[go: up one dir, main page]

JPH02208325A - Heat-resistant polymer molding and its production - Google Patents

Heat-resistant polymer molding and its production

Info

Publication number
JPH02208325A
JPH02208325A JP2948889A JP2948889A JPH02208325A JP H02208325 A JPH02208325 A JP H02208325A JP 2948889 A JP2948889 A JP 2948889A JP 2948889 A JP2948889 A JP 2948889A JP H02208325 A JPH02208325 A JP H02208325A
Authority
JP
Japan
Prior art keywords
polyester
component
polysiloxane
heat
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2948889A
Other languages
Japanese (ja)
Inventor
Osami Shinonome
東雲 修身
Minoru Kishida
稔 岸田
Tomoyuki Izumi
智之 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2948889A priority Critical patent/JPH02208325A/en
Publication of JPH02208325A publication Critical patent/JPH02208325A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Silicon Polymers (AREA)

Abstract

PURPOSE:To obtain the title molding improved in heat resistance and dimensional stability by irradiating a molding of block or graft copolymer of a polyester with a polysiloxane with a radiation to thereby crosslink at least part of the polysiloxane. CONSTITUTION:A molding of a thickness <= about 200mum, comprising a block or graft copolymer of 99-70wt.% polyester component (e.g. polyethylene terephthalate) with 1-30wt.% polysiloxane component having structural units of the formula (wherein R1-2 are each a 10C or lower alkyl, a cycloalkyl, an aryl or an aralkyl), is irradiated with a radiation of an accelerating voltage of 10-10000kV at a dose of 3-100Mrad and an irradiation temperature of 30-150 deg.C to crosslink at least part of the polysiloxane component.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐熱性や寸法安定性が改善されたポリエステ
ル系の高分子成形品及びその製造法に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a polyester polymer molded article with improved heat resistance and dimensional stability, and a method for producing the same.

(従来の技術) ポリエチレンテレフタレート、ポリブチレンテレフタレ
ート等のポリエステル及びこれらを主成分とした各種共
重合ポリエステルは高融点で、高結晶性であると共に機
械的特性も良いので、繊維。
(Prior Art) Polyesters such as polyethylene terephthalate and polybutylene terephthalate and various copolyesters containing these as main components have high melting points, high crystallinity, and good mechanical properties, so they are used as fibers.

フィルム、容器等の成形品として多くの分野に使われて
いることは周知の通りである。ところが近年、電気・電
子機器産業、自動車産業、航空機産業等の発展にともな
って耐熱性や寸法安定性のより優れたものが要求される
ようになってきた。
It is well known that it is used in many fields as molded products such as films and containers. However, in recent years, with the development of the electric/electronic equipment industry, the automobile industry, the aircraft industry, etc., there has been a demand for materials with better heat resistance and dimensional stability.

ポリエステル成形品の耐熱性や寸法安定性を向上させる
有効な手段の一つとして、ポリエステルを架橋させる方
法があり1次に述べるような方法がある。
One of the effective means for improving the heat resistance and dimensional stability of polyester molded articles is a method of crosslinking polyester, as described below.

■ポリエステルにイソシアネート、エポキシ、メチロー
ル等の反応性の基を有する化合物を配合しておき、ポリ
エステル末端のヒドロキシル基やカルボキシル基とこれ
らの基を反応させて架橋させる。■あらかじめ不飽和基
(二重結合)を分子中に導入しておき、あるいは不飽和
基を有する化合物を配合しておき、成形以降の任意の段
階でこの不飽和基を熱、光、触媒、放射線などによって
付加重台させる。(高分子刊行会発行:「接着」31巻
538〜548頁、同32巻11〜20頁、同32巻6
1〜69頁。
(2) A compound having a reactive group such as isocyanate, epoxy, or methylol is blended with polyester, and these groups are reacted with the hydroxyl group or carboxyl group at the end of the polyester to cause crosslinking. ■Introduce an unsaturated group (double bond) into the molecule in advance, or mix a compound with an unsaturated group, and at any stage after molding, use heat, light, catalyst, etc. Additional weight is added due to radiation, etc. (Published by Kobunshi Kankai: “Adhesion” Vol. 31, pp. 538-548, Vol. 32, pp. 11-20, Vol. 32, pp. 6
Pages 1-69.

−6特公昭61−57850号公報 特公昭61−57851号公報、特公昭61−5785
2号公報。
-6 Special Publication No. 61-57850 Publication No. 61-57851, Publication No. 61-5785
Publication No. 2.

特公昭62−43459号公報。) ところが、前記■、■の方法を採用する場合。Special Publication No. 62-43459. ) However, when the above-mentioned methods ① and ② are adopted.

繊維やフィルムとして有用で、融点(軟化点)や結晶性
の高い熱可塑性ポリエステルにおいては次のような問題
が生じる。
Thermoplastic polyesters that are useful as fibers and films and have high melting points (softening points) and crystallinity have the following problems.

すなわち、■の場合、一般にイソシアネートエポキシ、
メチロール等の基を持つ化合物(架橋剤)は、ポリエス
テルを溶融成形する時に加えられるが、これらの基は反
応性に富むので繊維やフィルム等に加工する際、成形温
度が高くなるため重合が起こってしまい、ゲル化あるい
は難流動化し、成形加工性を著しく低下させる。また、
繊維やフィルムの製造にとって重要な工程である延伸を
困難にする。■の不飽和基を有する化合物をあらかじめ
ポリエステルに導入あるいは配合しておく場合も、ポリ
エステルを生成(重縮合)する時は250℃以上のよう
な高温であるため、この重縮合の段階で不飽和基の付加
重合が起こってしまったり、成形温度が高くなるため重
合が起こってしまい前記■の場合と同様の現象が起こる
That is, in the case of ■, generally isocyanate epoxy,
Compounds with groups such as methylol (crosslinking agents) are added when polyester is melt-molded, but these groups are highly reactive, so when processing them into fibers, films, etc., polymerization occurs due to the high molding temperature. This results in gelation or difficulty in fluidizing, which significantly reduces moldability. Also,
It makes it difficult to stretch, which is an important step in the production of fibers and films. Even if a compound having an unsaturated group (2) is introduced or blended into polyester in advance, the unsaturated group is removed at this stage of polycondensation because the polyester is produced (polycondensation) at a high temperature of 250°C or higher. Addition polymerization of the groups may occur, or polymerization may occur due to the elevated molding temperature, resulting in the same phenomenon as in case (2) above.

このような問題を避けるには低温で実施できる溶液重縮
合法や溶液成形法を採用すればよいのであるが、工程の
複雑化や製造コストアンプ等の問題が生ずる。
To avoid such problems, it is possible to adopt a solution polycondensation method or a solution molding method that can be carried out at low temperatures, but problems such as complicating the process and increasing manufacturing costs arise.

(発明が解決しようとする課題) このように分子間の架橋を利用する方法は、低融点のポ
リエステルにしか適用され得ないのが実状であり、繊維
、フィルム及びその他の成形品として有用な高融点で高
結晶性のポリエステルに対しては適用できないのが実状
である。
(Problems to be Solved by the Invention) In reality, the method that utilizes intermolecular crosslinking as described above can only be applied to polyesters with low melting points, and is useful for polyesters that are useful as fibers, films, and other molded products. The reality is that it cannot be applied to polyesters that have a high melting point and are highly crystalline.

そこで2本発明の課題は、耐熱性2寸法安定性がより改
善された高融点で高結晶性のポリエステル成形品と、該
成形品を容易に製造することができる方法を提供しよう
とするものである。
Therefore, the object of the present invention is to provide a high-melting point, highly crystalline polyester molded product with improved heat resistance and two-dimensional stability, and a method for easily producing the molded product. be.

(課題を解決するだめの手段) 本発明者等は耐熱性1寸法安定性がより改善された高融
点で高結晶性のポリエステル成形品を得るために種々検
討した結果、ポリエステル成分とポリシロキサン成分と
のブロックもしくはグラフト共重合体からなる成形品に
、放射線を照射して少なくともポリシロキサン成分の一
部を架橋してやると、ポリシロキサン成分はポリエステ
ル重縮合時の高温に耐え、しかも放射線によって比較的
容易に架橋反応をするので、前記目的に適う成形品が生
産性良く得られることを見出し2本発明に到った。
(Another Means to Solve the Problem) As a result of various studies in order to obtain a polyester molded product with a high melting point and high crystallinity that has improved heat resistance and one-dimensional stability, the inventors found that a polyester component and a polysiloxane component By irradiating a molded article made of a block or graft copolymer with a polyester and crosslinking at least a portion of the polysiloxane component, the polysiloxane component can withstand the high temperatures during polyester polycondensation, and is relatively easily irradiated with radiation. It was discovered that a molded article meeting the above purpose can be obtained with good productivity by carrying out a crosslinking reaction, leading to the present invention.

すなわち2本発明の要旨は次の通りである。That is, the gist of the present invention is as follows.

(1)ポリエステル成分とポリシロキサン成分とのブロ
ックもしくはグラフト共重合体からなり、少なくともポ
リシロキサン成分の一部が架橋していることを特徴とす
る耐熱性高分子成形品。
(1) A heat-resistant polymer molded article consisting of a block or graft copolymer of a polyester component and a polysiloxane component, characterized in that at least a portion of the polysiloxane component is crosslinked.

(2)ポリエステル成分とポリシロキサン成分とのブロ
ックもしくはグラフト共重合体からなる成形品に、放射
線を照射して少なくともポリシロキサン成分の一部を架
橋させることを特徴とする耐熱性高分子成形品の製造法
(2) A heat-resistant polymer molded article comprising a block or graft copolymer of a polyester component and a polysiloxane component, which is irradiated with radiation to crosslink at least a portion of the polysiloxane component. Manufacturing method.

以下2本発明の詳細な説明する。Two aspects of the present invention will be described in detail below.

本発明において「ポリエステル成分」のポリエステルと
は溶融重合及び溶融成形可能なポリエステルを意味し、
その重合成分として、テレフタル酸、イソフタル酸、ア
ジピン酸、グルタル酸、アゼライン酸、セバシン酸、ナ
フタレンジカルボン酸、シクロヘキサンジカルボン酸、
ジフェニルスルホンジカルボン酸等のジカルボン酸成分
、エチレングリコール、ジエチレングリコール、ポリエ
チレングリコール、トリメチレングリコール、プロピレ
ングリコール、1,4−ブタンジオール、■、5ベンタ
ンジオール、1,6−ヘキサンジオール、ネオペンチル
グリコール、キシリレングリコール。
In the present invention, the polyester of the "polyester component" means a polyester that can be melt-polymerized and melt-molded,
Its polymerization components include terephthalic acid, isophthalic acid, adipic acid, glutaric acid, azelaic acid, sebacic acid, naphthalenedicarboxylic acid, cyclohexanedicarboxylic acid,
Dicarboxylic acid components such as diphenylsulfonedicarboxylic acid, ethylene glycol, diethylene glycol, polyethylene glycol, trimethylene glycol, propylene glycol, 1,4-butanediol, 5-bentanediol, 1,6-hexanediol, neopentyl glycol, xylene glycol, Len glycol.

シクロヘキサンジメタツール ごス(β−ヒドロキシエ
トキシフェニル)プロパン、ビス(β−ヒドロキシエト
キシフェニル)スルホン等のグリコール成分、ε−ヒド
ロキシカプロン酸、β−ヒドロキシエトキシ安息香酸、
ヒドロギシ安息香酸等のヒドロキシカルボン酸成分、場
合によっては少量のトリメリット酸、トリメシン酸、ピ
ロメリッ+−a、  トリメチロールプロパン、ペンタ
エリスリトール等の3以上の官能基を有する成分を適宜
組み合せて得られたものである。好ましい具体的なポリ
エステルとしては、ポリエチレンテレフタレート、ポリ
ブチレンテレフタレート、ポリ−1,4シクロヘキシレ
ンジメチレンテレフタレートポリエチレン−2,6−ナ
フタレートポリ−pエチレンオキシヘンゾエート及びこ
れらを主成分とするポリエステルが挙げられる。これら
は比較的高融点で高結晶性ポリエステルであり2本発明
の趣旨が特に生かせるものである。
Cyclohexane dimetatool Gos(β-hydroxyethoxyphenyl)propane, glycol components such as bis(β-hydroxyethoxyphenyl)sulfone, ε-hydroxycaproic acid, β-hydroxyethoxybenzoic acid,
It is obtained by appropriately combining a hydroxycarboxylic acid component such as hydroxybenzoic acid, and in some cases a small amount of a component having three or more functional groups such as trimellitic acid, trimesic acid, pyromellitic acid, trimethylolpropane, and pentaerythritol. It is something. Preferred specific polyesters include polyethylene terephthalate, polybutylene terephthalate, poly-1,4-cyclohexylene dimethylene terephthalate, polyethylene-2,6-naphthalate, poly-p-ethyleneoxyhenzoate, and polyesters containing these as main components. It will be done. These are polyesters with relatively high melting points and high crystallinity, and the purpose of the present invention can be particularly utilized.

次に本発明における「ポリシロキサン成分」のポリシロ
キサンとは、下記−形式(1)(但し2式中R,,R2
は炭素原子数10以下のアルキル基、シクロアルキル基
、了り−ル基又はアラルキル基を示す。) で表わされる構造単位を有する高分子の総称であり、特
に好ましいポリシロキサンとしてはポリジメチルシロキ
ザン、ポリメチルフェニルシロキザンが挙げられ、これ
らは耐熱性に優れており、放射線により容易に架橋する
Next, the polysiloxane of the "polysiloxane component" in the present invention refers to the following formula (1) (however, in formula 2, R, , R2
represents an alkyl group, a cycloalkyl group, an aralkyl group or an aralkyl group having 10 or less carbon atoms. ) is a general term for polymers having a structural unit represented by .

本発明の成形品を構成する高分子は、上記ポリエステル
成分とポリシロキサン成分とがブロック状もしくはグラ
フト状に共重合したものであり。
The polymer constituting the molded article of the present invention is a copolymer of the above-mentioned polyester component and polysiloxane component in the form of a block or graft.

これらは、・分子の末端に1個もしくは2個のエステル
形成性の官能基を持つポリシロキサン成分をポリエステ
ルの製造時に、任意の段階で添加することによって製造
することができる。ここでポリシロキサン成分における
エステル形成性の官能基としてはヒドロキシル基、カル
ボキシル基、アルコキシカルボニル基等の1官能性基及
びエポキシ基のような2官能性基が挙げられ、2官能ポ
リシロキサンにするのが好ましい。
These can be produced by adding a polysiloxane component having one or two ester-forming functional groups at the end of the molecule at any stage during the production of polyester. Here, examples of ester-forming functional groups in the polysiloxane component include monofunctional groups such as hydroxyl groups, carboxyl groups, and alkoxycarbonyl groups, and difunctional groups such as epoxy groups. is preferred.

そして ポリエステル成分とポリシロキサン成分の割合
は重量で99〜70:1〜30.より好ましくは98〜
80:2〜20とすることが成形性(加工性)や放射線
照射による架橋効果という点で好ましい。
The ratio of the polyester component to the polysiloxane component is 99-70:1-30 by weight. More preferably 98~
A ratio of 80:2 to 20 is preferable in terms of moldability (processability) and crosslinking effect due to radiation irradiation.

本発明の高分子成形品は、少なくともポリシロキサン成
分の一部が架橋した構造となっていればよく、必ずしも
不溶不融の状態にまで架橋して高分子が網目状の構造を
とる必要はない。つまりフィルムや繊維を構成する高分
子のうちのポリシロキサン成分の少なくとも一部が架橋
していれば。
The polymer molded article of the present invention only needs to have a structure in which at least a part of the polysiloxane component is crosslinked, and it is not necessarily necessary to crosslink to an insoluble and infusible state so that the polymer has a network structure. . In other words, if at least a portion of the polysiloxane component of the polymer that makes up the film or fiber is crosslinked.

得られる成形品は耐熱性で寸法安定性が良好となる。The molded product obtained has good heat resistance and dimensional stability.

本発明の高分子成形品は、ポリエステル成分とポリシロ
キサン成分とのブロックもしくはグラフト共重合体から
なる成形品に、放射線を照射する方法によって容易に製
造することができる。
The polymer molded article of the present invention can be easily produced by a method of irradiating a molded article made of a block or graft copolymer of a polyester component and a polysiloxane component with radiation.

放射線としては電子線、アルファ線、ガンマ線等が挙げ
られ7特に電子線が好ましく用いられる。
Examples of radiation include electron beams, alpha rays, gamma rays, etc. 7 Especially, electron beams are preferably used.

これらの放射線の照射線量としては3〜100Mrad
特に3〜80Mradが好ましい。照射線量が多すぎる
と成形品の物性がかえって低下することがあるので好ま
しくない。また、特に電子線を用いる場合。
The irradiation dose of these radiations is 3 to 100 Mrad.
Particularly preferred is 3 to 80 Mrad. If the irradiation dose is too large, the physical properties of the molded product may deteriorate, which is not preferable. Also, especially when using an electron beam.

電子線の到達深度は加速電圧に比例して直線的に増加す
るので、成形品の厚さや太さに応じて加速電圧を調節す
ることが好ましく、200pm以下の厚さや太さのもの
には加速電圧を10〜10,000 KV、好ましくは
50〜5,000 KVとするのがよい。照射時の温度
は、成形品を構成する高分子のガラス転移温度によって
変わるが、ガラス転移温度より20℃程度低い温度から
ガラス転移温度より60℃程度高い温度までの領域で行
うのがよい(特にフィルムや繊維のように薄いものや細
いものに対してはあまり高温にならないように注意を要
する)。実用的な温度は30〜150℃である。温度が
高いほど照射に要する時間は短かくてよいが、あまり高
温になると架橋が十分に進んでいない段階では成形品の
寸法変化が起こったり、結晶化が進みすぎたりして好ま
しくない。
Since the depth that the electron beam reaches increases linearly in proportion to the accelerating voltage, it is preferable to adjust the accelerating voltage according to the thickness and thickness of the molded product. The voltage is preferably between 10 and 10,000 KV, preferably between 50 and 5,000 KV. The temperature during irradiation varies depending on the glass transition temperature of the polymer constituting the molded product, but it is best to carry out the irradiation in the range from about 20°C lower than the glass transition temperature to about 60°C higher than the glass transition temperature (especially (For thin or thin items such as films and fibers, be careful not to heat them too high.) Practical temperatures are 30-150°C. The higher the temperature, the shorter the time required for irradiation, but if the temperature is too high, dimensional changes may occur in the molded product before crosslinking has sufficiently progressed, or crystallization may proceed too much, which is not preferable.

照射は空気中、窒素やアルゴン等の不活性ガス中あるい
は真空中で行うことができるが、空気中で行うのが実用
的である。
Irradiation can be performed in air, in an inert gas such as nitrogen or argon, or in vacuum, but it is practical to perform it in air.

(実施例) 以下1本発明を実施例によりさらに具体的に説明する。(Example) The present invention will be explained in more detail below with reference to Examples.

実施例1,2及び比較例1 テレフタル酸とエチレングリコールをエステル化して得
られたビス(β−ヒドロキシエチル)テレフタレートの
オリゴマー(数平均重合度5)93重量部、数平均分子
量4,000で両末端がヒドロキシ基であるポリジメチ
ルシロキサン7重量部及びエチレングリコールに溶解し
た三酸化アンチモンをテレフタル酸成分1モルにつき2
X10−’モルをポリエステル重縮合用バッチ式反応器
に仕込んだ。
Examples 1 and 2 and Comparative Example 1 Both oligomers of bis(β-hydroxyethyl) terephthalate obtained by esterifying terephthalic acid and ethylene glycol (number average degree of polymerization 5) were 93 parts by weight, and the number average molecular weight was 4,000. 7 parts by weight of polydimethylsiloxane having a hydroxyl group at the end and 2 parts of antimony trioxide dissolved in ethylene glycol per mole of terephthalic acid component.
X10-' moles were charged into a batch reactor for polyester polycondensation.

次いで275℃に内温を保ちつつ、0.5時間で常圧か
ら最高減圧0.1トルに至るまで減圧し、この最高減圧
下において3時間重縮合反応を行った。
Next, while maintaining the internal temperature at 275° C., the pressure was reduced from normal pressure to a maximum reduced pressure of 0.1 Torr over 0.5 hours, and a polycondensation reaction was carried out under this maximum reduced pressure for 3 hours.

得られたほぼ白色のポリエステルチップをエクストルー
ダー型溶融押出機に供給し、280℃でリップ巾200
mm、  リップ間隔0.8nのTダイから押出し、押
出した溶融膜状物を20℃に保ったキャスティングロー
ラで冷却固化して未延伸フィルムを得た。次いでテンタ
一方式の同時2軸延伸装置を用いて95℃で縦・横それ
ぞれ3.1倍に延伸し、さらに235℃で縦、横ともに
弛緩率3%で熱処理した後、トリミングして20m/m
inの速度で巻き取り、厚さ10μm、巾300鰭の延
伸フィルムを得た。
The almost white polyester chips obtained were fed to an extruder type melt extruder and heated to a lip width of 200°C at 280°C.
The extruded molten film was extruded through a T-die with a lip spacing of 0.8 mm and a lip spacing of 0.8 n, and the extruded molten film was cooled and solidified using a casting roller kept at 20° C. to obtain an unstretched film. Next, using a tenter-type simultaneous biaxial stretching device, it was stretched to 3.1 times in length and width at 95°C, and then heat-treated at 235°C with a relaxation rate of 3% in both length and width, and then trimmed to a length of 20 m/width. m
A stretched film having a thickness of 10 μm and a width of 300 fins was obtained.

これらの製膜・延伸操作において切断の問題はなく、操
業性は良好であった。また、延伸フィルムは良好な外観
を示した。
There were no cutting problems in these film forming and stretching operations, and the operability was good. Moreover, the stretched film showed good appearance.

次いで得られた延伸フィルムに、照射温度120℃で、
加速電圧750KVの電子線を照射した(1秒当りの吸
収線量はI Mradであった)。
Next, the obtained stretched film was irradiated at a temperature of 120°C.
An electron beam was irradiated with an accelerating voltage of 750 KV (absorbed dose per second was I Mrad).

実施例3,4及び比較例2 ポリシロキサン成分として、数平均分子量3,000で
片末端にエポキシ基を有するポリジメチルシロキサン7
重量部を用いた他は実施例1と同様にしてグラフト共重
合体を製造し、延伸フィルムを製造し、電子線を照射し
た。
Examples 3 and 4 and Comparative Example 2 Polydimethylsiloxane 7 having a number average molecular weight of 3,000 and an epoxy group at one end was used as the polysiloxane component.
A graft copolymer was produced in the same manner as in Example 1 except that parts by weight were used, a stretched film was produced, and the film was irradiated with an electron beam.

比較例3〜5 ポリエチレンテレフタレートホモポリマーを用いて実施
例1と同様にして、延伸フィルムを製造し、電子線を照
射した。
Comparative Examples 3 to 5 Stretched films were produced in the same manner as in Example 1 using polyethylene terephthalate homopolymer and irradiated with electron beams.

各側における高分子の構造、照射線量とフィルムの乾熱
収縮率(180℃×5分処理)との関係を第1表に示す
。なお、MD力方向フィルムの縦方向。
Table 1 shows the relationship between the structure of the polymer on each side, the irradiation dose, and the dry heat shrinkage rate of the film (processed at 180° C. for 5 minutes). Note that the MD force direction is the longitudinal direction of the film.

TD力方向フィルムの横方向を示す。TD force direction The transverse direction of the film is shown.

第  1 表 (発明の効果) 本発明によれば、耐熱性に優れており1寸法安定性の良
いポリエステル系高分子成形品が提供される。
Table 1 (Effects of the Invention) According to the present invention, a polyester polymer molded article having excellent heat resistance and good one-dimensional stability is provided.

また1本発明の方法によれば、上記成形品を生産性良く
得ることができる。
Furthermore, according to the method of the present invention, the above-mentioned molded product can be obtained with high productivity.

Claims (2)

【特許請求の範囲】[Claims] (1)ポリエステル成分とポリシロキサン成分とのブロ
ックもしくはグラフト共重合体からなり、少なくともポ
リシロキサン成分の一部が架橋していることを特徴とす
る耐熱性高分子成形品。
(1) A heat-resistant polymer molded article consisting of a block or graft copolymer of a polyester component and a polysiloxane component, characterized in that at least a portion of the polysiloxane component is crosslinked.
(2)ポリエステル成分とポリシロキサン成分とのブロ
ックもしくはグラフト共重合体からなる成形品に、放射
線を照射して少なくともポリシロキサン成分の一部を架
橋させることを特徴とする耐熱性高分子成形品の製造法
(2) A heat-resistant polymer molded article comprising a block or graft copolymer of a polyester component and a polysiloxane component, which is irradiated with radiation to crosslink at least a portion of the polysiloxane component. Manufacturing method.
JP2948889A 1989-02-08 1989-02-08 Heat-resistant polymer molding and its production Pending JPH02208325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2948889A JPH02208325A (en) 1989-02-08 1989-02-08 Heat-resistant polymer molding and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2948889A JPH02208325A (en) 1989-02-08 1989-02-08 Heat-resistant polymer molding and its production

Publications (1)

Publication Number Publication Date
JPH02208325A true JPH02208325A (en) 1990-08-17

Family

ID=12277460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2948889A Pending JPH02208325A (en) 1989-02-08 1989-02-08 Heat-resistant polymer molding and its production

Country Status (1)

Country Link
JP (1) JPH02208325A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998010430A1 (en) * 1996-09-04 1998-03-12 Toyo Ink Manufacturing Co., Ltd. Electron beam irradiating method and object to be irradiated with electron beam
US7282726B2 (en) 2004-01-07 2007-10-16 Tdk Corporation Apparatus and method for irradiating electron beam
US7348555B2 (en) 2004-01-07 2008-03-25 Tdk Corporation Apparatus and method for irradiating electron beam
US7576140B2 (en) 2005-10-18 2009-08-18 Sabic Innovative Plastics Ip B.V. Method of improving abrasion resistance of plastic article and article produced thereby
US7855241B2 (en) 2005-10-18 2010-12-21 Sabic Innovative Plastics Ip B.V. Method of improving abrasion resistance of plastic article using nanoparticles and article produced thereby

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998010430A1 (en) * 1996-09-04 1998-03-12 Toyo Ink Manufacturing Co., Ltd. Electron beam irradiating method and object to be irradiated with electron beam
US6188075B1 (en) 1996-09-04 2001-02-13 Toyo Ink Manufacturing Co., Ltd. Electron beam irradiating method and object to be irradiated with electron beam
US6504163B2 (en) 1996-09-04 2003-01-07 Toyo Ink Manufacturing Co., Ltd. Electron beam irradiation process and an object irradiated with an electron beam
US7282726B2 (en) 2004-01-07 2007-10-16 Tdk Corporation Apparatus and method for irradiating electron beam
US7348555B2 (en) 2004-01-07 2008-03-25 Tdk Corporation Apparatus and method for irradiating electron beam
US7576140B2 (en) 2005-10-18 2009-08-18 Sabic Innovative Plastics Ip B.V. Method of improving abrasion resistance of plastic article and article produced thereby
US7855241B2 (en) 2005-10-18 2010-12-21 Sabic Innovative Plastics Ip B.V. Method of improving abrasion resistance of plastic article using nanoparticles and article produced thereby

Similar Documents

Publication Publication Date Title
KR100306553B1 (en) Polyester film
JP3027461B2 (en) Polyester shrink film
US3673144A (en) Thermoplastic molding compositions containing polyesters
JPH0753737A (en) Shrinkable polyester film
CA2292715A1 (en) Poly(ethylene terephthalate) (pet) copolymers containing both 1,4-cyclohexanedimethanol and isophthalic acid moieties
JPH02208325A (en) Heat-resistant polymer molding and its production
JPH08187777A (en) Production of heat-resistant polyester film
JPH02255710A (en) Heat-resistant molded polymer product and production thereof
JP2848725B2 (en) Polyester shrink film
JP3474306B2 (en) Improved polyester film or sheet and processed product thereof
CN114127154A (en) Polyester resin, and molded body, stretched film, and bottle containing the same
JP2000094513A (en) Polyester film
JP3365450B2 (en) Method for producing high polymerization degree polyester
JP5492569B2 (en) Polyester resin, process for producing the same, and biaxially oriented polyester film using the same
JPH01272659A (en) Method for manufacturing polyester resin moldings
WO1996006125A1 (en) Biaxially oriented, heat-set polyester film having improved thermal shrinkage resistance
JPH0367629A (en) Biaxially oriented polyester film for molding
JP2000017159A (en) Polyester composition and polyester film therefrom
JPS61148237A (en) Molded polyester article and production thereof
JPS6322841A (en) Crosslinked molding and production thereof
JPH02301419A (en) Heat resistant biaxially oriented polyester film and manufacture thereof
US3386961A (en) Copolyester resins
JP2723141B2 (en) Polyester resin composition and use thereof
JPH01144424A (en) Oriented polyester alloy film
JPS61148030A (en) Heat treatment method of polyester-molded article