/receiving beam directivity characteristics, so that false images may occur. There is a problem that when applied to an ultrasound diagnostic device, it may cause misdiagnosis.
この発明はかかる問題点を解決するためグレイティング
サイドローブを抑圧した指向特性の改善された超音波送
受信装置を得ることを目的とする。SUMMARY OF THE INVENTION In order to solve these problems, it is an object of the present invention to provide an ultrasonic transmitter/receiver with improved directivity characteristics that suppress grating side lobes.
[課題を解決するための手段]
この第1の発明に係る超音波送受信装置は、複数の振動
子がアレイ状に配列され形成される探触子と、該探触子
に設定された開口に含まれるすべての振動子を励振し、
超音波信号を送信する送信手段と、前記開口に含まれる
振動子が超音波信号を受波したとき、開口を形成する振
動子のアレイ状配列の一端から開口に含まれる全振動子
数の半数の振動子より得られる受信信号をそれぞれ増幅
後、電子フォーカス処理を行ない出力信号を得る第1の
受信手段と、前記開口に含まれる振動子が超音波信号を
受波したとき、開口を形成する振動子のアレイ状配列の
他端から開口に含まれる全振動子数の半数の振動子より
得られる受信信号をそれぞれ増幅後、電子フォーカス処
理を行ない出力信号を得る第2の受信手段と、前記第1
の受信手段及び第2の受信手段より得られる出力信号の
振幅値を比較し、その振幅値の小さい方の信号又は等し
い値の信号を出力信号として選択する比較選択手段とを
備えたものである。[Means for Solving the Problems] The ultrasonic transmitting and receiving device according to the first invention includes a probe formed by arranging a plurality of transducers in an array, and an aperture set in the probe. Excite all included oscillators,
a transmitting means for transmitting an ultrasonic signal, and when the transducers included in the aperture receive the ultrasonic signal, half of the total number of transducers included in the aperture from one end of the array of transducers forming the aperture; a first receiving means that performs electronic focusing processing to obtain an output signal after amplifying received signals obtained from each of the transducers, and forming an aperture when the transducer included in the aperture receives an ultrasonic signal; a second receiving means for obtaining an output signal by amplifying received signals obtained from half of the total number of transducers included in the aperture from the other end of the array of transducers, and performing electronic focusing processing; 1st
and comparison and selection means for comparing the amplitude values of the output signals obtained from the receiving means and the second receiving means and selecting the signal with the smaller amplitude value or the signal of the same value as the output signal. .
この第2の発明に係る超音波送受信装置は、複数の振動
子がアレイ状に配列され形成される探触子と、該探触子
に設定された開口に含まれるすべての振動子を励振し、
超音波信号を送信する送信手段と、前記開口に含まれる
振動子が超音波信号を受波したとき、開口を形成する振
動子のアレイ状配列の一端から開口に含まれる全振動子
数の半数を越える数の振動子より得られる受信信号をそ
れぞれ増幅後、電子フォーカス処理を行ない出力信号を
得る第1の受信手段と、前記開口に含まれる振動子が超
音波信号を受波したとき、開口を形成する振動子のアレ
イ状配列の他端から開口に含まれる全振動子数の半数を
越える数の振動子より得られる受信信号をそれぞれ増幅
後、電子フォーカス処理を行ない出力信号を得る第2の
受信手段と、前記第1の受信手段及び第2の受信手段よ
り得られる出力信号の振幅値を比較し、その振幅値の小
さい方の信号又は等しい値の信号を出力信号として選択
する比較選択手段とを備えたものである。The ultrasonic transmitter/receiver according to the second invention includes a probe formed by arranging a plurality of transducers in an array, and excites all the transducers included in an aperture set in the probe. ,
a transmitting means for transmitting an ultrasonic signal, and when the transducers included in the aperture receive the ultrasonic signal, half of the total number of transducers included in the aperture from one end of the array of transducers forming the aperture; a first receiving means that obtains an output signal by performing electronic focusing processing after respectively amplifying received signals obtained from a number of transducers exceeding the number of transducers; After amplifying the received signals obtained from more than half of the total number of transducers included in the aperture from the other end of the array of transducers forming the aperture, electronic focus processing is performed to obtain output signals. Comparing the amplitude values of the output signals obtained from the receiving means, the first receiving means and the second receiving means, and selecting the signal with the smaller amplitude value or the signal with the same value as the output signal. It is equipped with means.
[作用]
この第1及び第2の発明においては、探触子は複数の振
動子がアレイ状に配列されて形成され、送信手段が前記
探触子に形成された開口に含まれるすべての振動子を励
振し、超音波信号を送信する。[Function] In the first and second inventions, the probe is formed by arranging a plurality of vibrators in an array, and the transmitting means transmits all the vibrations contained in the opening formed in the probe. Excite the child and transmit ultrasound signals.
そしてこの第1の発明において、前記送信され反射物体
から反射される超音波信号を前記開口に含まれる振動子
が受波し、第1の受信手段が前記開口を形成する振動子
のアレイ状配列の一端から開口に含まれる全振動子数の
半数の振動子より得られる受信信号をそれぞれ増幅後、
電子フォーカス処理を行ない、一方向のグレイティング
サイドローブを抑圧した出力信号を発生し、第2の受信
手段が前記開口を形成する振動子のアレイ状配列の他端
から開口に含まれる全振動子数の半数の振動子より得ら
れる受信信号をそれぞれ増幅後、電子フォーカス処理を
行ない、他方向のグレイティングサイドローブを抑圧し
た出力信号を発生し、比較選択手段が前記第1の受信手
段及び第2の受信手段より得られる出力信号の振幅値を
比較し、その振幅値の小さい方の信号又は等しい値の信
号を出力信号として選択し、両方向のグレイティングサ
イドローブを抑圧した受信信号を得る。In this first invention, a transducer included in the aperture receives the ultrasonic signal transmitted and reflected from a reflecting object, and the first receiving means is arranged in an array of transducers forming the aperture. After amplifying the received signals obtained from half of the total number of transducers included in the aperture from one end,
The second receiving means performs electronic focusing processing to generate an output signal in which grating sidelobes in one direction are suppressed, and the second receiving means receives all the transducers included in the aperture from the other end of the array of transducers forming the aperture. After amplifying the received signals obtained from half the number of transducers, electronic focusing processing is performed to generate an output signal in which grating side lobes in the other direction are suppressed, and the comparing and selecting means compares and selects the first receiving means and the first receiving means. The amplitude values of the output signals obtained from the two receiving means are compared, and the signal with the smaller amplitude value or the signal with the same value is selected as the output signal to obtain a received signal in which grating sidelobes in both directions are suppressed.
またこの第2の発明において、前記送信され反射物体か
ら反射される超音波信号を前記開口に含まれる振動子が
受波し、第1の受信手段が前記開口を形成する振動子の
アレイ状配列の一端から開口に含まれる全振動子数の半
数を越える数の振動子より得られる受信信号をそれぞれ
増幅後、電子フォーカス処理を行ない、メインローブの
ビーム幅を余り広げないで一方向のグレイティングサイ
ドローブを抑圧した出力信号を発生し、第2の受信手段
が前記開口を形成する振動子のアレイ状配列の他端から
開口に含まれる全振動子数の半数を越える数の振動子よ
り得られる受信信号をそれぞれ増幅後、電子フォーカス
処理を行ない、メインローブのビーム幅を余り広げない
で他方向のグレイティングサイドローブを抑圧した出力
信号を発生し、比較選択手段が前記第1の受信手段及び
第2の受信手段より得られる出力信号の振幅値を比較し
、その振幅値の小さい方の信号又は等しい値の信号を出
力信号として選択し、メインローブのビーム幅を余り広
げないで両方向のグレイティングサイドローブを抑圧し
た受信信号を得る。Further, in this second invention, a transducer included in the aperture receives the ultrasonic signal transmitted and reflected from a reflecting object, and the first receiving means is arranged in an array of transducers forming the aperture. After amplifying the received signals obtained from more than half of the total number of transducers included in the aperture from one end, electronic focusing processing is performed to generate a unidirectional grating without widening the main lobe beam width too much. The second receiving means generates an output signal with suppressed side lobes, and receives signals from the other end of the array of transducers forming the aperture, the number of which is more than half of the total number of transducers included in the aperture. After amplifying each received signal, the first receiving means performs electronic focusing processing to generate an output signal in which the grating side lobe in the other direction is suppressed without widening the beam width of the main lobe too much. The amplitude values of the output signals obtained from the first and second receiving means are compared, and the signal with the smaller amplitude value or the signal with the same value is selected as the output signal, and the beam width of the main lobe is not widened too much and the amplitude values of the output signals in both directions are compared. A received signal with grating sidelobes suppressed is obtained.
[実施例]
第1図はこの発明の超音波送受信装置の一実施例を示す
ブロック図であり、1−1−1−32.1O120,6
0及び70は第10図の従来装置と同一のものである。[Embodiment] FIG. 1 is a block diagram showing an embodiment of the ultrasonic transmitter/receiver of the present invention.
0 and 70 are the same as the conventional device shown in FIG.
2−11及び2−2は#1及び#2プリアンプ、a−を
及び3−2は#1及び#2フォーカス回路、4−1及び
4−2は#1及び#20グアンプ、30及び40は#1
受信部及び#2受信部、5−1及び5−2は#1及び#
2AD変換器、6は信号選択・回路である。2-11 and 2-2 are #1 and #2 preamplifiers, a- and 3-2 are #1 and #2 focus circuits, 4-1 and 4-2 are #1 and #20 amplifiers, 30 and 40 are #1
Receiving unit and #2 receiving unit, 5-1 and 5-2 are #1 and #2
2 is an AD converter, and 6 is a signal selection/circuit.
第1図の動作を説明する。送信部20は従来装置と同様
に、一定の周期毎に例えば周波数1〜lOMHz程度の
バースト波で探触子10内の開口を形成する各振動子1
−1〜1−32を前記電子フォーカス法により励振する
。電気信号の印加された各振動子1−1−1−32は電
気信号を音響信号に変換し、それぞれ超音波出力信号と
して探触子10の長方形開口面より送波する。探触子I
Oより送波され、媒体中を伝播し、音響インピーダンス
の変化点である反射物体からの反射信号は再び探触子l
Oに受波され、各振動子1−1〜1−32は受波した超
音波音響信号をそれぞれ電気信号に変換して出力する。The operation shown in FIG. 1 will be explained. Similar to the conventional device, the transmitter 20 transmits each vibrator 1 that forms an aperture in the probe 10 with a burst wave having a frequency of about 1 to 10 MHz at regular intervals.
-1 to 1-32 are excited by the electronic focusing method. Each transducer 1-1-1-32 to which an electric signal is applied converts the electric signal into an acoustic signal, and transmits it from the rectangular aperture of the probe 10 as an ultrasonic output signal. Probe I
The wave is transmitted from O, propagates through the medium, and the reflected signal from the reflecting object, which is the point of change in acoustic impedance, returns to the probe l.
Each of the transducers 1-1 to 1-32 converts the received ultrasonic acoustic signal into an electrical signal and outputs the electrical signal.
この各振動子!−1−1−32からの出力信号を1対の
受信部30及び40により個別に受信処理し、その後選
択合成する処理方法に本発明の大きな特徴がある。Each of these vibrators! A major feature of the present invention is a processing method in which output signals from -1-1-32 are individually received and processed by a pair of receiving sections 30 and 40, and then selectively combined.
第2図はこの発明の探触子開口と1対の受信開口とを説
明する図である。同図の(ア)は探触子開口部が長方形
開口面をなし、この開口面の長手方向の長さがしてある
ことを示している。同図の(イ)は探触子開口長りを2
等分するように#1受受信口及び#2受受信口を設けた
場合である。FIG. 2 is a diagram illustrating a probe aperture and a pair of receiving apertures of the present invention. (A) in the same figure shows that the probe opening has a rectangular opening surface, and the length in the longitudinal direction of this opening surface is equal. In (a) of the same figure, the probe aperture length is 2
This is a case where the #1 receiving port and the #2 receiving port are provided so as to be equally divided.
即ち#1及び#2受受信口長を91すると、11−1/
2Lの関係にある。以下第2図の(イ)の場合につき説
明する。振動子1−1〜1−16からの16チヤネル分
の受信信号は#1受信部30内の#1プリアンプ2−1
で、また振動子1−17〜1−32からの16チヤネル
分の受信信号は#2受信部40内の#2プリアンプ2−
2でそれぞれチャネル別に増幅される。That is, if #1 and #2 receiving port length is 91, then 11-1/
They are in a 2L relationship. The case (a) in FIG. 2 will be explained below. The received signals for 16 channels from the transducers 1-1 to 1-16 are sent to the #1 preamplifier 2-1 in the #1 receiving section 30.
Also, the 16 channels of received signals from the transducers 1-17 to 1-32 are sent to the #2 preamplifier 2- in the #2 receiving section 40.
2, each channel is amplified separately.
#1プリアンプ2−1から16チヤネルの出力信号は#
1フォーカス回路3−1へ、#2プリアンプ2−2から
16チヤネルの出力信号は#2フォーカス回路3−2へ
それぞれ供給される。#1及び#2フォーカス回路は従
来のフォーカス回路を2分割したもので良い。即ち第3
図の横軸を振動子番号16と17の間の中心線により2
分割し、その左側が#1フォーカス回路用の遅延特性、
その右側が#2フォーカス回路用の遅延特性となるよう
に、それぞれのチャネル信号に対応した遅延素子が設け
られる。#1 The output signal of 16 channels from preamplifier 2-1 is #
The output signals of 16 channels from the #2 preamplifier 2-2 are supplied to the #1 focus circuit 3-1 and the #2 focus circuit 3-2, respectively. The #1 and #2 focus circuits may be a conventional focus circuit divided into two parts. That is, the third
The horizontal axis of the figure is 2 by the center line between transducer numbers 16 and 17.
The left side is the delay characteristic for #1 focus circuit,
Delay elements corresponding to the respective channel signals are provided so that the delay characteristics for the #2 focus circuit are on the right side.
#1及び#2フォーカス回路3−1及び3−2はそれぞ
れ入力される16チヤネルの信号毎に対応する遅延時間
を有する遅延素子を介して取り出された信号を加算合成
し1つの出力信号としてそれぞれ#1及び#20グアン
ブ4−1及び4−2へ供給する。#1 and #2 focus circuits 3-1 and 3-2 add and synthesize signals taken out through delay elements having delay times corresponding to the input 16-channel signals, respectively, and output them as one output signal. #1 and #20 are supplied to Guanbu 4-1 and 4-2.
#1及び#20グアンブ4−1及び4−2は入力信号を
対数増幅し、それぞれ#1及び#2AD変換器5−1及
び5−2へ供給する。#1 and #20 amplifiers 4-1 and 4-2 logarithmically amplify the input signals and supply them to #1 and #2 AD converters 5-1 and 5-2, respectively.
第4図は#1受信部30よりの出力信号のビーム指向特
性を示す図であり、第5図は#2受信部40よりの出力
信号のビーム指向特性を示す図である。FIG. 4 is a diagram showing the beam directivity characteristic of the output signal from the #1 receiving section 30, and FIG. 5 is a diagram showing the beam directivity characteristic of the output signal from the #2 receiving section 40.
第4図及び第5図の説明をする。第4図及び第5図の指
向特性の面(前記の水平面)、横軸の角度、縦軸の正規
化信号振幅、送波周波数及び振動素子間隔は第11図に
おいて説明した内容と全く同一のものである。ここで第
4図は振動子1−1〜1−16からの受信信号を#1受
信部30において受信処理したビーム指向特性であり、
左側の一40度付近にのみグレイティングサイドローブ
が発生しており、右側にはほとんど存在しない。また第
5図は振動子1−17〜1−32からの受信信号を#2
受信部40において受信処理したビーム指向特性であり
、右側の+40度付近にのみグレイティングサイドロー
ブが発生しており、左側にはほとんど存在しないことが
示されている。従って第4図からはグレイティングサイ
ドローブの存在しない中央より右側(正の角度範囲)の
指向特性を採り、第5図からは同様に中央より左側(負
の角度範囲)の指向特性を採り、両者を合成すれば両方
向のグレイティングサイドローブをほぼ除去した指向特
性が得られることが分る。4 and 5 will be explained. The plane of the directional characteristics (the above-mentioned horizontal plane), the angle on the horizontal axis, the normalized signal amplitude on the vertical axis, the transmission frequency, and the vibration element spacing in Figures 4 and 5 are exactly the same as those explained in Figure 11. It is something. Here, FIG. 4 shows beam directivity characteristics obtained by receiving signals from the transducers 1-1 to 1-16 and being processed by the #1 receiving section 30.
Grating side lobes occur only around 140 degrees on the left side, and almost none exist on the right side. In addition, Fig. 5 shows the received signals from transducers 1-17 to 1-32 to #2.
This is the beam directivity characteristic received and processed by the receiving unit 40, and shows that grating side lobes occur only around +40 degrees on the right side, and are almost absent on the left side. Therefore, from Fig. 4, we take the directional characteristics to the right of the center (positive angular range) where there is no grating sidelobe, and from Fig. 5, we take the directional characteristics to the left of the center (negative angular range), It can be seen that by combining the two, a directivity characteristic in which grating sidelobes in both directions are almost eliminated can be obtained.
#1及び#2受信部30及び40からそれぞれ出力され
たアナログ信号は信号処理部50内の#1及び#2AD
変換器5−1及び5−2により量子化されデジタル信号
として信号選択回路6に供給される。The analog signals output from the #1 and #2 receiving sections 30 and 40, respectively, are sent to the #1 and #2 AD in the signal processing section 50.
The signals are quantized by converters 5-1 and 5-2 and supplied to the signal selection circuit 6 as digital signals.
信号選択回路6は例えばデジタル比較器と選択器とを内
蔵し、2つの入力信号を比較し、2つの入力信号のデジ
タル値が等しい場合はその等しい値を選択し、また2つ
の入力信号のデジタル値に大小関係がある場合はその小
さい方の値を選択して出力する。このようにして信号選
択回路6は#1及び#2AD変換器5−1及び5−2.
からの入力信号のうち、いずれか一方の入力信号を選択
して出力する。この信号選択回路6により2つのビーム
指向特性の選択合成が行なわれることになり、第6図に
その合成結果の指向特性を示す。The signal selection circuit 6 includes, for example, a digital comparator and a selector, compares two input signals, selects the equal value when the digital values of the two input signals are equal, and selects the equal value when the digital values of the two input signals are equal. If there is a size relationship between the values, the smaller value is selected and output. In this way, the signal selection circuit 6 connects the #1 and #2 AD converters 5-1 and 5-2.
Select and output one of the input signals from the input signals. The signal selection circuit 6 selectively combines the two beam directivity characteristics, and FIG. 6 shows the directivity characteristics as a result of the combination.
第6図はこの発明のグレイティングサイドローブの改善
されたビーム指向特性を示す図である。FIG. 6 is a diagram showing improved beam directivity characteristics of the grating side lobe of the present invention.
第6図の指向特性の面、横軸、縦軸、送波周波数及び振
動素子間隔等は、第4図、第5図及び第11図において
説明した内容と全く同一のもである。The directional characteristics, horizontal axis, vertical axis, transmission frequency, vibration element spacing, etc. in FIG. 6 are exactly the same as those explained in FIGS. 4, 5, and 11.
同図においてはグレイティングサイドローブはほぼ除去
され、偽像発生の危険はほとんどない。しかしメインロ
ーブの幅が増加し、ややブロードのビームとなっている
。In the figure, the grating sidelobes have been almost eliminated, and there is almost no risk of false images occurring. However, the width of the main lobe has increased, resulting in a slightly broader beam.
第7図は第6図のメインローブを角度方向に拡大したビ
ーム指向特性を示す図である。同図は横軸の角度目盛が
拡大されている点を除けば、すべて第6図で説明した内
容と同一のメインローブ指向特性図である。また同図の
実線は#1受信器30(即ち一方の受信器のみ)の出力
によるメインローブの指向特性を、破線は信号選択回路
6により選択合成された出力によるメインローブの指向
特性をそれぞれ示している。同図により選択合成後のメ
インローブの幅はやや広くなることがわかる。FIG. 7 is a diagram showing beam directivity characteristics obtained by enlarging the main lobe of FIG. 6 in the angular direction. This figure is a main lobe directional characteristic diagram that is completely the same as that explained in FIG. 6, except that the angle scale on the horizontal axis is enlarged. In addition, the solid line in the figure shows the directivity of the main lobe due to the output of the #1 receiver 30 (that is, only one receiver), and the broken line indicates the directivity of the main lobe due to the output selectively combined by the signal selection circuit 6. ing. It can be seen from the figure that the width of the main lobe after selective synthesis becomes slightly wider.
この選択合成後のメインローブの幅を狭くする手法とし
て振動素子間隔を広げ開口面積を大きくする方法がある
。例えば振動素子間隔を第4図及び第5図の2倍、即ち
送波周波数の2波長の長さ2λとした場合のビーム指向
特性図を第8図に示す。As a method of narrowing the width of the main lobe after this selective synthesis, there is a method of widening the interval between the vibrating elements and increasing the aperture area. For example, FIG. 8 shows a beam directivity characteristic diagram when the interval between the vibrating elements is twice that of FIGS. 4 and 5, that is, the length of two wavelengths of the transmission frequency is 2λ.
第8図はこの発明のメインローブの幅を改善したビーム
指向特性を示す図であり、振動素子間隔を2倍とした点
を除けばすべて第4図で説明した内容と同一である。同
図の実線は#1受信器30の出力によるビーム指向特性
を、破線は信号選択回路6により選択合成された出力に
よるビーム指向特性をそれぞれ示している。FIG. 8 is a diagram showing beam directivity characteristics with an improved main lobe width according to the present invention, and is the same as that explained in FIG. 4 except that the spacing between the vibrating elements is doubled. In the figure, the solid line indicates the beam directivity characteristic due to the output of the #1 receiver 30, and the broken line indicates the beam directivity characteristic due to the output selectively combined by the signal selection circuit 6.
第9図は第8図のメインローブを角度方向に拡大したビ
ーム指向特性を示す図である。同図は横軸の角度目盛が
拡大されている点を除けば、すべて第8図で説明した内
容と同一のメインローブ指向特性図である。また同図の
実線は#1受信器30(即ち一方の受信器のみ)の出力
によるメインローブの指向特性を、破線は信号選択回路
6により選択合成された出力によるメインローブの指向
特性をそれぞれ示している。第9図を第7図と比較する
とメインロ−ブの幅が狭くなっていることが分る。メイ
ンローブの幅が狭くなることにより、探触子10から得
られる反射信号を受信処理した超音波映像信号の分解能
は向上し、良質の画像表示が可能となる。FIG. 9 is a diagram showing a beam directivity characteristic obtained by enlarging the main lobe of FIG. 8 in the angular direction. This figure is the same main lobe directivity diagram as explained in FIG. 8, except that the angle scale on the horizontal axis is enlarged. In addition, the solid line in the figure shows the directivity of the main lobe due to the output of the #1 receiver 30 (that is, only one receiver), and the broken line indicates the directivity of the main lobe due to the output selectively combined by the signal selection circuit 6. ing. Comparing FIG. 9 with FIG. 7, it can be seen that the width of the main lobe is narrower. By narrowing the width of the main lobe, the resolution of the ultrasound image signal obtained by receiving and processing the reflected signal obtained from the probe 10 is improved, and high-quality image display becomes possible.
信号選択回路6は選択合成した信号をDSC80へ供給
する。DSC80は内蔵するフレームメモリに入力信号
を一旦記憶し、これを超音波映像信号として表示器70
により表示する。The signal selection circuit 6 supplies the selectively combined signals to the DSC 80. The DSC 80 temporarily stores the input signal in its built-in frame memory, and displays this as an ultrasound video signal on the display 70.
Displayed by
なお上記実施例においては、信号選択回路6が2つのデ
ジタル信号の大小関係を比較して、選択動作を行なう例
を示したが、#1及び#2受信部30及び40から出力
される2つのアナログ信号の大小関係をアナログ電圧比
較器により比較し、この比較結果により選択動作を行な
うようにしても全く同様の効果を期待できる。In the above embodiment, an example was shown in which the signal selection circuit 6 compares the magnitude relationship between the two digital signals and performs the selection operation. Exactly the same effect can be expected even if the magnitude relationship of the analog signals is compared by an analog voltage comparator and the selection operation is performed based on the comparison result.
また上記実施例では第2図の(イ)に示したように#1
及び#2受受信口長I11が探触子開口長りのl/2に
等しい場合の例を示したが、本発明はそれに限定される
ものではなく、例えば第2図の(つ)に示したように#
1及び#2受受信口長12が探触子開口長しの172を
越える場合、即ちl/2〉112Lでもよい。この場合
は2つの受信開口部の重なり合った部分の振動子からの
出力信号は#1及び#2受信部30及び40の両方で受
信処理される。この場合の効果はグレイティングサイド
ローブの抑圧効果はやや軽減されるが、振動素子間隔を
広げなくともメインローブの幅を狭くすることが可能と
なる。このようにして2つのトレイドオフの関係にある
両特性をうまく調和した製品を実現することが可能とな
る。また例えば第2図の(1)に示したように#1及び
#2受受信口長13が探触子開口長しの172以下の場
合、即ちl/3く112Lとしてもよい。In addition, in the above embodiment, as shown in FIG. 2 (A), #1
Although the example is shown in which the length I11 of the receiving and receiving port #2 is equal to 1/2 of the probe aperture length, the present invention is not limited thereto. #
If the length 12 of the receiving and receiving ports 1 and #2 exceeds the probe aperture length 172, that is, 1/2>112L. In this case, the output signal from the vibrator in the overlapping portion of the two receiving apertures is received and processed by both the #1 and #2 receiving sections 30 and 40. In this case, the effect of suppressing the grating side lobe is somewhat reduced, but the width of the main lobe can be narrowed without increasing the interval between the vibrating elements. In this way, it is possible to realize a product that successfully balances the two trade-off characteristics. For example, as shown in FIG. 2 (1), when the #1 and #2 receiving port lengths 13 are 172 or less than the probe aperture length, that is, 112L (l/3) may be used.
さらに上記実施例では複数の振動素子を一定間隔で直線
状に配列したリニアアレ、イ探触子の例を示したが、本
発明はこれに限定されるものではなく、曲線状に配列し
た探触子、例えば人体の腹部診断用のコンベックス形探
触子に本発明を適用することも可能である。Further, in the above embodiment, an example of a linear array probe in which a plurality of vibrating elements are arranged in a straight line at regular intervals was shown, but the present invention is not limited to this, and the present invention is not limited to this. It is also possible to apply the present invention to a convex-type probe for diagnosing the abdomen of a human body, for example.
[発明の効果コ
以上のようにこの発明によれば、超音波探触子のアレイ
状に配列された振動子を全く重複しない2つのグループ
又はアレイの中央で一部重複する2つのグループに分け
、それぞれのグループに属する振動子から得られる受信
信号を個別に受信処理し、この個別に受信処理された出
力信号の振幅を比較して、振幅値の小さい方の出力信号
を選択することにより、グレイティングサイドローブを
十分に抑圧したビーム指向特性、又はグレイティングサ
イドローブの抑圧効果はやや軽減されるがメインローブ
のビーム幅を狭くしたビーム指向特性が得られるので、
超音波受信映像の偽像を防止できるという効果が得られ
ている。[Effects of the Invention] As described above, according to the present invention, the transducers of an ultrasonic probe arranged in an array can be divided into two groups that do not overlap at all or two groups that partially overlap at the center of the array. By individually receiving and processing the received signals obtained from the transducers belonging to each group, comparing the amplitudes of the individually received and processed output signals, and selecting the output signal with the smaller amplitude value, Since it is possible to obtain a beam directivity characteristic in which the grating side lobe is sufficiently suppressed, or a beam directivity characteristic in which the grating side lobe suppression effect is slightly reduced but the beam width of the main lobe is narrowed,
The effect of preventing false images in ultrasound received images has been achieved.
第1図はこの発明の超音波送受信装置の一実施例を示す
ブロック図、第2図はこの発明の探触子開口と1対の受
信開口とを説明する図、第3図はフォーカス回路が内蔵
する遅延素子の遅延時間を説明する図、m4図は#1受
信部30よりの出力信号のビーム指向特性を示す図、第
5図は#2受信部40よりの出力信号のビーム指向特性
を示す図、第6図はこの発明のグレイティングサイドロ
ーブの改善されたビーム指向特性を示す図、第7図は第
6図のメインローブを角度方向に拡大したビーム指向特
性を示す図、第8図はこの発明のメインローブの幅を改
善したビーム指向特性を示す図、第9図は第8図のメイ
ンローブを角度方向に拡大したビーム指向特性を示す図
、第10図は従来の超音波送受信装置のブロック図、第
11図は従来の超音波送受信装置のビーム指向特性を示
す図である。
図において、■−1〜1−32は振動子、2はプリアン
プ、2−1は#1プリアンプ、2−2は#2プリアンプ
、3はフォーカス回路、3−1は#1フォーカス回路、
3−2は#2フォーカス回路、4はログアンプ、4−1
は#10グアンプ、4−2は#20グアンプ、5はAD
変換器、5−1は#IAD変換器、5−2は#2AD変
換器、10 Lt探触子、20 Get送信部、30は
#1受信部、31は受信部、4oは#2受信部、50は
信号処理部、60はDSC,70は表示器である。FIG. 1 is a block diagram showing an embodiment of an ultrasonic transmitter/receiver according to the present invention, FIG. 2 is a diagram illustrating a probe aperture and a pair of receiving apertures according to the present invention, and FIG. 3 is a diagram showing a focus circuit. A diagram explaining the delay time of the built-in delay element, Figure m4 is a diagram showing the beam directivity characteristic of the output signal from the #1 receiving section 30, and FIG. 5 is a diagram showing the beam directivity characteristic of the output signal from the #2 receiving section 40. 6 is a diagram showing improved beam directivity characteristics of the grating side lobe of the present invention. FIG. 7 is a diagram showing beam directivity characteristics obtained by enlarging the main lobe of FIG. 6 in the angular direction. The figure shows the beam directivity characteristic with improved main lobe width of the present invention, Figure 9 shows the beam directivity characteristic with the main lobe of Figure 8 expanded in the angular direction, and Figure 10 shows the beam directivity characteristic of the conventional ultrasonic wave. FIG. 11, which is a block diagram of a transmitting/receiving device, is a diagram showing beam directivity characteristics of a conventional ultrasonic transmitting/receiving device. In the figure, ■-1 to 1-32 are vibrators, 2 is a preamplifier, 2-1 is a #1 preamplifier, 2-2 is a #2 preamplifier, 3 is a focus circuit, 3-1 is a #1 focus circuit,
3-2 is #2 focus circuit, 4 is log amplifier, 4-1
is #10 Guamp, 4-2 is #20 Guamp, 5 is AD
Converter, 5-1 is #IAD converter, 5-2 is #2 AD converter, 10 Lt probe, 20 Get transmitter, 30 is #1 receiver, 31 is receiver, 4o is #2 receiver , 50 is a signal processing section, 60 is a DSC, and 70 is a display device.
Claims (2)
触子と、 該探触子に設定された開口に含まれるすべての振動子を
励振し、超音波信号を送信する送信手段と、 前記開口に含まれる振動子が超音波信号を受波したとき
、開口を形成する振動子のアレイ状配列の一端から開口
に含まれる全振動子数の半数の振動子より得られる受信
信号をそれぞれ増幅後、電子フォーカス処理を行ない出
力信号を得る第1の受信手段と、 前記開口に含まれる振動子が超音波信号を受波したとき
、開口を形成する振動子のアレイ状配列の他端から開口
に含まれる全振動子数の半数の振動子より得られる受信
信号をそれぞれ増幅後、電子フォーカス処理を行ない出
力信号を得る第2の受信手段と、 前記第1の受信手段及び第2の受信手段より得られる出
力信号の振幅値を比較し、その振幅値の小さい方の信号
又は等しい値の信号を出力信号として選択する比較選択
手段とを備えたことを特徴とする超音波送受信装置。(1) A probe formed by arranging a plurality of transducers in an array, and a transmitting means that excites all the transducers included in an aperture set in the probe and transmits an ultrasonic signal. , When the transducers included in the aperture receive an ultrasonic signal, receive signals obtained from half of the total number of transducers included in the aperture from one end of the array of transducers forming the aperture. a first receiving means that performs electronic focus processing to obtain an output signal after amplification, and the other end of the array of transducers forming the aperture when the transducers included in the aperture receive an ultrasonic signal; a second receiving means for obtaining an output signal by performing electronic focusing processing after amplifying received signals obtained from half of the total number of transducers included in the aperture; An ultrasonic transmitting/receiving device comprising: comparison and selection means for comparing amplitude values of output signals obtained from the receiving means and selecting a signal with a smaller amplitude value or a signal with an equal value as an output signal.
触子と、 該探触子に設定された開口に含まれるすべての振動子を
励振し、超音波信号を送信する送信手段と、 前記開口に含まれる振動子が超音波信号を受波したとき
、開口を形成する振動子のアレイ状配列の一端から開口
に含まれる全振動子数の半数を越える数の振動子より得
られる受信信号をそれぞれ増幅後、電子フォーカス処理
を行ない出力信号を得る第1の受信手段と、 前記開口に含まれる振動子が超音波信号を受波したとき
、開口を形成する振動子のアレイ状配列の他端から開口
に含まれる全振動子数の半数を越える数の振動子より得
られる受信信号をそれぞれ増幅後、電子フォーカス処理
を行ない出力信号を得る第2の受信手段と、 前記第1の受信手段及び第2の受信手段より得られる出
力信号の振幅値を比較し、その振幅値の小さい方の信号
又は等しい値の信号を出力信号として選択する比較選択
手段とを備えたことを特徴とする超音波送受信装置。(2) A probe formed by arranging a plurality of transducers in an array, and a transmitting means that excites all the transducers included in an aperture set in the probe and transmits an ultrasonic signal. , When the transducers included in the aperture receive an ultrasonic signal, the ultrasonic signal is obtained from more than half of the total number of transducers included in the aperture from one end of the array of transducers forming the aperture. a first receiving means that performs electronic focusing processing to obtain an output signal after amplifying each received signal; and an array of transducers that form an aperture when the transducers included in the aperture receive an ultrasonic signal. a second receiving means that obtains an output signal by performing electronic focusing processing after respectively amplifying received signals obtained from more than half of the total number of transducers included in the aperture from the other end; Comparing and selecting means for comparing the amplitude values of the output signals obtained from the receiving means and the second receiving means and selecting the signal with the smaller amplitude value or the signal of the same value as the output signal. Ultrasonic transceiver device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1028731A JPH02209135A (en) | 1989-02-09 | 1989-02-09 | Ultrasonic transmitter/receiver |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1028731A JPH02209135A (en) | 1989-02-09 | 1989-02-09 | Ultrasonic transmitter/receiver |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02209135A true JPH02209135A (en) | 1990-08-20 |
Family
ID=12256580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1028731A Pending JPH02209135A (en) | 1989-02-09 | 1989-02-09 | Ultrasonic transmitter/receiver |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02209135A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08299339A (en) * | 1995-05-01 | 1996-11-19 | Aloka Co Ltd | Ultrasonic diagnostic device |
US7207942B2 (en) * | 2003-07-25 | 2007-04-24 | Siemens Medical Solutions Usa, Inc. | Adaptive grating lobe suppression in ultrasound imaging |
JP2009168760A (en) * | 2008-01-19 | 2009-07-30 | Furuno Electric Co Ltd | Underwater detector |
WO2010100868A1 (en) | 2009-03-03 | 2010-09-10 | Canon Kabushiki Kaisha | Ultrasonic apparatus with adaptive and fixed beamforming |
JP2011191191A (en) * | 2010-03-15 | 2011-09-29 | Furuno Electric Co Ltd | Detection device |
JP2013518655A (en) * | 2010-02-08 | 2013-05-23 | ダルハウジー ユニバーシティ | Ultrasound imaging system using beamforming method for grating lobe suppression by phase coherence |
WO2013176221A1 (en) * | 2012-05-25 | 2013-11-28 | 富士フイルム株式会社 | Ultrasound diagnostic device, and data processing method |
WO2013176254A1 (en) * | 2012-05-25 | 2013-11-28 | 富士フイルム株式会社 | Ultrasound diagnostic device, and data processing method |
CN104812311A (en) * | 2012-12-07 | 2015-07-29 | 株式会社日立制作所 | Ultrasonic probe and ultrasonic diagnostic device |
-
1989
- 1989-02-09 JP JP1028731A patent/JPH02209135A/en active Pending
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08299339A (en) * | 1995-05-01 | 1996-11-19 | Aloka Co Ltd | Ultrasonic diagnostic device |
US7207942B2 (en) * | 2003-07-25 | 2007-04-24 | Siemens Medical Solutions Usa, Inc. | Adaptive grating lobe suppression in ultrasound imaging |
US7887486B2 (en) | 2003-07-25 | 2011-02-15 | Siemens Medical Solutions Usa, Inc. | Adaptive grating lobe suppression in ultrasound imaging |
JP2009168760A (en) * | 2008-01-19 | 2009-07-30 | Furuno Electric Co Ltd | Underwater detector |
US9110155B2 (en) | 2009-03-03 | 2015-08-18 | Canon Kabushiki Kaisha | Ultrasonic apparatus |
WO2010100868A1 (en) | 2009-03-03 | 2010-09-10 | Canon Kabushiki Kaisha | Ultrasonic apparatus with adaptive and fixed beamforming |
JP2010200926A (en) * | 2009-03-03 | 2010-09-16 | Canon Inc | Ultrasonic device |
US10295509B2 (en) | 2009-03-03 | 2019-05-21 | Canon Kabushiki Kaisha | Ultrasonic apparatus |
JP2013518655A (en) * | 2010-02-08 | 2013-05-23 | ダルハウジー ユニバーシティ | Ultrasound imaging system using beamforming method for grating lobe suppression by phase coherence |
JP2011191191A (en) * | 2010-03-15 | 2011-09-29 | Furuno Electric Co Ltd | Detection device |
WO2013176221A1 (en) * | 2012-05-25 | 2013-11-28 | 富士フイルム株式会社 | Ultrasound diagnostic device, and data processing method |
JP2013244206A (en) * | 2012-05-25 | 2013-12-09 | Fujifilm Corp | Ultrasonic diagnostic equipment and data processing method |
JP2013244205A (en) * | 2012-05-25 | 2013-12-09 | Fujifilm Corp | Ultrasonic diagnostic equipment and data processing method |
WO2013176254A1 (en) * | 2012-05-25 | 2013-11-28 | 富士フイルム株式会社 | Ultrasound diagnostic device, and data processing method |
US10932759B2 (en) | 2012-05-25 | 2021-03-02 | Fujifilm Corporation | Ultrasound diagnostic apparatus and data processing method |
CN104812311A (en) * | 2012-12-07 | 2015-07-29 | 株式会社日立制作所 | Ultrasonic probe and ultrasonic diagnostic device |
CN104812311B (en) * | 2012-12-07 | 2017-07-04 | 株式会社日立制作所 | Ultrasonic probe and diagnostic ultrasound equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0627635B1 (en) | Ultrasonic imaging by radial scan of trapezoidal sector | |
US4180792A (en) | Transmit-receive transducer array and ultrasonic imaging system | |
CN1129401C (en) | Ultrasonic diagnostic equipment | |
JP4610719B2 (en) | Ultrasound imaging device | |
JPH0360491B2 (en) | ||
JPWO2006006460A1 (en) | Ultrasonic imaging device | |
JPH0155429B2 (en) | ||
JP2770391B2 (en) | Ultrasound imaging device | |
JPWO2014087532A1 (en) | Ultrasonic probe and ultrasonic diagnostic apparatus | |
JPH02209135A (en) | Ultrasonic transmitter/receiver | |
JP2006095151A (en) | Ultrasonic diagnostic apparatus | |
JPH06114056A (en) | Ultrasonic diagnostic equipment | |
US20040193050A1 (en) | Ultrasonic transmitting and receiving apparatus | |
JP3244489B2 (en) | Ultrasound diagnostic equipment | |
JPH07236642A (en) | Ultrasonic diagnostic device | |
JPH08266540A (en) | Ultrasonic diagnostic system | |
JP4344146B2 (en) | Method for determining opening of ultrasonic diagnostic apparatus | |
JP3253287B2 (en) | Ultrasound diagnostic equipment | |
JPH0614927A (en) | Ultrasonic diagnostic device | |
JPH10127635A (en) | Ultrasonic diagnostic system | |
JP2004290393A (en) | Ultrasound diagnostic equipment | |
JP4154043B2 (en) | Ultrasonic imaging device | |
JP3515630B2 (en) | Ultrasound diagnostic equipment | |
JPH0824258A (en) | Ultrasonic transmitting and receiving method and apparatus using dispersion compression method | |
JPS58216044A (en) | Ultrasonic diagnostic apparatus |