[go: up one dir, main page]

JPH02208497A - Two-phase flow cold plate - Google Patents

Two-phase flow cold plate

Info

Publication number
JPH02208497A
JPH02208497A JP2518089A JP2518089A JPH02208497A JP H02208497 A JPH02208497 A JP H02208497A JP 2518089 A JP2518089 A JP 2518089A JP 2518089 A JP2518089 A JP 2518089A JP H02208497 A JPH02208497 A JP H02208497A
Authority
JP
Japan
Prior art keywords
plate
evaporation
evaporating
heat
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2518089A
Other languages
Japanese (ja)
Inventor
Akira Akiyoshi
亮 秋吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
Ishikawajima Harima Heavy Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawajima Harima Heavy Industries Co Ltd filed Critical Ishikawajima Harima Heavy Industries Co Ltd
Priority to JP2518089A priority Critical patent/JPH02208497A/en
Publication of JPH02208497A publication Critical patent/JPH02208497A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PURPOSE:To prevent the generation of the dry-out of an evaporating surface by a method wherein an evaporating plate, forming an evaporating space by a heat receiving plate and the end face of a flange unit, is formed between both of heat transfer flanges projected from the heat receiving plate while a liquid introducing unit is formed at the opposite side of the evaporating space. CONSTITUTION:Heat transfer flanges 18 are projected from the lower surface of a heat receiving plate 17 with a required space so as to form a plurality of parallel evaporating spaces 16. An evaporating plate 20, consisting of a porous sintered metal, is bonded integrally to the lower end bonding surface 19 of the flanges 18 and, further, a liquid introducing unit 22 is formed below the evaporating plate 20 by a bottom plate 21. Accordingly, liquid, introduced into the evaporating plate 20, is blown off by the heat of the evaporating plate 20 into the evaporating space 16 directly whereby effective heat absorption may be effected. On the other hand, an evaporating surface 23 is neared to the liquid introducing unit 22 by the heat transfer flanges 18 and the evaporating plate 20 whereby the flow resistance of the introduced liquid can be reduced and, therefore, the generation of dry-out of the evaporating surface may be prevented effectively.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は宇宙機器の排熱系の冷却に用いられる二相流コ
ールドプレートに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a two-phase flow cold plate used for cooling a heat exhaust system of space equipment.

[従来の技術] 従来、第3図に示すように、宇宙機や宇宙基地1内に設
置した機器2を冷却する場合、宇宙機や宇宙基地1内部
の温度上昇を防止するために、二相流コールドプレート
3と放熱凝縮器4との間に管路5.6を介して熱媒体を
循環させる二相流排熱ループを形成し、前記機器2の発
熱を二相流コールドプレート3によって吸収し、その熱
を放熱凝縮器4から宇宙空間へ放出することが考えられ
ている。
[Prior Art] Conventionally, as shown in Fig. 3, when cooling equipment 2 installed in a spacecraft or space base 1, a two-phase A two-phase flow waste heat loop is formed between the flow cold plate 3 and the heat dissipation condenser 4 in which a heat medium is circulated through the pipe 5.6, and the heat generated by the equipment 2 is absorbed by the two-phase flow cold plate 3. However, it is considered that the heat is released from the heat dissipation condenser 4 into outer space.

第4図は従来考えられている二相流コールドプレート3
の一例を示すもので、上面に第3図に示した機器2の熱
を受ける受熱面7を有する熱伝達性の良い材料にて構成
した受熱板8の裏面に、三角形の断面を有する多数の蒸
発溝9を設け、更に前記受熱板8の裏面と所要の間隔を
をして底板10を配置し、且つ前記受熱板8の裏面に導
液ウィックllを設け、更に該導液ウィック11と底板
lOとの間に液供給板12を配置し、該液供給板12と
前記導液ウィック11を、受熱板8と底板10によって
挟持している。
Figure 4 shows the conventional two-phase flow cold plate 3.
This is an example of a heat-receiving plate 8 made of a material with good heat transfer properties, which has a heat-receiving surface 7 on the upper surface that receives the heat of the equipment 2 shown in FIG. An evaporation groove 9 is provided, a bottom plate 10 is arranged at a required distance from the back surface of the heat receiving plate 8, a liquid guide wick 11 is provided on the back surface of the heat receiving plate 8, and the liquid guide wick 11 and the bottom plate are provided. A liquid supply plate 12 is disposed between the heat receiving plate 8 and the bottom plate 10, and the liquid supply plate 12 and the liquid guiding wick 11 are sandwiched between the heat receiving plate 8 and the bottom plate 10.

更に、前記液供給板12の導液ウィック11と当接する
面には液供給溝13を設け、且つ底板lOと当接する面
には蒸気排出流路14を設けている。
Furthermore, a liquid supply groove 13 is provided on the surface of the liquid supply plate 12 that comes into contact with the liquid guide wick 11, and a vapor discharge channel 14 is provided on the surface that comes into contact with the bottom plate IO.

上記第4図に示した二相流コールドプレート3において
は、液は液供給溝13を介して導液ウィックll内に毛
細管現象によって導かれ、更に蒸発溝9の蒸発部15に
広がり、受熱板8が受熱面7から受ける熱量Qによって
蒸発し、蒸発溝9を第4図の紙面と直角方向に流れ、蒸
気排出流路14から排出される。
In the two-phase flow cold plate 3 shown in FIG. 8 is evaporated by the amount of heat Q received from the heat receiving surface 7, flows through the evaporation groove 9 in a direction perpendicular to the paper plane of FIG. 4, and is discharged from the steam exhaust passage 14.

[発明が解決しようとする課題] しかし、上記従来のコールドプレート3゛においては、
液供給溝13の液を導液ウィック11を介して蒸発部1
5に導くようにしているために、液が蒸発部15に導か
れるまでの距離が長く、流れ抵抗が増加することになり
、更に蒸発部15が平面のために液を吸引する力が弱く
、均一にしかも安定して蒸発部15に液を導くことが困
難となり、よってドライアウトを生じ易く熱吸収効率を
著しく低下させてしまう問題を存していた。
[Problem to be solved by the invention] However, in the above conventional cold plate 3,
The liquid in the liquid supply groove 13 is transferred to the evaporation section 1 via the liquid guide wick 11.
5, the distance for the liquid to be guided to the evaporator 15 is long, increasing flow resistance.Furthermore, since the evaporator 15 is flat, the force to suck the liquid is weak. It becomes difficult to uniformly and stably introduce the liquid to the evaporation section 15, and therefore dryout tends to occur, resulting in a significant decrease in heat absorption efficiency.

本発明は、上記従来の問題点に着目してなしたもので、
導液部と蒸発面とを近付けることにより、ドライアウト
の発生防止と、効率の良い吸熱効果を達成することを目
的としている。
The present invention was made by focusing on the above-mentioned conventional problems.
By bringing the liquid guide part and the evaporation surface closer together, the purpose is to prevent dryout and achieve efficient heat absorption.

[課題を解決するための手段] 本発明は一側面に所要の間隔で伝熱フランジ部を突設し
た受熱板と、焼結金属からなり前記伝熱フランジ部の端
面に一体に接着して前記伝熱フランジ部相互間に蒸発空
間を形成する蒸発板と、該蒸発板の反蒸発空間側に形成
した導液部とからなることを特徴とする二相流コールド
プレート、及び受熱板と、焼結金属にてL字状に形成さ
れ、その一辺を前記受熱板の一側面に一体に且つ複数平
行に接着してなる蒸発フィンと、該蒸発フィンの他辺の
端面に当接して前記蒸発フィン相互間に蒸発空間を形成
する導液ウィックと、該導液ウィックの反蒸発空間側に
形成した導液部とからなることを特徴とする二相流コー
ルドプレートにかかるものである。
[Means for Solving the Problems] The present invention includes a heat receiving plate having heat transfer flange portions protruding from one side at required intervals, and a heat receiving plate made of sintered metal and integrally bonded to the end face of the heat transfer flange portion. A two-phase flow cold plate comprising an evaporation plate forming an evaporation space between heat transfer flange parts, and a liquid guiding part formed on the side opposite to the evaporation space of the evaporation plate; an evaporator fin formed in an L-shape from a compact metal, one side of which is adhered integrally and in parallel to one side of the heat receiving plate; and an evaporator fin that is in contact with the end surface of the other side of the evaporator fin The present invention relates to a two-phase flow cold plate characterized by comprising a liquid guide wick forming an evaporation space between them, and a liquid guide part formed on the side opposite to the evaporation space of the liquid guide wick.

[作   用] 受熱板の熱が伝熱フランジ部を介して蒸発板に伝わり、
導液部から多孔質の蒸発板に導かれた液は蒸発面から直
接蒸発空間内に吹き出すように蒸発する。
[Function] Heat from the heat receiving plate is transmitted to the evaporator plate via the heat transfer flange,
The liquid guided from the liquid guide part to the porous evaporation plate is evaporated so as to be blown directly into the evaporation space from the evaporation surface.

又、受熱板の熱が蒸発フィンに伝わり、導液部から導液
ウィックを介して蒸発フィンに導かれた液は直ちに蒸発
フィンにおける蒸発空間に対向する面から蒸発する。
Further, the heat of the heat receiving plate is transmitted to the evaporating fins, and the liquid guided from the liquid guiding portion to the evaporating fins via the liquid guiding wick immediately evaporates from the surface of the evaporating fins facing the evaporation space.

[実 施 例コ 以下、本発明の実施例を図面を参照しつつ説明する。[Implementation example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を示すもので、゛上面に前記
第3図に示した機器2の熱を受ける受熱面7を有し熱伝
達性の良い材料(例えばアルミ)にて構成された受熱板
■7の下面に、複数の平行な蒸発空間16を形成するよ
うに所要の間隔を存して伝熱フランジ部18を一体に突
設し、該各伝熱フランジ部18の下端接着面19に、多
孔質の焼結金属(例えば銅)からなる蒸発板20を拡散
接合等にて一体に接着し、更に該蒸発板20の下面に底
板21を介して導液部22を形成することにより吹き出
し型の二相流コールドプレー)3aを構成する。23は
蒸発面を示す。
FIG. 1 shows an embodiment of the present invention, which has a heat-receiving surface 7 on the top surface that receives the heat of the equipment 2 shown in FIG. Heat transfer flange portions 18 are integrally provided on the lower surface of the heated heat receiving plate 7 at required intervals so as to form a plurality of parallel evaporation spaces 16, and the lower end of each heat transfer flange portion 18 is provided. An evaporation plate 20 made of porous sintered metal (for example, copper) is integrally bonded to the adhesive surface 19 by diffusion bonding or the like, and a liquid guide portion 22 is further formed on the lower surface of the evaporation plate 20 via a bottom plate 21. By doing so, a blow-out type two-phase flow cold play (3a) is constructed. 23 indicates the evaporation surface.

上記吹き出し型の二相流コールドプレート3aでは、受
熱板17の受熱面7で受けた熱量Qは、殆んど変化する
ことなく一体の伝熱フランジ部18に伝わり、更に拡散
接合等にて一体化された接着面19を介して蒸発板20
に伝えられる。
In the above-mentioned blow-out type two-phase flow cold plate 3a, the amount of heat Q received on the heat receiving surface 7 of the heat receiving plate 17 is transmitted to the integrated heat transfer flange portion 18 with almost no change, and is further integrated by diffusion bonding or the like. evaporation plate 20 via the adhesive surface 19
can be conveyed to.

一方、蒸発板20はその下面が導液部22内の液に直接
接しており、しかも導液効果が優れた焼結金属による多
孔質構造を有しているので、前記導液部22の液を良好
に蒸発空間16側に導く。
On the other hand, since the lower surface of the evaporator plate 20 is in direct contact with the liquid in the liquid guide section 22 and has a porous structure made of sintered metal with an excellent liquid guide effect, the evaporator plate 20 is effectively guided to the evaporation space 16 side.

従って、蒸発板20内に導かれた液は、蒸発板20の熱
によってその上面から蒸発空間1c内に直接吹き出すよ
うに蒸発することになり、従って効果的な吸熱が行われ
ると共に、導液のための距離が蒸発板20の厚さ分のみ
の短かい距離であるために導液が容易確実に行われて蒸
発板20の蒸発面23がドライアウトするようなことを
防止できる。
Therefore, the liquid guided into the evaporation plate 20 is evaporated so as to be blown directly into the evaporation space 1c from the upper surface of the evaporation plate 20 due to the heat of the evaporation plate 20. Therefore, effective heat absorption is performed, and the liquid is evaporated. Since the distance for the evaporation is as short as the thickness of the evaporation plate 20, the liquid can be introduced easily and reliably, and the evaporation surface 23 of the evaporation plate 20 can be prevented from drying out.

第2図は本発明の別の実施例を示すもので、上面に受熱
面7を有した受熱板24の下側接着面25に、焼結金属
にてL字形に形成した蒸発フィン2Bの一辺2f3aを
拡散接合等により平行に複数接着し、且つ他辺28bの
下端に導液ウィック27を接触させて配置することによ
り複数の蒸発空間16を形成し、更に前記導液ウィック
27の下面に底板28を介して導液部29を形成するこ
とによりフィン型の二相流コールドプレート3bを構成
する。
FIG. 2 shows another embodiment of the present invention, in which one side of an evaporator fin 2B is formed in an L-shape from sintered metal on the lower adhesive surface 25 of a heat-receiving plate 24 having a heat-receiving surface 7 on the upper surface. A plurality of evaporation spaces 16 are formed by bonding a plurality of 2f3a in parallel by diffusion bonding or the like, and placing the liquid guide wick 27 in contact with the lower end of the other side 28b, and furthermore, a bottom plate is attached to the lower surface of the liquid guide wick 27. A fin-shaped two-phase flow cold plate 3b is constructed by forming a liquid guide portion 29 through the fin-shaped two-phase flow cold plate 3b.

上記フィン型の二相流コールドプレート3bでは、受熱
板24の受熱面7で受けた熱l1kQは゛、前記受熱板
24の下側接着面25に拡散接合等にて一体に接着され
た蒸発フィン2Bの一辺28aに殆んど変化することな
く伝わり、更に他方の辺26bに伝わる。
In the fin type two-phase flow cold plate 3b, the heat l1kQ received on the heat receiving surface 7 of the heat receiving plate 24 is the evaporation fin 2B which is integrally bonded to the lower adhesive surface 25 of the heat receiving plate 24 by diffusion bonding or the like. It is transmitted to one side 28a of , with almost no change, and is further transmitted to the other side 26b.

一方、導液ウィック27はその下面が導液部29内の液
に接しているので液は導液ウィック27を介して蒸発フ
ィン2Bの他辺2Bb端部に導かれ、更に導液効果の優
れた多孔質の蒸発フィン26内部を良好に移動する。
On the other hand, since the lower surface of the liquid guide wick 27 is in contact with the liquid in the liquid guide part 29, the liquid is guided to the end of the other side 2Bb of the evaporator fin 2B via the liquid guide wick 27, which further improves the liquid guide effect. It moves well inside the porous evaporation fins 26.

従って、蒸発フィン2B内に導かれた液は、蒸発フィン
26の熱によって他辺26bの両側面及び一辺26aの
下面から蒸発空間16内に蒸発することになり、従って
効果的な吸熱が行われると共に、導液のための距離が導
液ウィック27の厚さ分のみの短かい距離であるために
液が直ちに蒸発フィン26の蒸発面23に導かれ、且つ
蒸発フィン2B内部を良好に移動するので、蒸発面23
がドライアウトするようなことを防止できる。
Therefore, the liquid guided into the evaporation fin 2B is evaporated into the evaporation space 16 from both sides of the other side 26b and the lower surface of the side 26a by the heat of the evaporation fin 26, so that effective heat absorption is performed. In addition, since the distance for guiding the liquid is as short as the thickness of the liquid guiding wick 27, the liquid is immediately guided to the evaporation surface 23 of the evaporating fin 26 and moves well inside the evaporating fin 2B. Therefore, the evaporation surface 23
can prevent dry out.

尚、本発明の二相流コールドプレートは、上述の実施例
にのみ限定されるものではなく、本発明の要旨を逸脱し
ない範囲内において種々変更を加え得ることは勿論であ
る。
It should be noted that the two-phase flow cold plate of the present invention is not limited to the above-described embodiments, and it goes without saying that various changes may be made without departing from the gist of the present invention.

[発明の効果] 以上説明したように、本発明の二相流コールドプレート
によれば、伝熱フランジ部と蒸発板、或いは蒸発フィン
によって蒸発面を導液部に近接させたことにより、導液
のための液の流れ抵抗を減少し、且つ蒸発面を焼結金属
による多孔質構造とすることによって液の移動を良好に
しているので、蒸発面のドライアウトの発生を効果的に
防止できる優れた効果を奏し得る。
[Effects of the Invention] As explained above, according to the two-phase flow cold plate of the present invention, the evaporation surface is brought close to the liquid guide part by the heat transfer flange part and the evaporator plate or the evaporator fin, so that the liquid guide part is The evaporation surface has a porous structure made of sintered metal to reduce the flow resistance of the liquid, and the evaporation surface has a porous structure made of sintered metal, which improves the movement of the liquid, effectively preventing the occurrence of dryout on the evaporation surface. It can have a great effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の断面図、第2図は本発明の
別の実施例を示す断面図、第3図は二相流コールドプレ
ートが使用されている宇宙機や宇宙基地の説明図、第4
図は従来の二相流コールドプレートの一例を示す断面図
である。 3aは吹き出し型の二相流コールドプレート、3bはフ
ィン型の二相流コールドプレート、16は蒸発空間、1
7は受熱板、18は伝熱フランジ部、19は接着面、2
0は蒸発板、21は底板、22は導液部、23は蒸発面
、24は受熱板、25は接着面、2Bは蒸発フィン、2
8aは一辺、26bは他辺、27は導液ウィック、28
は底板、29は導液部を示す。
Fig. 1 is a sectional view of one embodiment of the present invention, Fig. 2 is a sectional view of another embodiment of the invention, and Fig. 3 is a sectional view of a spacecraft or space base in which a two-phase flow cold plate is used. Explanatory diagram, 4th
The figure is a sectional view showing an example of a conventional two-phase flow cold plate. 3a is a blow-out type two-phase flow cold plate, 3b is a fin-type two-phase flow cold plate, 16 is an evaporation space, 1
7 is a heat receiving plate, 18 is a heat transfer flange portion, 19 is an adhesive surface, 2
0 is an evaporation plate, 21 is a bottom plate, 22 is a liquid guiding part, 23 is an evaporation surface, 24 is a heat receiving plate, 25 is an adhesive surface, 2B is an evaporation fin, 2
8a is one side, 26b is the other side, 27 is a liquid guiding wick, 28
29 represents a bottom plate, and 29 represents a liquid guide portion.

Claims (1)

【特許請求の範囲】 1)一側面に所要の間隔で伝熱フランジ部を突設した受
熱板と、焼結金属からなり前記伝熱フランジ部の端面に
一体に接着して前記伝熱フランジ部相互間に蒸発空間を
形成する蒸発板と、該蒸発板の反蒸発空間側に形成した
導液部とからなることを特徴とする二相流コールドプレ
ート。 2)受熱板と、焼結金属にてL字状に形成され、その一
辺を前記受熱板の一側面に一体に且つ複数平行に接着し
てなる蒸発フィンと、該蒸発フィンの他辺の端面に当接
して前記蒸発フィン相互間に蒸発空間を形成する導液ウ
ィックと、該導液ウィックの反蒸発空間側に形成した導
液部とからなることを特徴とする二相流コールドプレー
ト。
[Scope of Claims] 1) A heat receiving plate having heat transfer flange portions protruding from one side at required intervals, and a heat transfer flange portion made of sintered metal and integrally bonded to the end face of the heat transfer flange portion. A two-phase flow cold plate comprising an evaporation plate that forms an evaporation space between them, and a liquid guide portion formed on the side opposite to the evaporation space of the evaporation plate. 2) A heat receiving plate, an evaporation fin made of sintered metal in an L-shape, one side of which is adhered integrally and in parallel to one side of the heat receiving plate, and an end face of the other side of the evaporation fin. A two-phase flow cold plate comprising: a liquid guide wick that contacts the evaporator fins to form an evaporation space between the evaporation fins; and a liquid guide part formed on the side opposite to the evaporation space of the liquid guide wick.
JP2518089A 1989-02-03 1989-02-03 Two-phase flow cold plate Pending JPH02208497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2518089A JPH02208497A (en) 1989-02-03 1989-02-03 Two-phase flow cold plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2518089A JPH02208497A (en) 1989-02-03 1989-02-03 Two-phase flow cold plate

Publications (1)

Publication Number Publication Date
JPH02208497A true JPH02208497A (en) 1990-08-20

Family

ID=12158804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2518089A Pending JPH02208497A (en) 1989-02-03 1989-02-03 Two-phase flow cold plate

Country Status (1)

Country Link
JP (1) JPH02208497A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085186A (en) * 2002-07-05 2004-03-18 Sony Corp Cooling device, electronic equipment, acoustic device, and method of manufacturing cooling device
US7069975B1 (en) 1999-09-16 2006-07-04 Raytheon Company Method and apparatus for cooling with a phase change material and heat pipes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7069975B1 (en) 1999-09-16 2006-07-04 Raytheon Company Method and apparatus for cooling with a phase change material and heat pipes
US7416017B2 (en) 1999-09-16 2008-08-26 Raytheon Company Method and apparatus for cooling with a phase change material and heat pipes
JP2004085186A (en) * 2002-07-05 2004-03-18 Sony Corp Cooling device, electronic equipment, acoustic device, and method of manufacturing cooling device

Similar Documents

Publication Publication Date Title
KR100442888B1 (en) Apparatus for dense chip packaging using heat pipes and thermoelectric coolers
US4951740A (en) Bellows heat pipe for thermal control of electronic components
US20070000646A1 (en) Heat dissipation device with heat pipe
US20080093052A1 (en) Heat dissipation device with heat pipes
US7331379B2 (en) Heat dissipation device with heat pipe
US20060243425A1 (en) Integrated circuit heat pipe heat spreader with through mounting holes
US7537046B2 (en) Heat dissipation device with heat pipe
US7451806B2 (en) Heat dissipation device with heat pipes
JP2007507685A (en) Plate heat transfer device
US20070051498A1 (en) Heat dissipation device with a heat pipe
US20030024691A1 (en) High efficiency heat sink
JP2011103384A (en) Heat sink
US20080314554A1 (en) Heat dissipation device with a heat pipe
US20060113662A1 (en) Micro heat pipe with wedge capillaries
CN215729476U (en) Vapor chamber and electronic apparatus
JPH02208497A (en) Two-phase flow cold plate
JP2022160275A (en) Cooling device
JP3093442B2 (en) Heat pipe type heat sink
JPH11101585A (en) Plate-type heat pump and its packaging structure
JPH10270616A (en) Apparatus for radiating heat of electronic components
CN116744635A (en) Radiating assembly and elevator control cabinet
US7597133B2 (en) Heat dissipation device with heat pipes
KR102457713B1 (en) Vapor chamber with clad material and manufacturing method thereof
JP3093441B2 (en) Heat sink for high power electronic equipment
JPH1187586A (en) Cooling structure for multi-chip module