JPH02208253A - Method for producing cordierite ceramic composite - Google Patents
Method for producing cordierite ceramic compositeInfo
- Publication number
- JPH02208253A JPH02208253A JP1029178A JP2917889A JPH02208253A JP H02208253 A JPH02208253 A JP H02208253A JP 1029178 A JP1029178 A JP 1029178A JP 2917889 A JP2917889 A JP 2917889A JP H02208253 A JPH02208253 A JP H02208253A
- Authority
- JP
- Japan
- Prior art keywords
- cordierite
- mullite
- alumina
- powder
- spinel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052878 cordierite Inorganic materials 0.000 title claims abstract description 34
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 title claims abstract description 34
- 239000000919 ceramic Substances 0.000 title claims description 18
- 239000002131 composite material Substances 0.000 title claims description 7
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 29
- 239000000843 powder Substances 0.000 claims abstract description 22
- 239000002245 particle Substances 0.000 claims abstract description 20
- 238000010304 firing Methods 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 3
- 239000002994 raw material Substances 0.000 claims description 2
- 238000007493 shaping process Methods 0.000 claims 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 abstract description 30
- 229910052863 mullite Inorganic materials 0.000 abstract description 30
- 229910052596 spinel Inorganic materials 0.000 abstract description 16
- 239000011029 spinel Substances 0.000 abstract description 16
- 230000035939 shock Effects 0.000 abstract description 10
- 239000011812 mixed powder Substances 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000000571 coke Substances 0.000 description 8
- 238000005452 bending Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 238000004939 coking Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- 241000220317 Rosa Species 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229910052900 illite Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VGIBGUSAECPPNB-UHFFFAOYSA-L nonaaluminum;magnesium;tripotassium;1,3-dioxido-2,4,5-trioxa-1,3-disilabicyclo[1.1.1]pentane;iron(2+);oxygen(2-);fluoride;hydroxide Chemical compound [OH-].[O-2].[O-2].[O-2].[O-2].[O-2].[F-].[Mg+2].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[K+].[K+].[K+].[Fe+2].O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2 VGIBGUSAECPPNB-UHFFFAOYSA-L 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 229910001753 sapphirine Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
この発明は機械的強度、耐熱性、耐熱衝撃性が要求され
る部材に使用されるコーディエライトセラミック複合体
の製造方法に係り、より詳しくはコープイライトとアル
ミナの化学反応を利用して柱状のムライト、スピネルを
コーディエライト中に均一に析出分散させ、強度、破壊
靭性、耐熱性に優れた焼結体を得る方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for producing cordierite ceramic composites used for members requiring mechanical strength, heat resistance, and thermal shock resistance. This invention relates to a method of uniformly precipitating and dispersing columnar mullite and spinel in cordierite by utilizing a chemical reaction between illite and alumina to obtain a sintered body with excellent strength, fracture toughness, and heat resistance.
従来の技術
セラミックスは周知の通り高強度、高硬度、耐摩耗性に
優れた材料でおり、広範な用途に使用されているが、そ
の中でもコーディエライト(2Mg0・ 2A&203
・5SiO2)が耐熱衝撃性に優れたセラミックスと
して知られている。このコーディエライトセラミックス
は、ハニカム構造に加工し自動車排ガス浄化触媒担体と
して実用化されている。Conventional technology As is well known, ceramics are materials with high strength, high hardness, and excellent wear resistance, and are used in a wide range of applications, among which cordierite (2Mg0, 2A & 203
・5SiO2) is known as a ceramic with excellent thermal shock resistance. This cordierite ceramic has been processed into a honeycomb structure and has been put to practical use as a catalyst carrier for automobile exhaust gas purification.
また耐熱性も耐熱衝撃性とともに要求される特性の一つ
でおり、例えば特開昭53−82822号公報には、マ
グネシア源原料の種類と粒度を調整することにより、ム
ライト(3Aρ203 ・ 2SLO2) 、スピネ
ル(MgO−JV203 ) 、サフイリン(4Mg0
・5A&203 ・2SLOz>を含む焼結体の細孔分
布を制御し、耐熱衝撃性を劣化させずに耐熱性を向上さ
せることが示されている。In addition, heat resistance is one of the characteristics required along with thermal shock resistance, and for example, in Japanese Patent Application Laid-Open No. 53-82822, by adjusting the type and particle size of the magnesia source material, mullite (3Aρ203 / 2SLO2), Spinel (MgO-JV203), Saphirin (4Mg0
It has been shown that the pore distribution of a sintered body containing ・5A&203・2SLOz> can be controlled to improve heat resistance without deteriorating thermal shock resistance.
また、特開昭58−95643号公報には、ムライトと
]−ディエライ1〜を焼結し、シリコンに近い熱膨張率
を有する焼結体を得る技術が開示されている。Further, Japanese Patent Application Laid-Open No. 58-95643 discloses a technique for obtaining a sintered body having a coefficient of thermal expansion close to that of silicon by sintering mullite and ]-Dierai 1.
また、井用、渡辺ら(1985,12,窯業協会誌)に
より、コーディエライトにムライトを添加し、焼成する
ことにより強度、耐熱性に優れた焼結体が得られること
が報告されている。In addition, Iyo, Watanabe et al. (1985, December, Ceramics Association Journal) reported that by adding mullite to cordierite and firing it, a sintered body with excellent strength and heat resistance can be obtained. .
これら従来の技術は、タルク(3Mc+0・ 4Sj0
2・H2C)、カオ’)ン(A&203 ・2Sj02
・2H20)等の原料粉からコーディエライトを合成
する時、副生成物のムライト、スピネル、サフィリン等
と複合体にする技術でおり、またコーディエライト粉に
ムライト粉を添加し、化学反応させずに、焼結により緻
密化させる技術である。These conventional techniques are based on talc (3Mc+0・4Sj0
2・H2C), Kao')n (A&203 ・2Sj02
・When cordierite is synthesized from raw material powder such as 2H20), it is a technology that combines it with by-products such as mullite, spinel, and sapphirine, and it also involves adding mullite powder to cordierite powder and causing a chemical reaction. This technology uses sintering to make the material denser.
しかし、従来のコーディエライトセラミックスの室温曲
げ強度は3.5〜10に3祷で、ジルコニア(80〜1
20Kg看)、アルミナ(25〜5!MI7J> 、ム
ライト(15〜25に’J4rrX>等の他の構造用セ
ラミックスより劣っている。However, the room temperature bending strength of conventional cordierite ceramics is 3.5 to 10, and zirconia (80 to 1
It is inferior to other structural ceramics such as 20Kg), alumina (25~5!MI7J>), and mullite (15~25~'J4rrX>).
また、破壊靭性値においても、従来のコーディエライト
は2Mpaυ1で、ジルコニア(7Mpa口、アルミナ
(3,5Mpa西1)と比べて低いことが知られている
。Furthermore, the fracture toughness value of conventional cordierite is 2Mpaυ1, which is known to be lower than that of zirconia (7Mpa) and alumina (3.5Mpa).
耐熱性においても、1200℃付近から急激に強度が低
下することが知られており、純度の低いものは1350
℃以上では液相か生成し変形が起る。In terms of heat resistance, it is known that the strength rapidly decreases from around 1200℃, and those with low purity have a temperature of 1350℃.
At temperatures above ℃, a liquid phase is formed and deformation occurs.
一方、アルミナ、ジルコニアは室温強度、破壊靭性値か
優れるものの耐熱衝撃性が劣り、水急冷による熱衝撃で
強度低下を起ず温度差は、コープイライトの500°C
以上に対してアルミナは200°C1ジルコニアは30
0℃と大きく劣っている。そのため、アルミナ、ジルコ
ニア共にそのままでは耐熱衝撃性と機械的強度が要求さ
れる用途に使用することは困難でおる。On the other hand, alumina and zirconia have excellent room temperature strength and fracture toughness values, but have poor thermal shock resistance, and do not cause a decrease in strength due to thermal shock due to water quenching, and the temperature difference is 500°C compared to copierite.
In contrast to the above, alumina is 200°C1 zirconia is 30°C
It is significantly inferior to 0℃. Therefore, it is difficult to use both alumina and zirconia as they are in applications that require thermal shock resistance and mechanical strength.
発明が解決しようとする課題
この発明は、従来のコーディエライトセラミックスの室
温曲げ強度、破壊靭性値、耐熱性がジルコニア、アルミ
ナ、ムライト等の他のセラミックスより劣るという欠点
にかんがみ、コーディエライトとアルミナの化学反応を
利用することによって、強度、靭性、耐熱性に優れたコ
ープイエライ1〜セラミツクス複合体を製造し得る方法
を提案しようとするものである。Problems to be Solved by the Invention The present invention takes into account the disadvantages of conventional cordierite ceramics in that they are inferior in room temperature bending strength, fracture toughness, and heat resistance to other ceramics such as zirconia, alumina, and mullite. The purpose of this paper is to propose a method for producing a Coop-Yelai 1-ceramics composite with excellent strength, toughness, and heat resistance by utilizing the chemical reaction of alumina.
課題を解決するための手段
この発明者らは、コーディエライト、ムライト、スピネ
ル複合セラミックスを製造するに当り、粒径20Am以
下のコーディエライト粉と粒径5I1m以下のアルミナ
粉を用い、焼成中の下記化学反応により、ムライト粒と
スピネル粒を均一な分布で生成させ、また各々の粒子は
従来からのムライトを添加する方法とは異なり、ムライ
トを柱状に発達させることができるため、粒子分散効果
の高い複合材が得られ、強度、破壊靭性、耐熱性を向上
させることかでき、またコーディエライトとアルミナの
配合割合を変えることにより各々異なった特性の材料を
製造できることを知見した。Means for Solving the Problems In manufacturing cordierite, mullite, and spinel composite ceramics, the inventors used cordierite powder with a particle size of 20 Am or less and alumina powder with a particle size of 5I1 m or less, and during firing. The following chemical reaction produces mullite grains and spinel grains with a uniform distribution, and unlike the conventional method of adding mullite, each grain can develop into a columnar shape, resulting in a particle dispersion effect. It was discovered that it was possible to obtain a composite material with high strength, fracture toughness, and heat resistance, and that by changing the blending ratio of cordierite and alumina, it was possible to manufacture materials with different characteristics.
χ(2Mg0・ 2Aり203 ・ 5Sj○2)+V
(Ag203)−)Z(3A12203 ・2SLO
2) +W(MgO−A#203)すなわち、この発明
はコーディエライト原料粉に、粒径5.am以下のアル
ミナ粉を5〜30重量%添加した後成形し、1300℃
以上の温度で焼成することにより、前記化学反応により
ムライ1〜粒とスピネル粒をコーディエライト中に均一
に析出分散させることを要旨とするものである。χ(2Mg0・2Ari203・5Sj○2)+V
(Ag203)-)Z(3A12203 ・2SLO
2) +W (MgO-A#203) That is, this invention uses cordierite raw powder with a particle size of 5. After adding 5 to 30% by weight of alumina powder below am, it is molded and heated to 1300°C.
By firing at the above temperature, the purpose is to uniformly precipitate and disperse Murai grains and spinel grains in the cordierite through the chemical reaction.
作 用
コーディエライト粉に添加するセラミックスとしてアル
ミナ粉を用いたのは、先に示したように、強度、耐熱性
にすぐれたムライト、スピネルを化学反応で生成させ、
コーディエライトと複合化することでコーディエライト
の欠点である耐熱性、強度、靭性を改善するためである
。FunctionAlumina powder was used as a ceramic to be added to cordierite powder because, as shown above, mullite and spinel, which have excellent strength and heat resistance, are produced through a chemical reaction.
This is to improve heat resistance, strength, and toughness, which are disadvantages of cordierite, by combining it with cordierite.
コーディエライト粉の粒径としては50μm以下が好ま
しい。粒径がそれより大きくなると焼結性が圧下し、強
度が低下する。それと共にアルミナ粉との混合も不十分
となり、化学反応が不均一となり、ムライ1−、スピネ
ルの分散性が悪化する。The particle size of the cordierite powder is preferably 50 μm or less. If the particle size is larger than that, the sinterability will be reduced and the strength will be reduced. At the same time, the mixing with the alumina powder becomes insufficient, the chemical reaction becomes non-uniform, and the dispersibility of Murai 1- and spinel deteriorates.
アルミナ粉の粒径を5/、1m以下に限定したのは、5
〃…を超える粒径では]−デイエライトと混合後の各粒
子の分散性が不十分で、化学反応により生じたムライト
、スピネルの分散性が悪化するためである。The particle size of the alumina powder was limited to 5/1 m or less.
[If the particle size exceeds...] - This is because the dispersibility of each particle after mixing with dayerite is insufficient, and the dispersibility of mullite and spinel produced by chemical reaction deteriorates.
なお、コーディエライト粉末中の不純物は1重量%以下
であることが、化学反応で高純度のムライト、スピネル
を生成させるために好ましい。Note that it is preferable that the impurities in the cordierite powder be 1% by weight or less in order to produce highly pure mullite and spinel through chemical reaction.
コーディエライト粉とアルミナ粉の混合物の焼成条件を
1300′C以上(好ましくは1300〜1460°C
)と限定したのは、1300℃未満では焼結反応の速度
が低下し、焼結体の強度が低下するためである。The firing conditions for the mixture of cordierite powder and alumina powder are 1300°C or higher (preferably 1300 to 1460°C).
) is because the sintering reaction rate decreases below 1300° C. and the strength of the sintered body decreases.
なお、焼成温度がコープイエライ1〜の融点を超えると
、焼結時に生成する液相の量が増加し、焼結晶の形状、
寸法精度に影響をおよぼすため、焼成温度の上限はコー
プイエライ1〜の融点とするのが好ましい。In addition, when the firing temperature exceeds the melting point of Coop Yerai 1~, the amount of liquid phase generated during sintering increases, and the shape of the fired crystals changes.
Since the dimensional accuracy is affected, it is preferable that the upper limit of the firing temperature be set to the melting point of Cope Yellai 1 or higher.
また、焼成時間は焼成が十分に行なわれることと、焼成
し過ぎにより強度低下をきたさないようにすることを考
慮すると、0.5〜20時間、好ましくは1〜10時間
程度とする。Further, the firing time is set to about 0.5 to 20 hours, preferably about 1 to 10 hours, in order to ensure sufficient firing and to prevent a decrease in strength due to excessive firing.
実 施 例
粒径20.m以下のコーディエライト粉と粒径577m
以下のアルミナ粉を第1表に示す割合で配合し、ボール
ミルで混合して得られた混合粉を1.5t4の圧力でプ
レス成形し、この成形品を第1表に示す条件で焼成し、
得られたコーディエライトセラミックスの機械的特性を
第1表に示す。Example particle size 20. Cordierite powder with a particle size of 577m or less
The following alumina powders were blended in the proportions shown in Table 1, mixed in a ball mill, the resulting mixed powder was press-molded at a pressure of 1.5t4, and this molded product was fired under the conditions shown in Table 1,
Table 1 shows the mechanical properties of the obtained cordierite ceramics.
なお、第1表には比較のため、本発明の製造条件から外
れたもの、]−デデイプライ1にムライl〜を添加した
もの、コーディエライトにムライトとスピネルを添加し
たものを併せて示した。For comparison, Table 1 also shows products that deviate from the production conditions of the present invention, products in which mullite and spinel were added to cordierite, and products in which mullite and spinel were added to cordierite. .
また、第1図には焼成温度1425°C1焼成時間2時
間の条件にてアルミナ、ムライトの添加量を変更した時
の曲げ強度の関係を、第2図には同じくアルミナ、ムラ
イ1〜の添加量と破壊靭性値(K+c )の関係をそれ
ぞれ示す。Figure 1 shows the relationship between bending strength when the amounts of alumina and mullite added are changed under the conditions of firing temperature 1425°C and firing time 2 hours, and Figure 2 shows the relationship of bending strength when the addition amount of alumina and mullite is changed. The relationship between the amount and the fracture toughness value (K+c) is shown.
また、第3図にはアルミナを添加したコーディエライト
セラミックス焼結体と、ムライトを添加したコーディエ
ライトセラミックス焼結体の顕微鏡観察による組織をそ
れぞれ図(A〉、図(B)にボす。In addition, Figure 3 shows the microscopic structures of the cordierite ceramic sintered body with alumina added and the cordierite ceramic sintered body with mullite added, shown in Figure (A) and Figure (B), respectively. .
第1図より、曲げ強度に対するアルミナ添加の効果は、
5〜30重量%が適当であることがわかる。From Figure 1, the effect of alumina addition on bending strength is:
It is found that 5 to 30% by weight is appropriate.
第2図より、破壊靭性値はアルミナ添加により増加し、
ムライト添加のものより高いことがわかる。From Figure 2, the fracture toughness value increases with the addition of alumina,
It can be seen that this is higher than that with mullite added.
また、高温強度においても、アルミナの添加により特性
が約100℃改善され、実用上の耐熱温度は1300℃
と上昇した。In addition, the addition of alumina improves the high temperature strength by approximately 100℃, and the practical heat resistance temperature is 1300℃.
and rose.
また、第3図より、アルミナ添加とムライト添加におい
ては組織に違いが見られる。すなわち、図(B)のムラ
イ1〜添加のものは焼結体中のムライト粒(M)が凝集
して大きな粒を形成しているのに対し、図(A>のアル
ミナ添加のものは柱状に発達したムライト粒(M)、ス
ピネル粒(S)が均一に分布していることがわかる。Moreover, from FIG. 3, there is a difference in the structure between the addition of alumina and the addition of mullite. In other words, the mullite grains (M) in the sintered body agglomerate to form large grains in the sintered body in which mullite 1 or more is added in Figure (B), whereas the mullite grains (M) in Figure (A) in which alumina is added are columnar. It can be seen that the mullite grains (M) and spinel grains (S) that have developed are uniformly distributed.
次に、本発明例の試験No、 3の]−デイエクイ1〜
セラミツクス焼結体(コーディエライト90重量%+ア
ルミナ10重量%)で、第4図に示す]−キングプレー
ト(1)を製作し、このコーキングプレート(1)と、
比較例の試験No、 1の焼結体くコープイライト10
0重量%)で製作したコーキングプレー1〜をそれぞれ
第5図に示すようにコークス炉炉蓋に装着し、実機操業
を行なって6ケ月使用後の状態を調べた。なお第5図中
、(2)はコークス炉、(3)はコクス炉炉蓋、(4)
は断熱材、(5)はコークスをそれぞれ示す。Next, test No. 3 of the present invention example - Day Equi 1~
A sintered ceramic body (90% by weight of cordierite + 10% by weight of alumina) as shown in Fig. 4] was produced, and this caulking plate (1) and
Comparative example test No. 1 sintered body Kucoilite 10
The coking plates 1 to 1 made with 0% by weight) were respectively attached to the lid of a coke oven as shown in FIG. 5, and the actual equipment was operated to examine the condition after 6 months of use. In Figure 5, (2) is the coke oven, (3) is the coke oven lid, and (4) is the coke oven.
(5) indicates a heat insulating material, and (5) indicates a coke.
その結果、両方とも大きな割れ、変形は認められなかっ
たが、炉蓋開閉時に発生したと思われるプレート端部の
欠けは、本発明例の試験No、3の方が比較例の試験N
o、 1より少なかった。As a result, no major cracks or deformations were observed in either case, but the chipping at the plate end that was thought to have occurred when opening and closing the furnace lid was better in Test No. 3 of the invention example than in Test No. 3 of the comparative example.
o, it was less than 1.
また、本発明例の試験No、 3の焼結体で通常の厚さ
より肉厚を薄クシたコーキングプレートを各種製作し、
上記と同様の実炉試験を行なった結果、比較例の試験N
o、 1と同じ耐久性を保ちながら40%の薄型化が可
能となり、十分実用に耐えられることが判明した。In addition, various types of caulking plates were manufactured using the sintered body of Test No. 3 of the present invention example, and the thickness of the caulking plate was thinner than the normal thickness.
As a result of conducting the same actual furnace test as above, test N of comparative example
It was found that it was possible to reduce the thickness by 40% while maintaining the same durability as 1, and that it was sufficiently durable for practical use.
以下余白
第5図は同上コーキングプレートの使用状態を示す概略
平面図でおる。The following margin figure 5 is a schematic plan view showing the usage state of the above caulking plate.
1・・・コーキングプレート、 2・・・コークス炉3
・・・炉M4・・・断熱材
5・・・コークス
出願人 住友金属工業株式会社
発明の詳細
な説明したごとく、この発明方法によれば、耐熱性に優
れた柱状のムライト粒子とスピネル粒子を均一な分布で
生成させることができるので、強度、破壊靭性耐熱性、
耐熱衝撃性に優れたコーディエライト複合体を得ること
ができ、コークス炉のコーキングプレート等、熱衝撃の
加わる構造用部材に幅広く利用できるという大なる効果
を奏するものでおる。1... Coking plate, 2... Coke oven 3
... Furnace M4 ... Insulating material 5 ... Coke Applicant Sumitomo Metal Industries, Ltd. As described in detail of the invention, according to the method of this invention, columnar mullite particles and spinel particles with excellent heat resistance are produced. Because it can be produced in a uniform distribution, it improves strength, fracture toughness, heat resistance,
It is possible to obtain a cordierite composite with excellent thermal shock resistance, which has the great effect of being widely applicable to structural members that are subject to thermal shock, such as coking plates for coke ovens.
第1図はこの発明の実施例におけるアルミナ、ムライト
の添加量と曲げ強度の関係を示す図、第2図は同上実施
例にあけるアルミナ、ムライトの添加量と破壊靭性値の
関係を示す図、第3図は同上実施例における焼結体の顕
微鏡観察による組織を示す概略図で、図(A>はアルミ
ナを添加したコーディエライトセラミックス焼結体の組
織図、図(B)はムライトを添加したコーディエライト
セラミックス焼結体の組織図、第4図は同上実施例で使
用したコーキングプレートを示す斜視図、添加量(wt
%)
添加量(wt%)
(A)
(B)
コーキンクプレートFIG. 1 is a diagram showing the relationship between the amount of alumina and mullite added and the bending strength in an example of the present invention, and FIG. 2 is a diagram showing the relationship between the amount of alumina and mullite added and the fracture toughness value in the same example. Figure 3 is a schematic diagram showing the structure of the sintered body in the same example as observed under a microscope. Fig. 4 is a perspective view showing the caulking plate used in the above example, and the addition amount (wt
%) Addition amount (wt%) (A) (B) Cork plate
Claims (1)
粉を5〜30重量%添加した後成形し、1300℃以上
の温度で焼成することを特徴とするコーディエライトセ
ラミックス複合体の製造方法。A method for producing a cordierite ceramic composite, comprising adding 5 to 30% by weight of alumina powder with a particle size of 5 μm or less to cordierite raw material powder, shaping the mixture, and firing the mixture at a temperature of 1300° C. or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1029178A JPH02208253A (en) | 1989-02-08 | 1989-02-08 | Method for producing cordierite ceramic composite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1029178A JPH02208253A (en) | 1989-02-08 | 1989-02-08 | Method for producing cordierite ceramic composite |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02208253A true JPH02208253A (en) | 1990-08-17 |
Family
ID=12268973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1029178A Pending JPH02208253A (en) | 1989-02-08 | 1989-02-08 | Method for producing cordierite ceramic composite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02208253A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012115136A1 (en) * | 2011-02-24 | 2012-08-30 | 京セラ株式会社 | Cordierite sintered body and member for semiconductor device composed of cordierite sintered body |
JP2013514960A (en) * | 2009-12-21 | 2013-05-02 | コンセホ スペリオール デ インベスティガシオネス シエンティフィカス(セエセイセ) | COMPOSITE MATERIAL WITH CONTROLLED CTE, INCLUDING OXIDE CERAMIC AND PROCESS FOR OBTAINING THE COMPOSITE MATERIAL |
-
1989
- 1989-02-08 JP JP1029178A patent/JPH02208253A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013514960A (en) * | 2009-12-21 | 2013-05-02 | コンセホ スペリオール デ インベスティガシオネス シエンティフィカス(セエセイセ) | COMPOSITE MATERIAL WITH CONTROLLED CTE, INCLUDING OXIDE CERAMIC AND PROCESS FOR OBTAINING THE COMPOSITE MATERIAL |
WO2012115136A1 (en) * | 2011-02-24 | 2012-08-30 | 京セラ株式会社 | Cordierite sintered body and member for semiconductor device composed of cordierite sintered body |
US9073790B2 (en) | 2011-02-24 | 2015-07-07 | Kyocera Corporation | Cordierite sintered body and member for semiconductor device composed of cordierite sintered body |
JP5762522B2 (en) * | 2011-02-24 | 2015-08-12 | 京セラ株式会社 | Cordierite sintered body and member for semiconductor manufacturing equipment comprising this cordierite sintered body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3600933B2 (en) | Method for producing aluminum titanate-based sintered body | |
JPS5924751B2 (en) | Sintered shaped body | |
EP0153000B1 (en) | Refractories of silicon carbide and related materials having a modified silicon nitride bonding phase | |
KR20050007338A (en) | Method for producing aluminum titanate sintered compact | |
JPS59184770A (en) | Silicon nitride sintered body and manufacture | |
WO2018087224A1 (en) | Composite material made of metal and ceramic, and method for production thereof | |
EP0372868A2 (en) | Ceramic materials for use in insert-casting and processes for producing the same | |
US5578534A (en) | Method of producing Sl3 N4 reinforced monoclinic BaO·Al2 O3 ·2SiO2 and SrO·Al.sub. O3 ·2SiO2 ceramic composites | |
JPH02208253A (en) | Method for producing cordierite ceramic composite | |
JP3370710B2 (en) | Chromium oxide-refractory brick manufacturing method | |
JPH0826815A (en) | Rare earth complex oxide-based sintered body and method for producing the same | |
JPH02500667A (en) | composite refractory material | |
JP3228890B2 (en) | Manufacturing method of porous inorganic material | |
JPH08198664A (en) | Alumina-base sintered body and its production | |
JPS6345173A (en) | High toughness ceramic sintered body and manufacture | |
JPH05117030A (en) | Complex ceramic and its production | |
JPS5855110B2 (en) | Manufacturing method of carbide heat-resistant ceramics | |
KR930004555B1 (en) | Al_2O_3 series ceramic composite material and manufacturing method thereof | |
JPH0122226B2 (en) | ||
JP2742620B2 (en) | Boride-aluminum oxide sintered body and method for producing the same | |
JPS61236653A (en) | Chromium nitride-zirconia base ceramics and manufacture | |
JPH01183460A (en) | Production of sintered ceramic material | |
JPH0455360A (en) | Magnesia-based superhigh temperature refractory | |
JP2695070B2 (en) | Method for producing silicon nitride-silicon carbide composite sintered body | |
JP2746760B2 (en) | Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same |